Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677527

RESUMO

Many scientists are working hard to find green alternatives to classical synthetic methods. Today, state-of-the-art ultrasonic and grinding techniques already drive the production of organic compounds on an industrial scale. The physicochemical and chemical behavior of cyclodextrins often differs from the typical properties of classic organic compounds and carbohydrates. The usually poor solubility and complexing properties of cyclodextrins can require special techniques. By eliminating or reducing the amount of solvent needed, green alternatives can reform classical synthetic methods, making them attractive for environmentally friendly production and the circular economy. The lack of energy-intensive synthetic and purification steps could transform currently inefficient processes into feasible methods. Mechanochemical reaction mechanisms are generally different from normal solution-chemistry mechanisms. The absence of a solvent and the presence of very high local temperatures for microseconds facilitate the synthesis of cyclodextrin derivatives that are impossible or difficult to produce under classical solution-chemistry conditions. Although mechanochemistry does not provide a general solution to all problems, several good examples show that this new technology can open up efficient synthetic pathways.

2.
Foods ; 11(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36360023

RESUMO

Hexane is a solvent used extensively in the food industry for the extraction of various products such as vegetable oils, fats, flavours, fragrances, colour additives or other bioactive ingredients. As it is classified as a "processing aid", it does not have to be declared on the label under current legislation. Therefore, although traces of hexane may be found in final products, especially in processed products, its presence is not known to consumers. However, hexane, and in particular the n-hexane isomer, has been shown to be neurotoxic to humans and has even been listed as a cause of occupational diseases in several European countries since the 1970s. In order to support the European strategy for a toxic-free environment (and toxic-free food), it seemed important to collect scientific information on this substance by reviewing the available literature. This review contains valuable information on the nature and origin of the solvent hexane, its applications in the food industry, its toxicological evaluation and possible alternatives for the extraction of natural products. Numerous publications have investigated the toxicity of hexane, and several studies have demonstrated the presence of its toxic metabolite 2,5-hexanedione (2,5-HD) in the urine of the general, non-occupationally exposed population. Surprisingly, a tolerable daily intake (TDI) has apparently never been established by any food safety authority. Since hexane residues are undoubtedly found in various foods, it seems more than necessary to clearly assess the risks associated with this hidden exposure. A clear indication on food packaging and better information on the toxicity of hexane could encourage the industry to switch towards one of the numerous other alternative extraction methods already developed.

3.
Foods ; 11(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36360029

RESUMO

The aim of the present study is to develop a new industrial process for the continuous-flow extraction of virgin olive oil (VOO) using the non-thermal ultrasound (US) and pulsed electric field (PEF) treatments. These technologies have been tested both separately and in combination, with the aim of making the malaxation step unnecessary. The ultrasound-assisted extraction (UAE) and PEF treatments are both effective technologies for VOO production and have been well documented in the literature. The present study combines a new continuous-flow set-up, with four US units and PEF treatment. The industrial-plant prototype is able to improve VOO yields, thanks to powerful non-thermal physical effects (acoustic cavitation and electroporation), from 16.3% up to 18.1%. Moreover, these technologies increased the content of nutritionally relevant minor components, which, in turn, improves VOO quality and its commercial value (overall tocopherols and tocotrienols improved from 271 mg/kg under the conventional process to 314 mg/kg under the US process). The combined UAE and US-PEF process also increased the extraction yield, while overcoming the need for kneading in the malaxation step and saving process water (up to 1512 L per working day). Continuous-flow US and PEF technologies may be a significant innovation for the VOO industry, with benefits both for oil millers and consumers. The VOO obtained via non-thermal continuous-flow production can satisfy the current trend towards healthier nutrient-enriched products.

4.
Nutrients ; 14(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36432457

RESUMO

Currently, the nutraceutical approach to treat dyslipidaemia is increasing in use, and in many cases is used by physicians as the first choice in the treatment of patients with borderline values. Nutraceuticals represent an excellent opportunity to treat the preliminary conditions not yet showing the pathological signs of dyslipidaemia. Their general safety, the patient's confidence, the convincing proof of efficacy and the reasonable costs prompted the market of new preparations. Despite this premise, many nutraceutical products are poorly formulated and do not meet the minimum requirements to ensure efficacy in normalizing blood lipid profiles, promoting cardiovascular protection, and normalizing disorders of glycemic metabolism. In this context, bioaccessibility and bioavailability of the active compounds is a crucial issue. Little attention is paid to the proper formulations needed to improve the overall bioavailability of the active molecules. According to these data, many products prove to be insufficient to ensure full enteric absorption. The present review analysed the literature in the field of nutraceuticals for the treatment of dyslipidemia, focusing on resveratrol, red yeast rice, berberine, and plant sterols, which are among the nutraceuticals with the greatest formulation problems, highlighting bioavailability and the most suitable formulations.


