Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Filtros adicionais











País/Região como assunto
Intervalo de ano
1.
Artigo em Inglês | MEDLINE | ID: mdl-31230526

RESUMO

Gold nanoparticles (Au NPs) hold great promise in food, industrial and biomedical applications due to their unique physicochemical properties. However, influences of the gastrointestinal tract (GIT), a likely route for Au NPs administration, on the physicochemical properties of Au NPs has been rarely evaluated. Here, we investigated the influence of GIT fluids on the physicochemical properties of Au NPs (5, 50, and 100 nm) and their implications on intestinal epithelial permeability in vitro. Au NPs aggregated in fasted gastric fluids and generated hydroxyl radicals in the presence of H2O2. Cell studies showed that GIT fluids incubation of Au NPs affected the cellular uptake of Au NPs but did not induce cytotoxicity or disturb the intestinal epithelial permeability.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31099294

RESUMO

Many metal nanoparticles are reported to have intrinsic enzyme-like activities and offer great potential in chemical and biomedical applications. In this study, PtCu alloy nanoparticles (NPs), synthesized through hydrothermal treatment of Cu2+ and Pt2+ in an aqueous solution, were evaluated for ferroxidase-like and antibacterial activity. Electron spin resonance (ESR) spectroscopy and colorimetric methods were used to demonstrate that PtCu NPs exhibited strong ferroxidase-like activity in a weakly acidic environment and that this activity was not affected by the presence of most other ions, except silver. Based on the color reaction of salicylic acid in the presence of Fe3+, we tested the ferroxidase-like activity of PtCu NPs to specifically detect Fe2+ in a solution of an oral iron supplement and compared these results with data acquired from atomic absorption spectroscopy and the phenanthroline colorimetric method. The results showed that the newly developed PtCu NPs detection method was equivalent to or better than the other two methods used for Fe2+ detection. The antibacterial experiments showed that PtCu NPs have strong antibacterial activity against Staphylococcus aureus and Escherichia coli. Herein, we demonstrate that the peroxidase-like activity of PtCu NPs can catalyze H2O2 and generate hydroxyl radicals, which may elucidate the antibacterial activity of the PtCu NPs against S. aureus and E. coli. These results showed that PtCu NPs exhibited both ferroxidase- and peroxidase-like activity and that they may serve as convenient and efficient NPs for the detection of Fe2+ and for antibacterial applications.

3.
Anal Chim Acta ; 1066: 93-101, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31027538

RESUMO

Non-targeted small molecule screening methods are used to analyze samples for potential compounds of interest without focusing on specific molecular species. There is great interest in these methods for metabolomic, environmental, forensic, and food safety applications, among others, to determine compounds that are responsible for a particular disease state or the presence of a harmful compound. In order for non-targeted analyses to become standardized and routine, best practices for sample preparation, data collection, and data analysis must be determined. This work focuses on optimizing specific aspects of a non-targeted workflow that utilizes high-resolution mass spectrometry using an Orbitrap instrument coupled to liquid chromatography. Sample preparation, liquid chromatography gradient length, and mass spectrometry resolving power and ionization modes were investigated to determine optimal conditions for detecting and extracting compounds from the data that cover broad molecular and polarity ranges. Infant rice cereal, orange juice, and yogurt with spiked standards were analyzed; food is inherently challenging to analyze due in part to sample complexity and diversity. Of the conditions tested, optimal conditions included a generic sample extraction using acetonitrile, water, and formic acid, a 25 min chromatographic gradient, collecting data in both positive and negative ion modes, and using 70 k resolving power. There are of course tradeoffs associated with each of these options that will be described in detail so that the appropriate conditions can be chosen for the desired application.

4.
Anal Chem ; 91(7): 4388-4395, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30860807

RESUMO

We present an LC-MS/MS pipeline to identify taxon-specific tryptic peptide markers for the identification of Salmonella at the genus, species, subspecies, and serovar levels of specificity. Salmonella enterica subsp. enterica serovars Typhimurium and its four closest relatives, Saintpaul, Heidelberg, Paratyphi B, and Muenchen, were evaluated. A decision-tree approach was used to identify peptides common to the five Salmonella proteomes for evaluation as genus-, species-, and subspecies-specific markers. Peptides identified for two or fewer Salmonella strains were evaluated as potential serovar markers. Currently, there are approximately 140 000 assembled bacterial genomes publicly available, more than 8500 of which are for Salmonella. Consequently, the specificity of each candidate peptide marker was confirmed across all publicly available protein sequences in the NCBI nonredundant (nr) database. The performance of a subset of candidate taxon-specific peptide markers was evaluated in a targeted mass-spectrometry method. The presented workflow offers a marked improvement in specificity over existing MALDI-TOF-based bacterial identification platforms for the identification of closely related Salmonella serovars.

