Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(19): 198003, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36399748

RESUMO

Combinatorial problems arising in puzzles, origami, and (meta)material design have rare sets of solutions, which define complex and sharply delineated boundaries in configuration space. These boundaries are difficult to capture with conventional statistical and numerical methods. Here we show that convolutional neural networks can learn to recognize these boundaries for combinatorial mechanical metamaterials, down to finest detail, despite using heavily undersampled training sets, and can successfully generalize. This suggests that the network infers the underlying combinatorial rules from the sparse training set, opening up new possibilities for complex design of (meta)materials.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação
2.
Soft Matter ; 18(15): 2910-2919, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35352073

RESUMO

Metamaterials can display unusual and superior properties that come from their carefully designed structure rather than their composition. Metamaterials have permeated large swatches of science, including electromagnetics and mechanics. Although metamaterials hold the promise for realizing technological advances, their potential to enhance interactions between humans and materials has largely remained unexplored. Here, we devise a class edible mechanical metamaterials with tailored fracture properties to control mouthfeel sensory experience. Using chocolate as a model material, we first demonstrate how to create and control the fracture anisotropy, and the number of cracks, and demonstrate that these properties are captured in mouthfeel experience. We further use topology optimization to rationally design edible metamaterials with maximally anisotropic fracture strength. Our work opens avenues for the use of metamaterials to control fracture and to enhance human-matter interactions.


Assuntos
Anisotropia , Humanos
3.
Nat Commun ; 13(1): 211, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017497

RESUMO

Deformations of conventional solids are described via elasticity, a classical field theory whose form is constrained by translational and rotational symmetries. However, flexible metamaterials often contain an additional approximate symmetry due to the presence of a designer soft strain pathway. Here we show that low energy deformations of designer dilational metamaterials will be governed by a scalar field theory, conformal elasticity, in which the nonuniform, nonlinear deformations observed under generic loads correspond with the well-studied-conformal-maps. We validate this approach using experiments and finite element simulations and further show that such systems obey a holographic bulk-boundary principle, which enables an analytic method to predict and control nonuniform, nonlinear deformations. This work both presents a unique method of precise deformation control and demonstrates a general principle in which mechanisms can generate special classes of soft deformations.

4.
Adv Sci (Weinh) ; 8(20): e2102279, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34402215

RESUMO

The Poynting effect generically manifests itself as the extension of the material in the direction perpendicular to an applied shear deformation (torsion) and is a material parameter hard to design. Unlike isotropic solids, in designed structures, peculiar couplings between shear and normal deformations can be achieved and exploited for practical applications. Here, a metamaterial is engineered that can be programmed to contract or extend under torsion and undergo nonlinear twist under compression. First, it is shown that the system exhibits a novel type of inverted Poynting effect, where axial compression induces a nonlinear torsion. Then the Poynting modulus of the structure is programmed from initial negative values to zero and positive values via a pre-compression applied prior to torsion. The work opens avenues for programming nonlinear elastic moduli of materials and tuning the couplings between shear and normal responses by rational design. Obtaining inverted and programmable Poynting effects in metamaterials inspires diverse applications from designing machine materials, soft robots, and actuators to engineering biological tissues, implants, and prosthetic devices functioning under compression and torsion.


Assuntos
Modelos Teóricos , Impressão Tridimensional , Resistência ao Cisalhamento/fisiologia , Estresse Mecânico , Módulo de Elasticidade/fisiologia , Elasticidade , Pressão
5.
Proc Natl Acad Sci U S A ; 118(21)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001603