Assuntos
Berberina , Dislipidemias , Fitosteróis , Humanos , Dislipidemias/prevenção & controle , Suplementos Nutricionais , Lipídeos
5.
Ultrason Sonochem ; 90: 106181, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36182836

RESUMO

Spherical SiO2 nanoparticles (SSNs) have been inventively synthesized using the Stöber method with sonication at medium-high frequencies (80, 120, and 500 kHz), aiming to control SSN size and shorten reaction time. Compared to the conventional method, such sonication allowed the Stöber reaction complete in 20-60 min with a low molar ratio of NH4OH/tetraethyl orthosilicate (0.84). The hydrodynamic diameters of 63-117 nm of SSNs were obtained under sonication with 80, 120, and 500 kHz of ultrasonic frequencies. Moreover, the SSNs obtained were smaller at 120 kHz than at 80 kHz in a multi-frequencies ultrasonic reactor, and the SSN size decreased with increasing ultrasonic power at 20 °C, designating the sonochemical unique character, namely, the SSN-size control is associated with the number of microbubbles originated by sonication. With another 500 kHz ultrasonic bath, the optimal system temperature for producing smaller SSNs was proven to be 20 °C. Also, the SSN size decreased with increasing ultrasonic power. The smallest SSNs (63 nm, hydrodynamic diameter by QELS, or 21 nm by FESEM) were obtained by sonication at 207 W for 20 min at 20 °C. Furthermore, the SSN size increased slightly with increasing sonication time and volume, favoring the scale-up of SSNs preparation. The mechanisms of controlling the SSN size were further discussed by the radical's role and effects of ammonia and ethanol concentration.


Assuntos
Nanopartículas , Sonicação , Sonicação/métodos , Dióxido de Silício , Microbolhas , Temperatura
6.
Antibiotics (Basel) ; 11(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36009964

RESUMO

Cefonicid is a second-generation cephalosporin sold under the brand name Sintocef™. It is an injectable drug obtained via a freeze-drying process and is also available for oral preparations. The high-quality standard required is very challenging to satisfy, and current production protocols are characterized by steps that are lengthy and cumbersome, making the product unattractive for the international market. Industrial R&D is constantly working on the process optimization for API synthesis, with the aim of increasing productivity and decreasing production costs and waste. We herein report a new and efficient method for the synthesis of the cefonicid benzathine salt that provides a good yield and high product stability. The double-nucleophilic and lipophilic nature of N',N″-dibenzylethylene diacetate enables the deformylation of the OH-protected group on the mandelic moiety and also enables product crystallization to occur. We demonstrate that the formyl group in the peculiar position has high reactivity, promoting an amidation reaction that deprotects a hydroxy group and generates a new C-N bond in the reaction by-product. Several amines and OH-protected groups have been studied, but none were able to replicate the excellent results of benzathine diacetate.

7.
J Hazard Mater ; 440: 129642, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35961077

RESUMO

Antibiotics (ABX) residues occur frequently in milk, causing considerable wastage of medicated milk and serious economic losses, and making the issue a burden for the dairy industry. Improper disposal of medicated milk harms dairy production, animal welfare, and the environment. This work studies the use of ozonation in a vortex reactor for removing ceftiofur hydrochloride (CEF), sulfamonomethoxine sodium (SMM), marbofloxacin (MAR) and oxytetracycline (OTC) from milk. In terms of residual concentration, O3 efficiency and the degradation kinetics of the various O3-involving processes in the vortex reactor, ABX removal via ozonation is better using stronger vortexing, which induces hydrodynamic cavitation. CEF undergoes the fastest degradation, followed by SMM, MAR, and OTC. High ABX hydrophobicity favors ABX degradation via ozonation, O3/H2O2, and O3/Na2S2O8. ABX oxidation by •OH at the O3 gas-bubble/milk interface is the principle degradation pathway, except for MAR. ABX degradation follows pseudo-first-order kinetics and is affected by initial ABX concentration, O3 concentration/flow rate, reaction temperature, and milk components to varying degrees. Under optimal ozonation conditions, ABX residues meet the maximum limits as set by the European Commission and no antimicrobial activity was observed. The decontaminated milk was therefore suggested to be reused as calf food, animal feed, organic fertilizer, etc.