5.
Nanoscale ; 10(23): 11176-11185, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29873378

RESUMO

Nitric oxide (NO) is an endogenous bioregulator with established roles in diverse fields. The difficulty in the modulation of NO release is still a significant obstacle to achieving successful clinical applications. We report herein our initial work using electron spin resonance (ESR) spectroscopy to detect NO generated from S-nitroso-N-acetylpenicillamine (SNAP) and S-nitrosoglutathione (GSNO) donors catalyzed by platinum nanoparticles (Pt NPs, 3 nm) under physiological conditions. With ESR spectroscopy coupled with spin trapping and spin labeling techniques, we identified that Pt NPs can significantly promote the generation of NO from SNAP and GSNO under physiological conditions. A classic NO colorimetric detection kit was also employed to verify that Pt NPs truly triggered the release of NO from its donors. Pt NPs can act as promising delivery vehicles for on-demand NO delivery based on time and dosage. These results, along with the detection of the resulting disulfide product, were confirmed with mass spectrometry. In addition, cellular experiments provided a convincing demonstration that the triggered release of NO from its donors by Pt NPs is efficient in killing human cancer cells in vitro. The catalytic mechanism was elucidated by X-ray photo-electron spectroscopy (XPS) and ultra-high performance liquid chromatography/high-resolution mass spectrometry (UHPLC-HRMS), which suggested that Pt-S bond formation occurs in the solution of Pt NPs and NO donors. Identification of Pt NPs capable of generating NO from S-nitrosothiols (RSNOs) is an important step in harnessing NO for investigations into its clinical applications and therapies.

6.
Artigo em Inglês | MEDLINE | ID: mdl-29667503

RESUMO

Noble metal nanoparticles (NPs) have been widely used in many consumer products. Their effects on the antioxidant activity of commercial dietary supplements have not been well evaluated. In this study, we examined the effects of gold (Au NPs), silver (Ag NPs), platinum (Pt NPs), and palladium (Pd NPs) on the hydroxyl radical (·OH) scavenging ability of three dietary supplements vitamin C (L-ascorbic acid, AA), (-)-epigallocatechin gallate (EGCG), and gallic acid (GA). By electron spin resonance (ESR) spin-trapping measurement, the results show that these noble metal NPs can inhibit the hydroxyl radical scavenging ability of these dietary supplements.

7.
ACS Appl Mater Interfaces ; 10(10): 8443-8450, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29481051

RESUMO

While the antibacterial properties of silver nanoparticles (AgNPs) have been demonstrated across a spectrum of bacterial pathogens, the effects of AgNPs on the beneficial bacteria are less clear. To address this issue, we compared the antibacterial activity of AgNPs against two beneficial lactobacilli ( Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus casei) and two common opportunistic pathogens ( Escherichia coli and Staphylococcus aureus). Our results demonstrate that those lactobacilli are highly susceptible to AgNPs, while the opportunistic pathogens are not. Acidic environment caused by the lactobacilli is associated with the bactericidal effects of AgNPs. Our mechanistic study suggests that the acidic growth environment of lactobacilli promotes AgNP dissolution and hydroxyl radical (•OH) overproduction. Furthermore, increases in silver ions (Ag+) and •OH deplete the glutathione pool inside the cell, which is associated with the increase in cellular reactive oxygen species (ROS). High levels of ROS may further induce DNA damage and lead to cell death. When E. coli and S. aureus are placed in a similar acidic environment, they also become more susceptible to AgNPs. This study provides a mechanistic description of a pH-Ag+-•OH bactericidal pathway and will contribute to the responsible development of products containing AgNPs.

