Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Clin Neurophysiol ; 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34510090

RESUMO

INTRODUCTION: This study aimed to determine the ability of multimodality intraoperative neurophysiologic monitoring, including somatosensory evoked potentials (SSEP) and EEG, to predict perioperative clinical stroke and stroke-related mortality after open-heart surgery in high-risk patients. METHODS: The records of all consecutive patients who underwent coronary artery bypass grafting, and cardiac valve repair/replacement with high risk for stroke who underwent both SSEP and EEG recording at the University of Pittsburgh Medical Center between 2009 and 2015 were reviewed. Sensitivity and specificity of these modalities to predict in-hospital clinical strokes and stroke-related mortality were calculated. RESULTS: A total of 531 patients underwent open cardiac procedures monitored using SSEP and EEG. One hundred thirty-one patients (24.67%) experienced significant changes in either modality. Fourteen patients (2.64%) suffered clinical strokes within 24 hours after surgery, and eight patients (1.50%) died during their hospitalization. The incidence of in-hospital clinical stroke and stroke-related mortality among patients who experienced a significant change in monitoring compared with those with no significant change was 11.45% versus 1.75%. The sensitivity and specificity of significant changes in either SSEP or EEG to predict in-hospital major stroke and stroke-related mortality were 0.93 and 0.77, respectively. CONCLUSIONS: Intraoperative neurophysiologic monitoring with SSEP and EEG has high sensitivity and specificity in predicting perioperative stroke and stroke-related mortality after open cardiac procedures. These results support the benefits of multimodality neuromonitoring during cardiac surgery.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34384591

RESUMO

OBJECTIVE: To evaluate the ability of intraoperative neurophysiologic monitoring (IONM) during aortic arch reconstruction with hypothermic circulatory arrest (HCA) to predict early (<48 hours) adverse neurologic events (ANE; stroke or transient ischemic attack) and operative mortality. METHODS: This was an observational study of aortic arch surgeries requiring HCA from 2010 to 2018. Patients were monitored with electroencephalogram (EEG) and somatosensory evoked potentials (SSEP). Baseline characteristics and postoperative outcomes were compared according to presence or absence of IONM changes, which were defined as any acute variation in SSEP or EEG, compared with baseline. Multivariable logistic regression analysis was used to assess the association of IONM changes with operative mortality and early ANE. RESULTS: A total of 563 patients underwent aortic arch reconstruction with HCA and IONM. Of these, 119 (21.1%) patients had an IONM change, whereas 444 (78.9%) did not. Patients with IONM changes had increased operative mortality (22.7% vs 4.3%) and increased early ANE (10.9% vs 2.9%). In multivariable analysis, SSEP changes were correlated with early ANE (odds ratio [OR], 4.68; 95% confidence interval [CI], 1.51-14.56; P = .008), whereas EEG changes were not (P = .532). Permanent SSEP changes were correlated with early ANE (OR, 4.56; 95% CI, 1.51-13.77; P = .007), whereas temperature-related SSEP changes were not (P = .997). Finally, any IONM change (either SSEP or EEG) was correlated with operative mortality (OR, 5.82; 95% CI, 2.72-12.49; P < .001). CONCLUSIONS: Abnormal IONM events during aortic arch reconstruction with HCA portend worse neurologic outcomes and operative mortality and have a negative predictive value of 97.1%. SSEP might be more sensitive than EEG for predicting early ANE, especially when SSEP changes are permanent.

3.
J Neurol Surg B Skull Base ; 82(Suppl 3): e342-e348, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34306959

RESUMO

Objective This study proposes to present reference parameters for trigeminal (V) and facial (VII) cranial nerves (CNs)-triggered electromyography (tEMG) during endoscopic endonasal approach (EEA) skull base surgeries to allow more precise and accurate mapping of these CNs. Study Design We retrospectively reviewed EEA procedures performed at the University of Pittsburgh Medical Center between 2009 and 2015. tEMG recorded in response to stimulation of CN V and VII was analyzed. Analysis of tEMG waveforms included latencies and amplitudes. Medical records were reviewed to determine the presence of perioperative neurologic deficits. Results A total of 28 patients were included. tEMG from 34 CNs (22 V and 12 VII) were analyzed. For CN V, the average onset latency was 2.9 ± 1.1 ms and peak-to-peak amplitude was 525 ± 436.94 µV ( n = 22). For CN VII, the average onset latency and peak-to-peak amplitude were 5.1 ± 1.43 ms and 315 ± 352.58 µV for the orbicularis oculi distribution ( n = 09), 5.9 ± 0.67 ms and 517 ± 489.07 µV on orbicularis oris ( n = 08), and 5.3 ± 0.98 ms 303.1 ± 215.3 µV on mentalis ( n = 07), respectively. Conclusion Our data support the notion that onset latency may be a feasible parameter in the differentiation between the CN V and VII during the crosstalk phenomenon in EEA surgeries but the particularities of this type of procedure should be taken into consideration. A prospective analysis with a larger data set is necessary.