Assuntos
Oxitetraciclina , Ozônio , Sulfamonometoxina , Poluentes Químicos da Água , Purificação da Água , Animais , Antibacterianos , Fertilizantes , Peróxido de Hidrogênio/química , Leite/química , Oxirredução , Ozônio/química , Sódio , Poluentes Químicos da Água/química
8.
Molecules ; 27(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35684534

RESUMO

Lignin is a fascinating aromatic biopolymer with high valorization potentiality. Besides its extensive value in the biorefinery context, as a renewable source of aromatics lignin is currently under evaluation for its huge potential in biomedical applications. Besides the specific antioxidant and antimicrobial activities of lignin, that depend on its source and isolation procedure, remarkable progress has been made, over the last five years, in the isolation, functionalization and modification of lignin and lignin-derived compounds to use as carriers for biologically active substances. The aim of this review is to summarize the current state of the art in the field of lignin-based carrier systems, highlighting the most important results. Furthermore, the possibilities and constraints related to the physico-chemical properties of the lignin source will be reviewed herein as well as the modifications and processing required to make lignin suitable for the loading and release of active compounds.


Assuntos
Excipientes , Lignina , Antioxidantes/farmacologia , Lignina/química
9.
Antioxidants (Basel) ; 11(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35624852

RESUMO

Chestnut peels are a poorly characterized, underexploited by-product of the agri-food industry. This raw material is rich in bioactive compounds, primarily polyphenols and tannins, that can be extracted using different green technologies. Scaling up the process for industrial production is a fundamental step for the valorization of the extract. In this study, subcritical water extraction was investigated to maximize the extraction yield and polyphenol content. Lab-scale procedures have been scaled up to the semi-industrial level as well as the downstream processes, namely, concentration and spray drying. The extract antioxidant capacity was tested using in vitro and cellular assays as well as a preliminary evaluation of its antiadipogenic activity. The temperature, extraction time, and water/solid ratio were optimized, and the extract obtained under these conditions displayed a strong antioxidant capacity both in in vitro and cellular tests. Encouraging data on the adipocyte model showed the influence of chestnut extracts on adipocyte maturation and the consequent potential antiadipogenic activity. Chestnut peel extracts characterized by strong antioxidant power and potential antiadipogenic activity were efficiently obtained by removing organic solvents. These results prompted further studies on fraction enrichment by ultra- and nanofiltration. The semi-industrial eco-friendly extraction process and downstream benefits reported here may open the door to production and commercialization.

11.
Foods ; 11(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35327221

RESUMO

Cocoa husk is considered a waste product after cocoa processing and creates environmental issues. These waste products are rich in polyphenols, methylxanthine, dietary fibers, and phytosterols, which can be extracted and utilized in various food and health products. Cocoa beans represent only 32-34% of fruit weight. Various extraction methods were implemented for the preparation of extracts and/or the recovery of bioactive compounds. Besides conventional extraction methods, various studies have been conducted using advanced extraction methods, including microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE), subcritical water extraction (SWE), supercritical fluid extraction (SFE), and pressurized liquid extraction (PLE). To include cocoa husk waste products or extracts in different food products, various functional foods such as bakery products, jam, chocolate, beverage, and sausage were prepared. This review mainly focused on the composition and functional characteristics of cocoa husk waste products and their utilization in different food products. Moreover, recommendations were made for the complete utilization of these waste products and their involvement in the circular economy.

12.
Food Chem ; 385: 132695, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35338997

RESUMO

CPAC-SPE-HPLC (coconut powdered activated carbon -SPE- HPLC) has been developed for the determination of antibiotic (ABX), sulfamonomethoxine sodium (SMM), oxytetracycline (OTC), ceftiofur hydrochloride (CEF) and marbofloxacin (MAR), in water and milk. Over 99.0% SMM and OTC were recovered from 20 mL of 0.5 µg/mL ABX solution using 10 mg-CPAC for adsorption and 2 mL of 30% NH4OH/EtOH (1/19 v/v) for elution. Similarly, over 99.0% CEF and MAR were recovered using 15 mg-CPAC and 2 mL of 30% NH4OH/n-PrOH (1/19 v/v). Moreover, the recovery efficiencies of various ABX from 5 to 80 mL of 0.02-2.00 µg/mL medicated milk containing 10 mM EDTA are ordered as follows: OTC (99.3%), SMM (99.1%) > CEF (68.9%) > MAR (61.4%). No interference towards HPLC analysis were observed with elution using 2 mL of 30% NH4OH/EtOH (1/19 v/v). Furthermore, much lower limit of detections (0.02 µg/mL) than the maximum residual limits from European Commission (0.075-0.100 µg/mL) were obtained.