8.
Anal Chem ; 90(3): 2111-2118, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29328628

RESUMO

Most gluten-reduced beers are produced using an enzyme called proline endopeptidase (PEP), which proteolyzes the gluten by cleaving at proline residues. However, the gluten content of beers brewed in the presence of PEP cannot be verified since current analytical methods are not able to accurately quantitate gluten in fermented foods. In this work, mass spectrometry was used to qualitatively characterize the gluten in a wheat-gluten-incurred sorghum model beer brewed with and without the addition of PEP. Hydrolyzed gluten peptides and chymotryptic gluten peptides produced from intact gluten proteins were detected in beer brewed in the presence of up to 6 times the manufacturer's recommended dosage of PEP. The observation of chymotryptic gluten peptides indicates that some gluten proteins remained, at least partially, intact after fermentation and enzymatic treatment. Less intact gluten was observed in beer brewed in the presence of PEP, but more hydrolyzed gluten peptides were consequently observed in PEP-containing beer. Gluten peptides that contained immunogenic sequences known to be associated with celiac disease were detected in PEP-containing beer.

9.
Artigo em Inglês | MEDLINE | ID: mdl-29115913

RESUMO

Research on noble metal nanoparticles (NPs) able to scavenge reactive oxygen species (ROS) has undergone a tremendous growth recently. However, the interactions between ruthenium nanoparticles (Ru NPs) and ROS have never been systematically explored thus far. This research focused on the decomposition of hydrogen peroxide (H2O2), scavenging of hydroxyl radicals (•OH), superoxide radical (O2•-), singlet oxygen (1O2), 2,2'-azino-bis(3-ethylbenzenothiazoline- 6-sulfonic acid ion (ABTS•+), and 1,1-diphenyl-2-picrylhydrazyl radical (•DPPH) in the presence of commercial Ru NPs using the electron spin resonance technique. In vitro cell studies demonstrated that Ru NPs have excellent biocompatibility and exert a cytoprotective effect against oxidative stress. These findings may spark fresh enthusiasm for the applications of Ru NPs under relevant physiologically conditions.


Assuntos
Depuradores de Radicais Livres/química , Nanopartículas Metálicas/química , Modelos Químicos , Espécies Reativas de Oxigênio/química , Rutênio/química , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Oxigênio Singlete/química , Superóxidos/química
10.
J Agric Food Chem ; 65(45): 9893-9901, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29058433

RESUMO

Although nanosized ingredients, including TiO2 nanoparticles (NPs), can be found in a wide range of consumer products, little is known about the effects these particles have on other active compounds in product matrices. These NPs can interact with reactive oxygen species (ROS), potentially disrupting or canceling the benefits expected from antioxidants. We used electron spin resonance spectrometry to assess changes in the antioxidant capacities of six dietary antioxidants (ascorbic acid, α-tocopherol, glutathione, cysteine, epicatechin, and epicatechin gallate) during exposure to P25 TiO2 and/or simulated sunlight. Specifically, we determined the ability of these antioxidants to scavenge 1-diphenyl-2-picryl-hydrazyl radical, superoxide radical, and hydroxyl radical. Exposure to simulated sunlight alone did not lead to noticeable changes in radical-scavenging abilities; however, in combination with P25 TiO2 NPs, the scavenging abilities of most antioxidants were weakened. We found glutathione to be the most resistant to treatment with sunlight and NPs among these six antioxidants.


Assuntos
Depuradores de Radicais Livres/química , Radicais Livres/química , Nanopartículas/química , Titânio/química , Depuradores de Radicais Livres/efeitos da radiação , Nanopartículas/efeitos da radiação , Luz Solar , Titânio/efeitos da radiação
11.
Anal Chem ; 88(7): 3617-23, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26938581

RESUMO

The ability to identify contaminants or adulterants in diverse, complex sample matrixes is necessary in food safety. Thus, nontargeted screening approaches must be implemented to detect and identify unexpected, unknown hazardous compounds that may be present. Molecular formulas can be generated for detected compounds from high-resolution mass spectrometry data, but analysis can be lengthy when thousands of compounds are detected in a single sample. Efficient data mining methods to analyze these complex data sets are necessary given the inherent chemical diversity and variability of food matrixes. The aim of this work is to determine necessary requirements to successfully apply data analysis strategies to distinguish suspect and control samples. Infant formula and orange juice samples were analyzed with one lot of each matrix containing varying concentrations of a four compound mixture to represent a suspect sample set. Small molecular differences were parsed from the data, where analytes as low as 10 ppb were revealed. This was accomplished, in part, by analyzing a quality control standard, matrix spiked with an analytical standard mixture, technical replicates, a representative number of sample lots, and blanks within the sample sequence; this enabled the development of a data analysis workflow and ensured that the employed method is sufficient for mining relevant molecular features from the data.