4.
Global Spine J ; : 21925682211018472, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34013769

RESUMO

STUDY DESIGN: Systematic review and meta-analysis. OBJECTIVES: Malposition of pedicle screws during instrumentation in the lumbar spine is associated with complications secondary to spinal cord or nerve root injury. Intraoperative triggered electromyographic monitoring (t-EMG) may be used during instrumentation for early detection of malposition. The association between lumbar pedicle screws stimulated at low EMG thresholds and postoperative neurological deficits, however, remains unknown. The purpose of this study is to assess whether a low threshold t-EMG response to lumbar pedicle screw stimulation can serve as a predictive tool for postoperative neurological deficit. METHODS: The present study is a meta-analysis of the literature from PubMed, Web of Science, and Embase identifying prospective/retrospective studies with outcomes of patients who underwent lumbar spinal fusion with t-EMG testing. RESULTS: The total study cohort consisted of 2,236 patients and the total postoperative neurological deficit rate was 3.04%. 10.78% of the patients incurred at least 1 pedicle screw that was stimulated below the respective EMG alarm threshold intraoperatively. The incidence of postoperative neurological deficits in patients with a lumbar pedicle screw stimulated below EMG alarm threshold during placement was 13.28%, while only 1.80% in the patients without. The pooled DOR was 10.14. Sensitivity was 49% while specificity was 88%. CONCLUSIONS: Electrically activated lumbar pedicle screws resulting in low t-EMG alarm thresholds are highly specific but weakly sensitive for new postoperative neurological deficits. Patients with new postoperative neurological deficits after lumbar spine surgery were 10 times more likely to have had a lumbar pedicle screw stimulated at a low EMG threshold.

5.
Spine (Phila Pa 1976) ; 46(24): E1343-E1352, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33958542

RESUMO

STUDY DESIGN: This study is a meta-analysis of prospective and retrospective studies identified in PubMed, Web of Science, and Embase with outcomes of patients who received intraoperative somatosensory-evoked potential (SSEP) monitoring during lumbar spine surgery. OBJECTIVE: The objective of this study is to determine the diagnostic accuracy of intraoperative lower extremity SSEP changes for predicting postoperative neurological deficit. As a secondary analysis, we evaluated three subtypes of intraoperative SSEP changes: reversible, irreversible, and total signal loss. SUMMARY OF BACKGROUND DATA: Lumbar decompression and fusion surgery can treat lumbar spinal stenosis and spondylolisthesis but carry a risk for nerve root injury. Published neurophysiological monitoring guidelines provide no conclusive evidence for the clinical utility of intraoperative SSEP monitoring during lumbar spine surgery. METHODS: A systematic review was conducted to identify studies with outcomes of patients who underwent lumbar spine surgeries with intraoperative SSEP monitoring. The sensitivity, specificity, and diagnostic odds ratio (DOR) were calculated and presented with forest plots and a summary receiver operating characteristic curve. RESULTS: The study cohort consisted of 5607 patients. All significant intraoperative SSEP changes had a sensitivity of 44% and specificity of 97% with a DOR of 22.13 (95% CI, 11.30-43.34). Reversible and irreversible SSEP changes had sensitivities of 28% and 33% and specificities of 97% and 97%, respectively. The DORs for reversible and irreversible SSEP changes were 13.93 (95% CI, 4.60-40.44) and 57.84 (95% CI, 15.95-209.84), respectively. Total loss of SSEPs had a sensitivity of 9% and specificity of 99% with a DOR of 23.91 (95% CI, 7.18-79.65). CONCLUSION: SSEP changes during lumbar spine surgery are highly specific but moderately sensitive for new postoperative neurological deficits. Patients who had postoperative neurological deficit were 22 times more likely to have exhibited intraoperative SSEP changes.Level of Evidence: 2.


Assuntos
Potenciais Somatossensoriais Evocados , Monitorização Neurofisiológica Intraoperatória , Humanos , Monitorização Intraoperatória , Procedimentos Neurocirúrgicos , Estudos Prospectivos , Estudos Retrospectivos
6.
World Neurosurg ; 151: e250-e256, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33872842