RESUMO

Mechanical metamaterials are artificial composites that exhibit a wide range of advanced functionalities such as negative Poisson's ratio, shape shifting, topological protection, multistability, extreme strength-to-density ratio, and enhanced energy dissipation. In particular, flexible metamaterials often harness zero-energy deformation modes. To date, such flexible metamaterials have a single property, for example, a single shape change, or are pluripotent, that is, they can have many different responses, but typically require complex actuation protocols. Here, we introduce a class of oligomodal metamaterials that encode a few distinct properties that can be selectively controlled under uniaxial compression. To demonstrate this concept, we introduce a combinatorial design space containing various families of metamaterials. These families include monomodal (i.e., with a single zero-energy deformation mode); oligomodal (i.e., with a constant number of zero-energy deformation modes); and plurimodal (i.e., with many zero-energy deformation modes), whose number increases with system size. We then confirm the multifunctional nature of oligomodal metamaterials using both boundary textures and viscoelasticity. In particular, we realize a metamaterial that has a negative (positive) Poisson's ratio for low (high) compression rate over a finite range of strains. The ability of our oligomodal metamaterials to host multiple mechanical responses within a single structure paves the way toward multifunctional materials and devices.

6.
Nature ; 589(7842): 360-361, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33473221

Assuntos
Memória , Leitura , Redação
7.
Proc Natl Acad Sci U S A ; 117(47): 29561-29568, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33168722

RESUMO

Topological edge modes are excitations that are localized at the materials' edges and yet are characterized by a topological invariant defined in the bulk. Such bulk-edge correspondence has enabled the creation of robust electronic, electromagnetic, and mechanical transport properties across a wide range of systems, from cold atoms to metamaterials, active matter, and geophysical flows. Recently, the advent of non-Hermitian topological systems-wherein energy is not conserved-has sparked considerable theoretical advances. In particular, novel topological phases that can only exist in non-Hermitian systems have been introduced. However, whether such phases can be experimentally observed, and what their properties are, have remained open questions. Here, we identify and observe a form of bulk-edge correspondence for a particular non-Hermitian topological phase. We find that a change in the bulk non-Hermitian topological invariant leads to a change of topological edge-mode localization together with peculiar purely non-Hermitian properties. Using a quantum-to-classical analogy, we create a mechanical metamaterial with nonreciprocal interactions, in which we observe experimentally the predicted bulk-edge correspondence, demonstrating its robustness. Our results open avenues for the field of non-Hermitian topology and for manipulating waves in unprecedented fashions.

8.
Nat Commun ; 10(1): 4608, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601803

RESUMO

Non-reciprocal transmission of motion is potentially highly beneficial to a wide range of applications, ranging from wave guiding to shock and vibration damping and energy harvesting. To date, large levels of non-reciprocity have been realized using broken spatial or temporal symmetries, yet mostly in the vicinity of resonances, bandgaps or using nonlinearities, thereby non-reciprocal transmission remains limited to narrow ranges of frequencies or input magnitudes and sensitive to attenuation. Here, we create a robotic mechanical metamaterials wherein we use local control loops to break reciprocity at the level of the interactions between the unit cells. We show theoretically and experimentally that first-of-their-kind spatially asymmetric standing waves at all frequencies and unidirectionally amplified propagating waves emerge. These findings realize the mechanical analogue of the non-Hermitian skin effect. They significantly advance the field of active metamaterials for non hermitian physics and open avenues to channel mechanical energy in unprecedented ways.

9.
Nature ; 561(7724): 512-515, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30258138

RESUMO

Multi-step pathways-which consist of a sequence of reconfigurations of a structure-are central to the functionality of various natural and artificial systems. Such pathways execute autonomously in self-guided processes such as protein folding1 and self-assembly2-5, but have previously required external control to execute in macroscale mechanical systems, provided by, for example, actuators in robotics6-9 or manual folding in origami8,10-12. Here we demonstrate shape-changing, macroscale mechanical metamaterials that undergo self-guided, multi-step reconfiguration in response to global uniform compression. We avoid the need for external control by using metamaterials that are made purely of passive components. The design of the metamaterials combines nonlinear mechanical elements with a multimodal architecture that enables a sequence of topological reconfigurations caused by the formation of internal self-contacts between the elements of the metamaterial. We realize the metamaterials by using computer-controlled water-jet cutting of flexible materials, and show that the multi-step pathway and final configuration can be controlled by rational design of the nonlinear mechanical elements. We also demonstrate that the self-contacts suppress errors in the pathway. Finally, we create hierarchical architectures to extend the number of distinct reconfiguration steps. Our work establishes general principles for designing mechanical pathways, opening up new avenues for self-folding media11,12, pluripotent materials9,13 and pliable devices14 in areas such as stretchable electronics and soft robotics15.