Assuntos
Contaminação de Medicamentos , Contaminação de Alimentos/análise , Sucos de Frutas e Vegetais/análise , Fórmulas Infantis/análise , Fórmulas Infantis/química , Espectrometria de Massas , Software , Cromatografia Líquida , Inocuidade dos Alimentos , Humanos , Lactente
12.
J Chromatogr A ; 1428: 86-96, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26372444

RESUMO

The majority of analytical methods for food safety monitor the presence of a specific compound or defined set of compounds. Non-targeted screening methods are complementary to these approaches by detecting and identifying unexpected compounds present in food matrices that may be harmful to public health. However, the development and implementation of generalized non-targeted screening workflows are particularly challenging, especially for food matrices due to inherent sample complexity and diversity and a large analyte concentration range. One approach that can be implemented is liquid chromatography coupled to high-resolution mass spectrometry, which serves to reduce this complexity and is capable of generating molecular formulae for compounds of interest. Current capabilities, strategies, and challenges will be reviewed for sample preparation, mass spectrometry, chromatography, and data processing workflows. Considerations to increase the accuracy and speed of identifying unknown molecular species will also be addressed, including suggestions for achieving sufficient data quality for non-targeted screening applications.


Assuntos
Cromatografia Líquida , Análise de Alimentos/métodos , Espectrometria de Massas
13.
Anal Chim Acta ; 892: 167-74, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26388488

RESUMO

Herein, a rapid and simple gold nanoparticle based colorimetric and dynamic light scattering (DLS) assay for the sensitive detection of cholera toxin has been developed. The developed assay is based on the distance dependent properties of gold nanoparticles which cause aggregation of antibody-conjugated gold nanoparticles in the presence of cholera toxin resulting discernible color change. This aggregation induced color change caused a red shift in the plasmon band of nanoparticles which was measured by UV-Vis spectroscopy. In addition, we employed DLS assay to monitor the extent of aggregation in the presence of different concentration of cholera toxin. Our assay can visually detect as low as 10 nM of cholera toxin which is lower than the previously reported colorimetric methods. The reported assay is very fast and showed an excellent specificity against other diarrhetic toxins. Moreover, we have demonstrated the feasibility of our method for cholera toxin detection in local lake water.


Assuntos
Toxina da Cólera/análise , Difusão Dinâmica da Luz , Ouro/química , Nanopartículas Metálicas/química , Espectrofotometria Ultravioleta , Anticorpos/química , Anticorpos/imunologia , Toxina da Cólera/imunologia , Microbiologia da Água
14.
J Am Soc Mass Spectrom ; 26(10): 1768-79, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26250559

RESUMO

The rise of antimicrobial resistance necessitates the discovery and/or production of novel antibiotics. Isolated strains of Paenibacillus alvei were previously shown to exhibit antimicrobial activity against a number of pathogens, such as E. coli, Salmonella, and methicillin-resistant Staphylococcus aureus (MRSA). The responsible antimicrobial compounds were isolated from these Paenibacillus strains and a combination of low and high resolution mass spectrometry with multiple-stage tandem mass spectrometry was used for identification. A group of closely related cyclic lipopeptides was identified, differing primarily by fatty acid chain length and one of two possible amino acid substitutions. Variation in the fatty acid length resulted in mass differences of 14 Da and yielded groups of related MS(n) spectra. Despite the inherent complexity of MS/MS spectra of cyclic compounds, straightforward analysis of these spectra was accomplished by determining differences in complementary product ion series between compounds that differ in molecular weight by 14 Da. The primary peptide sequence assignment was confirmed through genome mining; the combination of these analytical tools represents a workflow that can be used for the identification of complex antibiotics. The compounds also share amino acid sequence similarity to a previously identified broad-spectrum antibiotic isolated from Paenibacillus. The presence of such a wide distribution of related compounds produced by the same organism represents a novel class of broad-spectrum antibiotic compounds.


Assuntos
Antibacterianos/química , Antibacterianos/isolamento & purificação , Paenibacillus/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Sequência de Aminoácidos , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Dados de Sequência Molecular , Peptídeos Cíclicos/farmacologia , Espectrometria de Massas em Tandem
15.
J Am Soc Mass Spectrom ; 25(7): 1285-94, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24729191