RESUMO

OBJECTIVE: Previous studies have shown that pedicle screw stimulation thresholds ≤6-8 mA yield a high diagnostic accuracy of detecting misplaced screws. Our objective was to determine the optimal "low" stimulation threshold to predict new postoperative neurologic deficits and identify additional risk factors associated with deficits. METHODS: We included patients with complete pedicle screw stimulation testing who underwent posterior lumbar spinal fusion surgeries from 2010-2012. We calculated the diagnostic accuracy of pedicle screw responses of ≤4 mA, ≤6 mA, ≤8 mA, ≤10 mA, ≤12 mA, and ≤20 mA to predict new postoperative lower-extremity (LE) neurologic deficits. We used multivariate modeling to determine the best logistic regression model to predict LE deficits and identify additional risk factors. Statistics software packages used were Python3.8.5, NumPy 1.19.1, Pandas 1.1.1, and SPSS26. RESULTS: We studied 1179 patients who underwent 8584 pedicle screw stimulations with somatosensory evoked potential and free-run electromyographic monitoring for posterior lumbar spinal fusion. Twenty-five (2.1%) patients had new LE neurologic deficits. A stimulation threshold of ≤8 mA had a sensitivity/specificity of 32%/90% and a diagnostic odds ratio/area under the curve of 4.34 [95% confidence interval: 1.83, 10.27]/0.61 [0.49, 0.74] in predicting postoperative deficit. Multivariate analysis showed that patients who had pedicle screws with stimulation thresholds ≤8 mA are 3.15 [1.26, 7.83]× more likely to have postoperative LE deficits while patients who have undergone a revision lumbar spinal fusion surgery are 3.64 [1.38, 9.61]× more likely. CONCLUSIONS: Our results show that low thresholds are indicative of not only screw proximity to the nerve but also an increased likelihood of postoperative neurologic deficit. Thresholds ≤8 mA prove to be the optimal "low" threshold to help guide a correctly positioned pedicle screw placement and detect postoperative deficits.


Assuntos
Vértebras Lombares/cirurgia , Parafusos Pediculares/efeitos adversos , Complicações Pós-Operatórias/diagnóstico , Fusão Vertebral/efeitos adversos , Idoso , Estimulação Elétrica/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/etiologia , Período Pós-Operatório , Sensibilidade e Especificidade
7.
Spine J ; 21(4): 555-570, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33460808

RESUMO

BACKGROUND CONTEXT: Cervical decompression and fusion surgery remains a mainstay of treatment for a variety of cervical pathologies. Potential intraoperative injury to the spinal cord and nerve roots poses nontrivial risk for consequent postoperative neurologic deficits. Although neuromonitoring with intraoperative somatosensory evoked potentials (SSEPs) is often used in cervical spine surgery, its therapeutic value remains controversial. PURPOSE: The purpose of the present study was to evaluate whether significant SSEP changes can predict postoperative neurologic complications in cervical spine surgery. A subgroup analysis was performed to compare the predictive power of SSEP changes in both anterior and posterior approaches. STUDY DESIGN: The present study was a meta-analysis of the literature from PubMed, Web of Science, and Embase to identify prospective/retrospective studies with outcomes of patients who underwent cervical spine surgeries with intraoperative SSEP monitoring. PATIENT SAMPLE: The total cohort consisted of 7,747 patients who underwent cervical spine surgery with intraoperative SSEP monitoring. METHODS: Inclusion criteria for study selection were as follows: (1) prospective or retrospective cohort studies, (2) studies conducted in patients undergoing elective cervical spine surgery not due to aneurysm, tumor, or trauma with intraoperative SSEP monitoring, (3) studies that reported postoperative neurologic outcomes, (4) studies conducted with a sample size ≥20 patients, (5) studies with only adult patients ≥18 years of age, (6) studies published in English, (7) studies inclusive of an abstract. OUTCOME MEASURES: The sensitivity, specificity, diagnostic odds ratio (DOR), and likelihood ratios of overall SSEP changes, reversible SSEP changes, irreversible SSEP changes, and SSEP loss for predicting postoperative neurological deficit were calculated. RESULTS: The total rate of postoperative neurological deficits was 2.50% (194/7,747) and the total rate of SSEP changes was 7.36% (570/7,747). The incidence of postoperative neurological deficit in patients with intraoperative SSEP changes was 16.49% (94/570) while only 1.39% (100/7,177) in patients without. All significant intraoperative SSEP changes had a sensitivity of 46.0% and specificity of 96.7% with a DOR of 27.32. Reversible and irreversible SSEP changes had sensitivities of 17.7% and 37.1% and specificities of 97.5% and 99.5%, respectively. The DORs for reversible and irreversible SSEP changes were 9.01 and 167.90, respectively. SSEP loss had a DOR of 51.39, sensitivity of 17.3% and specificity 99.6%. In anterior procedures, SSEP changes had a DOR of 9.60, sensitivity of 34.2%, and specificity of 94.7%. In posterior procedures, SSEP changes had a DOR of 13.27, sensitivity of 42.6%, and specificity of 94.0%. CONCLUSIONS: SSEP monitoring is highly specific but weakly sensitive for postoperative neurological deficit following cervical spine surgery. The analysis found that patients with new postoperative neurological deficits were nearly 27 times more likely to have had significant intraoperative SSEP change. Loss of SSEP signals and irreversible SSEP changes seem to indicate a much higher risk of injury than reversible SSEP changes.