Assuntos
Leite , Oxitetraciclina , Animais , Antibacterianos/análise , Carvão Vegetal , Cromatografia Líquida de Alta Pressão , Leite/química , Oxitetraciclina/análise , Extração em Fase Sólida , Água
13.
Cancers (Basel) ; 14(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35158888

RESUMO

Several drug-delivery systems have been reported on and often successfully applied in cancer therapy. Cell-targeted delivery can reduce the overall toxicity of cytotoxic drugs and increase their effectiveness and selectivity. Besides traditional liposomal and micellar formulations, various nanocarrier systems have recently become the focus of developmental interest. This review discusses the preparation and targeting techniques as well as the properties of several liposome-, micelle-, solid-lipid nanoparticle-, dendrimer-, gold-, and magnetic-nanoparticle-based delivery systems. Approaches for targeted drug delivery and systems for drug release under a range of stimuli are also discussed.

14.
Molecules ; 27(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35056763

RESUMO

In the past, the use of mechanochemical methods in organic synthesis was reported as somewhat of a curiosity. However, perceptions have changed over the last two decades, and this technology is now being appreciated as a greener and more efficient synthetic method. The qualified "offer" of ball mills that make use of different set-ups, materials, and dimensions has allowed this technology to mature. Nevertheless, the intrinsic batch nature of mechanochemical methods hinders industrial scale-ups. New studies have found, in reactive extrusion, a powerful technique with which to activate chemical reactions with mechanical forces in a continuous flow. This new environmentally friendly mechanochemical synthetic method may be able to miniaturize production plants with outstanding process intensifications by removing organic solvents and working in a flow mode. Compared to conventional processes, reactive extrusions display high simplicity, safety, and cleanliness, which can be exploited in a variety of applications. This paper presents perspective examples in the better-known areas of reactive extrusions, including oxidation reactions, polymer processing, and biomass conversion. This work should stimulate further developments, as it highlights the versatility of reactive extrusion and the huge potential of solid-phase flow chemistry.

15.
Foods ; 10(11)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34829008

RESUMO

Interest in essential oils has consistently increased in recent years. Essential oils have a large variety of applications in multiple fields, including in the food, cosmetics and pharmaceutical industries. The volatile fraction (VF) in hops (Humulus lupulus L.) fits within this domain as it is primarily used in the brewery industry for the aromatization of beer, and is responsible for the floral and fruity tones. This work aims to design an optimized extraction protocol of the VF from hops, using microwaves. Microwave-assisted hydrodistillation (MAHD) has been developed to reduce energy and time consumption in lab-scale reactors up to industrial-scale systems. Hops are principally available in three forms, according to a brewery's applications: (i) fresh (FH); (ii) dried (DH) and (iii) pelletized (PH). In this work, all three forms have therefore been studied and the recovered volatiles characterized by means of GC-MS. The optimized lab-scale MAHD protocol gave the best extraction yield of 20.5 mLVF/kgdry matrix for FH. This value underwent a slight contraction when working at the highest matrix amount (3 kg), with 17.3 mLVF/kgdry matrix being achieved. Further tests were then performed in a pilot reactor that is able to process 30 kg of material. In this case, high yield increases were observed for PH and DH; quadruple and double the lab-scale yields, respectively. In addition, this industrial-scale system also provided marked energy savings, practically halving the absorbed kJ/mLVF.

16.
Anal Methods ; 13(46): 5555-5563, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34779801

RESUMO

Many efforts have been recently made to improve the digestion efficiency by using powerful equipment or by using an auxiliary reagent. In this work, an alternative method is reported, which explores a digestion system based on a single reaction chamber (SRC) technology pressurized with O2 for reducing the amount of acid, without impairing the digestion efficiency. Before digestion, the system was pressurized with compressed air (20 bar, 20% O2) while the temperature was evaluated from 180 up to 270 °C. The procedure was also carried out under O2 pressure (20 bar). For each temperature several acid concentrations were evaluated (0.1 to 3 mol L-1 HNO3), being possible to correlate the effectiveness of each acid concentration with temperature. The proposed method was applied to the simultaneous digestion of several organic matrices with variable content of fat, protein, and carbohydrate (whole milk powder, bovine liver, parsley, and linseed). The residual carbon content was lower than 4% (C lower than 200 mg L-1 in digests), showing the high digestion efficiency of the proposed approach. Up to 250 mg of all food matrices were digested using a sub-stoichiometric amount of HNO3 (1 mol L-1 solution), which was only achieved due to the use of O2 as an auxiliary reagent. Barium, Ca, Cu, Fe, K, Mg, Mn, Na, Sr, and Zn were determined by ICP-OES, and the accuracy was better than 95% for standard reference materials of corn bran, whole milk powder, and bovine liver. It is an important feature, being in agreement with green chemistry recommendations because very low amounts of reagents are required for sample digestion, as well as low amounts of residues are generated.


