Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Atmos Chem Phys ; 18(14): 10199-10218, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30450115


The evaluation and intercomparison of air quality models is key to reducing model errors and uncertainty. The projects AQMEII3 and EURODELTA-Trends, in the framework of the Task Force on Hemispheric Transport of Air Pollutants and the Task Force on Measurements and Modelling, respectively (both task forces under the UNECE Convention on the Long Range Transport of Air Pollution, LTRAP), have brought together various regional air quality models to analyze their performance in terms of air concentrations and wet deposition, as well as to address other specific objectives. This paper jointly examines the results from both project communities by intercomparing and evaluating the deposition estimates of reduced and oxidized nitrogen (N) and sulfur (S) in Europe simulated by 14 air quality model systems for the year 2010. An accurate estimate of deposition is key to an accurate simulation of atmospheric concentrations. In addition, deposition fluxes are increasingly being used to estimate ecological impacts. It is therefore important to know by how much model results differ and how well they agree with observed values, at least when comparison with observations is possible, such as in the case of wet deposition. This study reveals a large variability between the wet deposition estimates of the models, with some performing acceptably (according to previously defined criteria) and others underestimating wet deposition rates. For dry deposition, there are also considerable differences between the model estimates. An ensemble of the models with the best performance for N wet deposition was made and used to explore the implications of N deposition in the conservation of protected European habitats. Exceedances of empirical critical loads were calculated for the most common habitats at a resolution of 100 × 100 m2 within the Natura 2000 network, and the habitats with the largest areas showing exceedances are determined. Moreover, simulations with reduced emissions in selected source areas indicated a fairly linear relationship between reductions in emissions and changes in the deposition rates of N and S. An approximate 20 % reduction in N and S deposition in Europe is found when emissions at a global scale are reduced by the same amount. European emissions are by far the main contributor to deposition in Europe, whereas the reduction in deposition due to a decrease in emissions in North America is very small and confined to the western part of the domain. Reductions in European emissions led to substantial decreases in the protected habitat areas with critical load exceedances (halving the exceeded area for certain habitats), whereas no change was found, on average, when reducing North American emissions in terms of average values per habitat.

J Environ Sci (China) ; 40: 92-104, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26969549


Molecular speciation of atmospheric organic matter was investigated during a short summer field campaign performed in a citrus fruit field in northern Corsica (June 2011). Aimed at assessing the performance on the field of newly developed analytical protocols, this work focuses on the molecular composition of both gas and particulate phases and provides an insight into partitioning behavior of the semi-volatile oxygenated fraction. Limonene ozonolysis tracers were specifically searched for, according to gas chromatography-mass spectrometry (GC-MS) data previously recorded for smog chamber experiments. A screening of other oxygenated species present in the field atmosphere was also performed. About sixty polar molecules were positively or tentatively identified in gas and/or particle phases. These molecules comprise a wide range of branched and linear, mono and di-carbonyls (C3-C7), mono and di-carboxylic acids (C3-C18), and compounds bearing up to three functionalities. Among these compounds, some can be specifically attributed to limonene oxidation and others can be related to α- or ß-pinene oxidation. This provides an original snapshot of the organic matter composition at a Mediterranean site in summer. Furthermore, for compounds identified and quantified in both gaseous and particulate phases, an experimental gas/particle partitioning coefficient was determined. Several volatile products, which are not expected in the particulate phase assuming thermodynamic equilibrium, were nonetheless present in significant concentrations. Hypotheses are proposed to explain these observations, such as the possible aerosol viscosity that could hinder the theoretical equilibrium to be rapidly reached.