Assuntos
Potenciais Somatossensoriais Evocados , Monitorização Neurofisiológica Intraoperatória , Adulto , Vértebras Cervicais/cirurgia , Potencial Evocado Motor , Humanos , Estudos Prospectivos , Estudos Retrospectivos
8.
World Neurosurg ; 148: e43-e57, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33301995

RESUMO

OBJECTIVE: In the present study, we investigated the role of intraoperative neuromonitoring (IONM) in internal carotid artery (ICA) injury during endoscopic endonasal skull base surgery (EESBS). METHODS: The study group included all 13 patients who had experienced an ICA injury during EESBS with IONM from 2004 to 2017. The medical records were reviewed for the perioperative data. The IONM reports were reviewed to evaluate the baseline somatosensory evoked potentials (SSEP), electroencephalography (EEG), and brainstem auditory evoked potentials (BAEP) and their significant changes related to ICA injury and/or the subsequent surgical/endovascular interventions. RESULTS: All 13 patients had undergone SSEP and 7 patients had BAEP monitoring during surgery. EEG was added during emergent angiography following the surgery for 5 patients. Two patients showed significant SSEP changes, and one showed significant SSEP and EEG changes, indicating cerebral hypoperfusion. Of these 3 patients, patient 1 had experienced irreversible SSEP loss with postoperative stroke. Patients 2 and 3 had SSEP and/or EEG changes that had recovered to baseline after interventions without postoperative deficits. Despite ICA injury, 10 patients showed no significant SSEP and/or EEG changes, and all 7 patients with BAEP monitoring showed no significant BAEP changes, indicating adequate cerebral and brainstem perfusion, respectively. The injured ICA was sacrificed in 4 patients, of whom 3 showed stable SSEP and 1 had experienced irreversible SSEP loss. IONM correlated with the postoperative neurologic examination findings in all cases, adequately predicting the neurologic outcomes after ICA injury. CONCLUSION: SSEP and EEG monitoring can accurately detect cerebral hypoperfusion and provide real-time feedback during surgery. SSEP and EEG changes predicted for neurologic outcomes and guide surgical decisions regarding the preservation or sacrifice of the ICA. Comprehensive multimodality monitoring according to the surgical risks can serve to detect and guide the management of ICA injury in EESBS.


Assuntos
Lesões das Artérias Carótidas/diagnóstico , Artéria Carótida Interna , Complicações Intraoperatórias/diagnóstico , Monitorização Neurofisiológica Intraoperatória/métodos , Neuroendoscopia/efeitos adversos , Base do Crânio/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Lesões das Artérias Carótidas/etiologia , Lesões das Artérias Carótidas/fisiopatologia , Artéria Carótida Interna/fisiopatologia , Criança , Eletroencefalografia/métodos , Potenciais Evocados Auditivos/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Humanos , Complicações Intraoperatórias/etiologia , Complicações Intraoperatórias/fisiopatologia , Masculino , Pessoa de Meia-Idade , Cavidade Nasal/cirurgia
9.
Spine (Phila Pa 1976) ; 46(2): E139-E145, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33347093

RESUMO

STUDY DESIGN: Retrospective observational study. OBJECTIVE: It has been shown that pedicle screw stimulation thresholds less than or equal to 8 mA yield a very high diagnostic accuracy of detecting misplaced screws in spinal surgery. In our study, we determined clinical implications of low stimulation thresholds. SUMMARY OF BACKGROUND DATA: Posterior lumbar spinal fusions (PSF), using pedicle screws, are performed to treat many spinal pathologies, but misplaced pedicle screws can result in new postoperative neurological deficits. METHODS: Patients with pedicle screw stimulation testing who underwent PSF between 2010 and 2012 at the University of Pittsburgh Medical Center (UPMC) were included in the study. We evaluated the sensitivity, specificity, and diagnostic odds ratio (DOR) to determine how effectively low pedicle screw responses predict new postoperative lower extremity neurological deficits. RESULTS: One thousand one hundred seventy nine eligible patients underwent 8584 pedicle screw stimulations with lower extremity somatosensory evoked potentials (LE SSEP) monitoring for lumbar fusion surgery. One hundred twenty one of these patients had 187 pedicle screws with a stimulation response at a threshold less than or equal to 8 mA. Smoking had a significant correlation to pedicle screw stimulation less than or equal to 8 mA (P = 0.012). A threshold of less than or equal to 8 mA had a sensitivity/specificity of 0.32/0.90 with DOR of 4.34 [1.83, 10.27] and an area under the ROC curve (AUC) of 0.61 [0.49, 0.74]. Patients with screw thresholds less than or equal to 8 mA and abnormal baselines had a DOR of 9.8 [95% CI: 2.13-45.17] and an AUC of 0.73 [95% CI: 0.50-0.95]. CONCLUSION: Patients with pedicle screw stimulation thresholds less than or equal to 8 mA are 4.34 times more likely to have neurological clinical manifestations. Smoking and LE deficits were shown to be significantly correlated with pedicle screw stimulation thresholds less than or equal to 8 mA. Low stimulation thresholds result in a high specificity of 90%. Pedicle screw stimulation less than or equal to 8 mA can serve as an accurate rule in test for postoperative neurological deficit, warranting reevaluation of screw placement and/or replacement intraoperatively.Level of Evidence: 3.