10.
Science ; 358(6366): 994-995, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29170220
11.
Nature ; 542(7642): 461-464, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28192786

RESUMO

Reciprocity is a general, fundamental principle governing various physical systems, which ensures that the transfer function-the transmission of a physical quantity, say light intensity-between any two points in space is identical, regardless of geometrical or material asymmetries. Breaking this transmission symmetry offers enhanced control over signal transport, isolation and source protection. So far, devices that break reciprocity (and therefore show non-reciprocity) have been mostly considered in dynamic systems involving electromagnetic, acoustic and mechanical wave propagation associated with fields varying in space and time. Here we show that it is possible to break reciprocity in static systems, realizing mechanical metamaterials that exhibit vastly different output displacements under excitation from different sides, as well as one-way displacement amplification. This is achieved by combining large nonlinearities with suitable geometrical asymmetries and/or topological features. In addition to extending non-reciprocity and isolation to statics, our work sheds light on energy propagation in nonlinear materials with asymmetric crystalline structures and topological properties. We anticipate that breaking reciprocity will open avenues for energy absorption, conversion and harvesting, soft robotics, prosthetics and optomechanics.

12.
Soft Matter ; 12(42): 8736-8743, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27714363

RESUMO

We experimentally and numerically study the role of geometry for the mechanics of biholar metamaterials, which are quasi-2D slabs of rubber patterned by circular holes of two alternating sizes. We recently showed how the response to uniaxial compression of these metamaterials can be programmed by lateral confinement. In particular, there is a range of confining strains εx for which the resistance to compression becomes non-trivial-non-monotonic or hysteretic-in a range of compressive strains εy. Here we show how the dimensionless geometrical parameters t and χ, which characterize the wall thickness and size ratio of the holes that pattern these metamaterials, can significantly tune these ranges over a wide range. We study the behavior for the limiting cases where the wall thickness t and the size ratio χ become large, and discuss the new physics that arises there. Away from these extreme limits, the variation of the strain ranges of interest is smooth with porosity, but the variation with size ratio evidences a cross-over at low χ from biholar to monoholar (equal sized holes) behavior, related to the elastic instabilities in purely monoholar metamaterials. Our study provides precise guidelines for the rational design of programmable biholar metamaterials, tailored to specific applications, and indicates that the widest range of programmability arises for moderate values of both t and χ.

13.
Nature ; 535(7613): 529-32, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27466125

RESUMO

The structural complexity of metamaterials is limitless, but, in practice, most designs comprise periodic architectures that lead to materials with spatially homogeneous features. More advanced applications in soft robotics, prosthetics and wearable technology involve spatially textured mechanical functionality, which requires aperiodic architectures. However, a naive implementation of such structural complexity invariably leads to geometrical frustration (whereby local constraints cannot be satisfied everywhere), which prevents coherent operation and impedes functionality. Here we introduce a combinatorial strategy for the design of aperiodic, yet frustration-free, mechanical metamaterials that exhibit spatially textured functionalities. We implement this strategy using cubic building blocks-voxels-that deform anisotropically, a local stacking rule that allows cooperative shape changes by guaranteeing that deformed building blocks fit together as in a three-dimensional jigsaw puzzle, and three-dimensional printing. These aperiodic metamaterials exhibit long-range holographic order, whereby the two-dimensional pixelated surface texture dictates the three-dimensional interior voxel arrangement. They also act as programmable shape-shifters, morphing into spatially complex, but predictable and designable, shapes when uniaxially compressed. Finally, their mechanical response to compression by a textured surface reveals their ability to perform sensing and pattern analysis. Combinatorial design thus opens up a new avenue towards mechanical metamaterials with unusual order and machine-like functionalities.