Assuntos
Ácido Nítrico , Oxigênio , Animais , Bovinos , Metais , Micro-Ondas , Leite/química , Ácido Nítrico/análise , Ácido Nítrico/química , Oxigênio/análise , Oxigênio/química
17.
Nanomaterials (Basel) ; 11(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34685141

RESUMO

Flexible materials, such as fabric, paper and plastic, with nanoscale particles that possess antimicrobial properties have a significant potential for the use in the healthcare sector and many other areas. The development of new antimicrobial coating formulations is an urgent topic, as such materials could reduce the risk of infection in hospitals and everyday life. To select the optimal composition, a comprehensive analysis that takes into account all the advantages and disadvantages in each specific case must be performed. In this study, we obtained an antimicrobial textile with a 100% suppression of E. coli on its surface. These CeO2 nanocoatings exhibit low toxicity, are easy to manufacture and have a high level of antimicrobial properties even at very low CeO2 concentrations. High-power ultrasonic treatment was used to coat the surface of cotton fabric with CeO2 nanoparticles.

18.
Nutrients ; 13(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34444706

RESUMO

Cranberry is a fruit originally from New England and currently growing throughout the east and northeast parts of the USA and Canada. The supplementation of cranberry extracts as nutraceuticals showed to contribute to the prevention of urinary tract infections, and most likely it may help to prevent cardiovascular and gastroenteric diseases, as highlighted by several clinical trials. However, aiming to validate the efficacy and safety of clinical applications as long-term randomized clinical trials (RCTs), further investigations of the mechanisms of action are required. In addition, a real challenge for next years is the standardization of cranberry's polyphenolic fractions. In this context, the optimization of the extraction process and downstream processing represent a key point for a reliable active principle for the formulation of a food supplement. For this reason, new non-conventional extraction methods have been developed to improve the quality of the extracts and reduce the overall costs. The aim of this survey is to describe both technologies and processes for highly active cranberry extracts as well as the effects observed in clinical studies and the respective tolerability notes.


Assuntos
Suplementos Nutricionais , Compostos Fitoquímicos , Extratos Vegetais , Vaccinium macrocarpon , Animais , Glicemia/metabolismo , Feminino , Manipulação de Alimentos , Frutas , Sucos de Frutas e Vegetais , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Infecções por Helicobacter/dietoterapia , Helicobacter pylori , Humanos , Inflamação/prevenção & controle , Insulina/sangue , Masculino , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Polifenóis , Infecções Urinárias/dietoterapia , Infecções Urinárias/prevenção & controle , Vaccinium macrocarpon/química
19.
Mar Drugs ; 19(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073184

RESUMO

Euphausia superba, commonly known as krill, is a small marine crustacean from the Antarctic Ocean that plays an important role in the marine ecosystem, serving as feed for most fish. It is a known source of highly bioavailable omega-3 polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid). In preclinical studies, krill oil showed metabolic, anti-inflammatory, neuroprotective and chemo preventive effects, while in clinical trials it showed significant metabolic, vascular and ergogenic actions. Solvent extraction is the most conventional method to obtain krill oil. However, different solvents must be used to extract all lipids from krill because of the diversity of the polarities of the lipid compounds in the biomass. This review aims to provide an overview of the chemical composition, bioavailability and bioaccessibility of krill oil, as well as the mechanisms of action, classic and non-conventional extraction techniques, health benefits and current applications of this marine crustacean.


Assuntos
Anti-Inflamatórios , Antineoplásicos , Suplementos Nutricionais , Euphausiacea , Ácidos Graxos Ômega-3 , Óleos de Peixe/química , Fármacos Neuroprotetores , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Exercício Físico , Ácidos Graxos Ômega-3/farmacocinética , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Óleos de Peixe/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Doenças Inflamatórias Intestinais/dietoterapia , Doenças Inflamatórias Intestinais/prevenção & controle , Doenças Metabólicas/dietoterapia , Doenças Metabólicas/prevenção & controle , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
20.
J Org Chem ; 86(20): 13857-13872, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34125541

RESUMO

Microwave-assisted organic synthesis has been widely studied and deliberated, opening up some controversial issues as well. Nowadays, microwave chemistry is a mature technology that has been well demonstrated in many cases with numerous advantages in terms of the reaction rate and yield. The strategies toward scaling up find an ally in continuous-flow reactor technology comparing dielectric and conductive heating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...