Assuntos
Região Lombossacral/cirurgia , Parafusos Pediculares , Fusão Vertebral/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Eletromiografia , Feminino , Humanos , Extremidade Inferior , Vértebras Lombares/cirurgia , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Estudos Retrospectivos
10.
J Stroke Cerebrovasc Dis ; 29(10): 105158, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32912500

RESUMO

INTRODUCTION: Intra-operative stroke (IOS) is associated with poor clinical outcome as detection is often delayed and time of symptom onset or patient's last known well (LKW) is uncertain. Intra-operative neurophysiological monitoring (IONM) is uniquely capable of detecting onset of neurological dysfunction in anesthetized patients, thereby precisely defining time last electrically well (LEW). This novel parameter may aid in the detection of large vessel occlusion (LVO) and prompt treatment with endovascular thrombectomy (EVT). METHODS: We performed a retrospective analysis of a prospectively maintained AIS and LVO database from May 2018-August 2019. Inclusion criteria required any surgical procedure under general anesthesia (GA) utilizing EEG (electroencephalography) and/or SSEP (somatosensory evoked potentials) monitoring with development of intraoperative focal persistent changes using predefined alarm criteria and who were considered for EVT. RESULT: Five cases were identified. LKW to closure time ranged from 66 to 321 minutes, while LEW to closure time ranged from 43 to 174 min. All LVOs were in the anterior circulation. Angiography was not pursued in two cases due to large established infarct (both patients expired in the hospital). EVT was pursued in two cases with successful recanalization and spontaneous recanalization was noted in one patient (mRS 0-3 at 90 days was achieved in all 3 cases). CONCLUSIONS: This study demonstrates that significant IONM changes can accurately identify patients with an acute LVO in the operative setting. Given the challenges of recognizing peri-operative stroke, LEW may be an appropriate surrogate to quickly identify and treat IOS.


Assuntos
Eletroencefalografia , Procedimentos Endovasculares , Potenciais Somatossensoriais Evocados , Monitorização Neurofisiológica Intraoperatória , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia , Triagem , Idoso , Anestesia Geral , Bases de Dados Factuais , Procedimentos Endovasculares/efeitos adversos , Procedimentos Endovasculares/mortalidade , Feminino , Humanos , Período Intraoperatório , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Fatores de Risco , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/mortalidade , Fatores de Tempo , Resultado do Tratamento
12.
Clin Neurophysiol ; 131(7): 1508-1516, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32403063

RESUMO

OBJECTIVES: We assessed whether significant intraoperative electroencephalography (EEG) changes have predictive value for perioperative stroke within 30 days after carotid endarterectomy (CEA) procedures for carotid stenosis (CS) patients. We also assessed the diagnostic accuracy of various EEG changes in predicting perioperative stroke. METHODS: We searched databases for reports with outcomes of CS patients who underwent CEA with intraoperative EEG monitoring. We calculated the sensitivity, specificity, and diagnostic odds ratio (DOR) of EEG changes for predicting perioperative stroke. Sensitivity and specificity were presented with forest plots and a summary receiver operating characteristic (ROC) curve. RESULTS: The meta-analysis included 10,672 patients. Intraoperative EEG changes predicted 30-day stroke with a sensitivity of 46% (95% CI, 38-54%) and specificity of 86% (95% CI, 83-88%). The estimated DOR was 5.79 (95% CI, 3.86-8.69). The estimated DOR for reversible and irreversible EEG changes were 8.25 (95% CI, 3.34-20.34) and 70.84 (95% CI, 36.01-139.37), respectively. CONCLUSION: Intraoperative EEG changes have high specificity but modest sensitivity for predicting perioperative stroke following CEA. Patients with irreversible EEG changes are at high risk for perioperative stroke. SIGNIFICANCE: Intraoperative EEG changes can help surgeons predict the risk of perioperative stroke for CS patients following CEA.


Assuntos
Eletroencefalografia/métodos , Endarterectomia das Carótidas/efeitos adversos , Monitorização Neurofisiológica Intraoperatória/métodos , Complicações Pós-Operatórias/epidemiologia , Acidente Vascular Cerebral/epidemiologia , Adulto , Eletroencefalografia/normas , Feminino , Humanos , Monitorização Neurofisiológica Intraoperatória/normas , Masculino , Complicações Pós-Operatórias/etiologia , Sensibilidade e Especificidade , Acidente Vascular Cerebral/etiologia
13.
Neurosurgery ; 87(4): E473-E484, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32297629