Aerossóis/análise , Aerossóis/química , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/análise , Cicloexenos/análise , Monitoramento Ambiental/métodos , França , Cromatografia Gasosa-Espectrometria de Massas , Gases/análise , Gases/química , Limoneno , Região do Mediterrâneo , Monoterpenos/análise , Oxirredução , Smog/análise , Terpenos/análise , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Tempo (Meteorologia)
Sci Rep ; 5: 12942, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26255956


Deposition of reactive nitrogen (N) from the atmosphere is expected to be the third greatest driver of biodiversity loss by the year 2100. Chemistry-transport models are essential tools to estimate spatially explicit N deposition but the reliability of their predictions remained to be validated in mountains. We measured N deposition and air concentration over the subalpine Pyrenees. N deposition was found to range from 797 to 1,463 mg N m(-2) year(-1). These values were higher than expected from model predictions, especially for nitrate, which exceeded the estimations of EMEP by a factor of 2.6 and CHIMERE by 3.6. Our observations also displayed a reversed reduced-to-oxidized ratio in N deposition compared with model predictions. The results highlight that the subalpine Pyrenees are exposed to higher levels of N deposition than expected according to standard predictions and that these levels exceed currently recognized critical loads for most high-elevation habitats. Our study reveals a need to improve the evaluation of N deposition in mountains which are home to a substantial and original part of the world's biodiversity.

Environ Sci Technol ; 47(2): 914-22, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23190252


A molecular surrogate representation of secondary organic aerosol (SOA) formation is used to investigate the effect of aqueous-phase (in clouds and particles) chemical processing and wet deposition on SOA atmospheric concentrations. To that end, the hydrophilic/hydrophobic organic (H(2)O) model was augmented to account for several gas/aqueous-phase equilibria and aqueous-phase processes, including the formation of oxalic, glyoxilic and pyruvic acids, the oxidation of methyl vinyl ketone (MVK) and methacrolein (MACR), the formation of tetrols and organosulfates from epoxydiols (IEPOX), and further oxidation of water-soluble SOA (aging). Among those processes, SOA chemical aging and IEPOX reactions led to the most significant increases (up to 1 µg m(-3) in some areas) in SOA concentrations in a one-month summer simulation over Europe. However, large uncertainties remain in the gas/aqueous-phase partitioning of oxalic acid, MVK, and MACR. Below-cloud scavenging of SOA precursor gases and of gas-phase SVOC was found to affect SOA concentrations by up to 20%, which suggests that it should be taken into account in air quality models.

Aerossóis/química , Glioxilatos/química , Modelos Químicos , Ácido Oxálico/química , Ácido Pirúvico/química , Água/química , Poluentes Atmosféricos/química , Simulação por Computador , Gases/química , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Material Particulado/química
J Air Waste Manag Assoc ; 61(11): 1218-26, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22168105


The effects of two gas-phase chemical kinetic mechanisms, Regional Atmospheric Chemistry Mechanism version 2 (RACM2) and Carbon-Bond 05 (CB05), and two secondary organic aerosol (SOA) modules, the Secondary Organic Aerosoi Model (SORGAM) and AER/EPRI/Caltech model (AEC), on fine (aerodynamic diameter < or =2.5 microm) particulate matter (PM2.5) formation is studied. The major sources of uncertainty in the chemistry of SOA formation are investigated. The use of all major SOA precursors and the treatment of SOA oligomerization are found to be the most important factors for SOA formation, leading to 66% and 60% more SOA, respectively. The explicit representation of high-NO, and low-NOx gas-phase chemical regimes is also important with increases in SOA of 30-120% depending on the approach used to implement the distinct SOA yields within the gas-phase chemical kinetic mechanism; further work is needed to develop gas-phase mechanisms that are fully compatible with SOA formation algorithms. The treatment of isoprene SOA as hydrophobic or hydrophilic leads to a significant difference, with more SOA being formed in the latter case. The activity coefficients may also be a major source of uncertainty, as they may differ significantly between atmospheric particles, which contain a myriad of SOA, primary organic aerosol (POA), and inorganic aerosol species, and particles formed in a smog chamber from a single precursor under dry conditions. Significant interactions exist between the uncertainties of the gas-phase chemistry and those of the SOA module.

Aerossóis/química , Poluentes Atmosféricos/química , Simulação por Computador , Modelos Teóricos , Material Particulado/química , Monitoramento Ambiental , Europa (Continente) , Gases , Tamanho da Partícula