Assuntos
Mecânica , Propriedades de Superfície , Holografia , Impressão Tridimensional , Próteses e Implantes , Robótica/instrumentação
14.
Phys Rev Lett ; 115(4): 044301, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26252687

RESUMO

We uncover how nonlinearities dramatically alter the buckling of elastic beams. First, we show experimentally that sufficiently wide ordinary elastic beams and specifically designed metabeams-beams made from a mechanical metamaterial-exhibit discontinuous buckling, an unstable form of buckling where the postbuckling stiffness is negative. Then we use simulations to uncover the crucial role of nonlinearities, and show that beams made from increasingly nonlinear materials exhibit an increasingly negative postbuckling slope. Finally, we demonstrate that for sufficiently strong nonlinearity, we can observe discontinuous buckling for metabeams as slender as 1% numerically and 5% experimentally.

15.
Phys Rev Lett ; 113(17): 175503, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25379923

RESUMO

We create mechanical metamaterials whose response to uniaxial compression can be programmed by lateral confinement, allowing monotonic, nonmonotonic, and hysteretic behavior. These functionalities arise from a broken rotational symmetry which causes highly nonlinear coupling of deformations along the two primary axes of these metamaterials. We introduce a soft mechanism model which captures the programmable mechanics, and outline a general design strategy for confined mechanical metamaterials. Finally, we show how inhomogeneous confinement can be explored to create multistability and giant hysteresis.

16.
Phys Rev Lett ; 106(12): 120601, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21517290

RESUMO

We analyze the large-scale structure and fluctuations of jammed packings of size-disperse spheres, produced in a granular experiment as well as numerically. While the structure factor of the packings reveals no unusual behavior for small wave vectors, the compressibility displays an anomalous linear dependence at low wave vectors and vanishes when q→0. We show that such behavior occurs because jammed packings of size-disperse spheres have no bulk fluctuations of the volume fraction and are thus hyperuniform, a property not observed experimentally before. Our results apply to arbitrary particle size distributions. For continuous distributions, we derive a perturbative expression for the compressibility that is accurate for polydispersity up to about 30%.

17.
Biomaterials ; 30(6): 1205-13, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19058845

RESUMO

We used a combined atomic force microscopic (AFM)/fluorescence microscopic technique to study the mechanical properties of individual, electrospun fibrinogen fibers in aqueous buffer. Fibers (average diameter 208 nm) were suspended over 12 microm-wide grooves in a striated, transparent substrate. The AFM, situated above the sample, was used to laterally stretch the fibers and to measure the applied force. The fluorescence microscope, situated below the sample, was used to visualize the stretching process. The fibers could be stretched to 2.3 times their original length before breaking; the breaking stress was 22 x 10 (6)Pa. We collected incremental stress-strain curves to determine the viscoelastic behavior of these fibers. The total stretch modulus was 17.5 x 10 (6)Pa and the relaxed elastic modulus was 7.2 x 10 (6)Pa. When held at constant strain, electrospun fibrinogen fibers showed a fast and slow stress relaxation time of 3 and 55 s. Our fibers were spun from the typically used 90% 1,1,1,3,3,3-hexafluoro-2-propanol (90-HFP) electrospinning solution and re-suspended in aqueous buffer. Circular dichroism spectra indicate that alpha-helical content of fibrinogen is approximately 70% higher in 90-HFP than in aqueous solution. These data are needed to understand the mechanical behavior of electrospun fibrinogen structures. Our technique is also applicable to study other nanoscopic fibers.


Assuntos
Fibrinogênio/química , Teste de Materiais , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Galinhas , Dicroísmo Circular , Cristalografia por Raios X , Elasticidade/efeitos dos fármacos , Fibrinogênio/ultraestrutura , Microscopia de Força Atômica , Microscopia de Fluorescência , Estrutura Secundária de Proteína , Fatores de Tempo , Viscosidade/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...