RESUMO

BACKGROUND: Microvascular decompression (MVD) is the surgical treatment of choice for hemifacial spasm (HFS). During MVD, monitoring of the abnormal lateral spread response (LSR), an evoked response to facial nerve stimulation, has been traditionally used to monitor adequacy of cranial nerve (CN) VII decompression. OBJECTIVE: To assess the utility of LSR monitoring in predicting spasm-free status after MVD postoperatively. METHODS: We searched PubMed, Web of Science, and Embase for relevant publications. We included studies reporting on intraoperative LSR monitoring during MVD for HFS and spasm-free status following the procedure. Sensitivity of LSR, specificity, diagnostic odds ratio, and positive predictive value were calculated. RESULTS: From 148 studies, 26 studies with 7479 patients were ultimately included in this meta-analysis. The final intraoperative LSR status predicted the clinical outcome of MVD with the following specificities and sensitivities: 89% (0.83- 0.93) and 40% (0.30- 0.51) at discharge, 90% (0.84-0.94) and 41% (0.29-0.53) at 3 mo, 89% (0.83-0.93) and 40% (0.30-0.51) at 1 yr. When LSR persisted after MVD, the probability (95% CI) for HFS persistence was 47.8% (0.33-0.63) at discharge, 40.8% (0.23-0.61) at 3 mo, and 24.4% (0.13-0.41) at 1 yr. However, when LSR resolved, the probability for HFS persistence was 7.3% at discharge, 4.2% at 3 mo, and 4.0% at 1 yr. CONCLUSION: Intraoperative LSR monitoring has high specificity but modest sensitivity in predicting the spasm-free status following MVD. Persistence of LSR carries high risk for immediate and long-term facial spasm persistence. Therefore, adequacy of decompression should be thoroughly investigated before closing in cases where intraoperative LSR persists.


Assuntos
Espasmo Hemifacial/fisiopatologia , Espasmo Hemifacial/cirurgia , Cirurgia de Descompressão Microvascular/métodos , Monitorização Intraoperatória/métodos , Adulto , Idoso , Nervo Facial/diagnóstico por imagem , Nervo Facial/fisiopatologia , Nervo Facial/cirurgia , Feminino , Espasmo Hemifacial/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Alta do Paciente/tendências , Estudos Prospectivos , Estudos Retrospectivos , Resultado do Tratamento
14.
J Neurosurg Spine ; : 1-6, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32114528

RESUMO

OBJECTIVE: Posterior thoracic fusion (PTF) is used as a surgical treatment for a wide range of pathologies. The monitoring of somatosensory evoked potentials (SSEPs) is used to detect and prevent injury during many neurological surgeries. The authors conducted a study to evaluate the efficacy of SSEPs in predicting perioperative lower-extremity (LE) neurological deficits during spinal thoracic fusion surgery. METHODS: The authors included patients who underwent PTF with SSEP monitoring performed throughout the entire surgery from 2010 to 2015 at the University of Pittsburgh Medical Center (UPMC). The sensitivity, specificity, odds ratio, and receiver operating characteristic curve were calculated to evaluate the diagnostic accuracy of SSEP changes in predicting postoperative deficits. Univariate analysis was completed to determine the impact of age exceeding 65 years, sex, obesity, abnormal baseline testing, surgery type, and neurological deficits on the development of intraoperative changes. RESULTS: From 2010 to 2015, 771 eligible patients underwent SSEP monitoring during PTF at UPMC. Univariate and linear regression analyses showed that LE SSEP changes significantly predicted LE neurological deficits. Significant changes in LE SSEPs had a sensitivity and specificity of 19% and 96%, respectively, in predicting LE neurological deficits. The diagnostic odds ratio for patients with new LE neurological deficits who had significant changes in LE SSEPs was 5.86 (95% CI 2.74-12.5). However, the results showed that a loss of LE waveforms had a poor predictive value for perioperative LE deficits (diagnostic OR 1.58 [95% CI 0.19-12.83]). CONCLUSIONS: Patients with new postoperative LE neurological deficits are 5.9 times more likely to have significant changes in LE SSEPs during PTF. Surgeon awareness of an LE SSEP loss may alter surgical strategy and positively impact rates of postoperative LE neurological deficit status. The relatively poor sensitivity of LE SSEP monitoring may indicate a need for multimodal neurophysiological monitoring, including motor evoked potentials, in thoracic fusion surgery.

15.
Oper Neurosurg (Hagerstown) ; 19(4): 444-452, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32147722

RESUMO

BACKGROUND: Robotic-assisted stereotaxy has been increasingly adopted for lead implantation in stereoelectroencephalography based on its efficiency, accuracy, and precision. Despite initially being developed for use in deep brain stimulation (DBS) surgery, adoption for this indication has not been widespread. OBJECTIVE: To describe a recent robotic-assisted stereotaxy experience and workflow for DBS lead implantation in awake patients with and without microelectrode recording (MER), including considerations for intraoperative research using electrocorticography (ECoG). METHODS: A retrospective review of 20 consecutive patients who underwent simultaneous bilateral DBS lead implantation using robotic-assisted stereotaxy was performed. Radial error was determined by comparing the preoperative target with the DBS lead position in the targeting plane on postoperative computed tomography. Information regarding any postoperative complications was obtained by chart review. RESULTS: A novel method for robot coregistration was developed. We describe a standard workflow that allows for MER and/or ECoG research, and a streamlined workflow for cases in which MER is not required. The overall radial error for lead placement across all 20 patients was 1.14 ± 0.11 mm. A significant difference (P = .006) existed between the radial error of the first 10 patients (1.46 ± 0.19 mm) as compared with the second 10 patients (0.86 ± 0.09 mm). No complications were encountered. CONCLUSION: Robotic-assisted stereotaxy has the potential to increase precision and reduce human error, compared to traditional frame-based DBS surgery, without negatively impacting patient safety or the ability to perform awake neurophysiology research.


Assuntos
Estimulação Encefálica Profunda , Procedimentos Cirúrgicos Robóticos , Humanos , Estudos Retrospectivos , Técnicas Estereotáxicas , Vigília
16.
Cereb Cortex ; 30(4): 2615-2626, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-31989165

RESUMO

The subthalamic nucleus (STN) is proposed to participate in pausing, or alternately, in dynamic scaling of behavioral responses, roles that have conflicting implications for understanding STN function in the context of deep brain stimulation (DBS) therapy. To examine the nature of event-related STN activity and subthalamic-cortical dynamics, we performed primary motor and somatosensory electrocorticography while subjects (n = 10) performed a grip force task during DBS implantation surgery. Phase-locking analyses demonstrated periods of STN-cortical coherence that bracketed force transduction, in both beta and gamma ranges. Event-related causality measures demonstrated that both STN beta and gamma activity predicted motor cortical beta and gamma activity not only during force generation but also prior to movement onset. These findings are consistent with the idea that the STN participates in motor planning, in addition to the modulation of ongoing movement. We also demonstrated bidirectional information flow between the STN and somatosensory cortex in both beta and gamma range frequencies, suggesting robust STN participation in somatosensory integration. In fact, interactions in beta activity between the STN and somatosensory cortex, and not between STN and motor cortex, predicted PD symptom severity. Thus, the STN contributes to multiple aspects of sensorimotor behavior dynamically across time.


Assuntos
Estimulação Encefálica Profunda/métodos , Eletrocorticografia/métodos , Força da Mão/fisiologia , Córtex Motor/fisiologia , Córtex Somatossensorial/fisiologia , Núcleo Subtalâmico/fisiologia , Adulto , Idoso , Eletrodos Implantados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Desempenho Psicomotor/fisiologia
17.
Sci Transl Med ; 12(527)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969488

RESUMO

Severe injuries to peripheral nerves are challenging to repair. Standard-of-care treatment for nerve gaps >2 to 3 centimeters is autografting; however, autografting can result in neuroma formation, loss of sensory function at the donor site, and increased operative time. To address the need for a synthetic nerve conduit to treat large nerve gaps, we investigated a biodegradable poly(caprolactone) (PCL) conduit with embedded double-walled polymeric microspheres encapsulating glial cell line-derived neurotrophic factor (GDNF) capable of providing a sustained release of GDNF for >50 days in a 5-centimeter nerve defect in a rhesus macaque model. The GDNF-eluting conduit (PCL/GDNF) was compared to a median nerve autograft and a PCL conduit containing empty microspheres (PCL/Empty). Functional testing demonstrated similar functional recovery between the PCL/GDNF-treated group (75.64 ± 10.28%) and the autograft-treated group (77.49 ± 19.28%); both groups were statistically improved compared to PCL/Empty-treated group (44.95 ± 26.94%). Nerve conduction velocity 1 year after surgery was increased in the PCL/GDNF-treated macaques (31.41 ± 15.34 meters/second) compared to autograft (25.45 ± 3.96 meters/second) and PCL/Empty (12.60 ± 3.89 meters/second) treatment. Histological analyses included assessment of Schwann cell presence, myelination of axons, nerve fiber density, and g-ratio. PCL/GDNF group exhibited a statistically greater average area occupied by individual Schwann cells at the distal nerve (11.60 ± 33.01 µm2) compared to autograft (4.62 ± 3.99 µm2) and PCL/Empty (4.52 ± 5.16 µm2) treatment groups. This study demonstrates the efficacious bridging of a long peripheral nerve gap in a nonhuman primate model using an acellular, biodegradable nerve conduit.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Fator Neurotrófico Derivado de Linhagem de Célula Glial/química , Regeneração Nervosa/fisiologia , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Preparações de Ação Retardada , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Macaca , Regeneração Nervosa/efeitos dos fármacos , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo
18.
J Clin Monit Comput ; 34(4): 811-819, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31399827

RESUMO

Somatosensory evoked potentials (SSEPs) are utilized during aneurysm clipping to detect intraoperative ischemia. We assess the diagnostic accuracy of SSEPs in predicting perioperative stroke during aneurysm clipping. A retrospective review was conducted of 429 consecutive patients who underwent surgical clipping for ruptured and unruptured cerebral aneurysms with intraoperative SSEP monitoring from 2006 to 2013. The relationship between perioperative stroke and SSEP changes was analyzed by calculating the sensitivity, specificity, and area under a Receiving Operating Characteristic curve. Sensitivity and specificity were 42% and 90%, respectively. Area under the curve was 0.66 (95% confidence interval, 0.53-0.79). Reclassification of reversible temporary clip changes to correct for paradoxical classification of SSEP false positives raised the sensitivity from 42 to 65% (p = 0.041, Chi squared test). EEG (electroencephalography) changes increased the specificity (98% vs. 90%, p < 0.001, McNemar's test), but not sensitivity (48% vs. 42%, p = 0.621, McNemar's test) of SSEPs for perioperative stroke. A stepwise logistic regression model selected SSEP amplitude loss (p = 0.006, OR = 3.7 [95% CI 1.5-9.2]) and the SSEP change duration (p = 0.034, OR = 1.8 [95% CI 1.1-3.1]) as independent predictors of perioperative stroke. SSEP changes induced by temporary clipping were highly reversible compared to other SSEP changes (94% vs. 60%, p = 0.003, Fisher exact test), and typically responded to clip removal or readjustment. SSEP changes have high specificity and modest sensitivity for perioperative stroke. Stroke risk is a function of both the magnitude of SSEP amplitude loss and the duration of its loss. Given the modest sensitivity, patients may benefit from multimodal monitoring including motor-evoked potentials during cerebral aneurysm surgery.


Assuntos
Aneurisma Intracraniano/diagnóstico , Aneurisma Intracraniano/cirurgia , Monitorização Intraoperatória/instrumentação , Procedimentos Neurocirúrgicos , Adulto , Idoso , Alarmes Clínicos , Eletroencefalografia/métodos , Potencial Evocado Motor/fisiologia , Reações Falso-Positivas , Feminino , Humanos , Monitorização Neurofisiológica Intraoperatória , Masculino , Pessoa de Meia-Idade , Monitorização Intraoperatória/métodos , Período Perioperatório , Valor Preditivo dos Testes , Curva ROC , Análise de Regressão , Reprodutibilidade dos Testes , Estudos Retrospectivos , Risco , Sensibilidade e Especificidade , Resultado do Tratamento , Adulto Jovem
19.
J Neurol Surg B Skull Base ; 80(6): 599-603, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31750045

RESUMO

Introduction Facial weakness can result from surgical manipulation of the facial nerve. Intraoperative neuromonitoring reduces functional impairment but no clear guidelines exist regarding interpretation of intraoperative electrophysiological results. Most studies describe subjects with facial nerves encumbered by tumors or those with various grades of facial nerve weakness. We sought to obtain the neurophysiological parameters and stimulation threshold following intraoperative facial nerve triggered electromyography (t-EMG) stimulation during microvascular decompression for trigeminal neuralgia to characterize the response of normal facial nerves via t-EMG. Methods Facial nerve t-EMG stimulation was performed in seven patients undergoing microvascular decompression for trigeminal neuralgia. Using constant current stimulation, single stimulation pulses of 0.025 to 0.2 mA intensity were applied to the proximal facial nerve. Compound muscle action potentials, duration to onset, and termination of t-EMG responses were recorded for the orbicularis oculi and mentalis muscles. Patients were evaluated for facial weakness following the surgical procedure. Results Quantifiable t-EMG responses were generated in response to all tested stimulation currents of 0.025, 0.05, 0.1, and 0.2 mA in both muscles, indicating effective nerve conduction. No patients developed facial weakness postoperatively. Conclusions The presence of t-EMG amplitudes in response to 0.025 mA suggests that facial nerve conduction can take place at lower stimulation intensities than previously reported in patients with tumor burden. Proximal facial nerve stimulation that yields responses with thresholds less than 0.05 mA may be a preferred reference baseline for surgical procedures within the cerebellopontine angle to prevent iatrogenic injury.

20.
Resuscitation ; 139: 92-98, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30995538

RESUMO

AIM: Predicting recovery in comatose post-cardiac arrest patients requires multiple modalities of prognostic assessment. In isolation, absent N20 cortical responses in somatosensory evoked potentials (SSEPs) are a specific predictor of poor outcome. It is unknown whether SSEP results, when assessed in the context of prior knowledge (demographic and clinical information), change the pretest predicted probability of recovery. METHODS: In a single center retrospective study, a cohort of 323 patients admitted to post-cardiac arrest service at a tertiary care center were classified into a group based on SSEP testing. We built adjusted logistic regression models including clinical examination findings on the day SSEPs were recorded to generate a pre-test outcome probability for awakening, withdrawal of life-sustaining therapy (WLST) and survival to discharge. We then added the upper extremity N20 cortical response results to the model to obtain updated outcome probabilities. ROC curve was used to determine the additive effect of using SSEPs to the model. Survival to discharge, awakening, and WLST due to neurological reasons were designated as primary, secondary and tertiary outcomes, respectively. RESULTS: Analyses showed that evoked potentials are ordered in sicker patients. Adding SSEP to the model increased the proportion of patients with less than 1% and 5% chance of survival, as well as the proportion of patients with over 95% chance of WLST. AUC for survival increased from 0.85 to 0.93 when SSEP was included (p = 0.006). CONCLUSION: Adding the N20 SSEP response results to prior knowledge changed the predicted probability of WLST and survival to discharge in comatose post-arrest patients.


Assuntos
Potenciais Somatossensoriais Evocados , Parada Cardíaca Extra-Hospitalar/mortalidade , Adulto , Idoso , Coma/etiologia , Coma/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Parada Cardíaca Extra-Hospitalar/complicações , Parada Cardíaca Extra-Hospitalar/fisiopatologia , Curva ROC , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...