RESUMO

The development of automated non-targeted workflows for small molecule analyses is highly desirable in many areas of research and diagnostics. Sufficient mass and chromatographic resolution is necessary for the detectability of compounds and subsequent componentization and interpretation of ions. The mass accuracy and relative isotopic abundance are critical in correct molecular formulae generation for unknown compounds. While high-resolution instrumentation provides accurate mass information, sample complexity can greatly influence data quality and the measurement of compounds of interest. Two high-resolution instruments, an Orbitrap and a Q-TOF, were evaluated for mass accuracy and relative isotopic abundance with various concentrations of a standard mixture in four complex sample matrices. The overall average ± standard deviation of the mass accuracy was 1.06 ± 0.76 ppm and 1.62 ± 1.88 ppm for the Orbitrap and the Q-TOF, respectively; however, individual measurements were ± 5 ppm for the Orbitrap and greater than 10 ppm for the Q-TOF. Relative isotopic abundance measurements for A + 1 were within 5% of the theoretical value if the intensity of the monoisotopic peak was greater than 1E7 for the Orbitrap and 1E5 for the Q-TOF, where an increase in error is observed with a decrease in intensity. Furthermore, complicating factors were found in the data that would impact automated data analysis strategies, including coeluting species that interfere with detectability and relative isotopic abundance measurements. The implications of these findings will be discussed with an emphasis on reasonable expectations from these instruments, guidelines for experimental workflows, data analysis considerations, and software design for non-targeted analyses.


Assuntos
Isótopos/análise , Espectrometria de Massas/métodos , Espectrometria de Massas/normas , Modelos Teóricos , Precisão da Medição Dimensional , Isótopos/química , Peso Molecular
16.
Genome Announc ; 1(5)2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24092795

RESUMO

We sequenced the genomes of two strains of O104:H21 enterohemorrhagic Escherichia coli (EHEC) isolated during an outbreak of hemorrhagic colitis in Montana in 1994. These strains carried a plasmid that contains several virulence genes not present in pO157. The genome sequences will improve phylogenetic analysis of other non-O157 E. coli strains in the future.

17.
Protein J ; 32(4): 288-96, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23625059

RESUMO

Botulinum neurotoxins are produced as a toxin complex (TC) which consists of neurotoxin (NT) and neurotoxin associated proteins. The characterization of NT in its native state is an essential step for developing diagnostics and therapeutic countermeasures against botulism. The presence of NT genes was validated by PCR amplification of toxin specific fragments from genomic DNA of Clostridium botulinum strain PS-5 which indicated the presence of both serotype A and B genes on PS-5 genome. Further, TC was purified and characterized by Western blotting, Digoxin-enzyme linked immunosorbent assay, endopeptidase activity assay, and Liquid chromatography-Mass spectrometry. The data showed the presence of serotype A specific neurotoxin. Based on the analysis of neurotoxin genes and characterization of TC, PS-5 strain appears as a serotype A (B) strain of C. botulinum which produces only serotype A specific TC in the cell culture medium.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Clostridium botulinum/química , Complexos Multiproteicos/isolamento & purificação , Neurotoxinas/isolamento & purificação , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Western Blotting , Galinhas , Clostridium botulinum/genética , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Genes Bacterianos/genética , Testes de Hemaglutinação , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Neurotoxinas/química , Neurotoxinas/genética , Neurotoxinas/metabolismo , Reação em Cadeia da Polimerase
18.
Rapid Commun Mass Spectrom ; 27(10): 1128-34, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23592117

RESUMO

RATIONALE: Sulfur mustard (HD) is a major chemical warfare agent threat to humans. Since World War I, several incidents of human exposure to sulfur mustard have been reported. In order to assist health professionals during an exposure event and support biological monitoring, a rapid analytical method is required to measure the exposure of humans to HD. METHOD: The ß-lyase metabolites of HD, 1-methylsulfinyl-2-[2-(methylthio)ethylsulfonyl]ethane (MSMTESE) and 1,1'-sulfonylbis[2-(methylsulfinyl)ethane] (SBMSE) were reduced to the single biomarker, 1,1'-sulfonylbis-[2-(methylthio)ethane] (SBMTE), using titanium(III) chloride. High-throughput sample preparation was performed on a Tecan Freedom EVO liquid handler and analysis was performed by electrospray ionization liquid chromatography and tandem mass spectrometry (LC/MS/MS) in the multiple-reaction monitoring mode. RESULTS: Each analytical run consisted of a matrix blank, calibration standards (0.1-100 ng/mL), low quality controls (QCs), 2.5 ng/mL, and high QCs, 25.0 ng/mL, of SBMTE in human urine. The method was validated with 20 analytical runs performed by four analysts. The mean calculated concentrations of the low and high QCs were 2.52 and 25.5 ng/mL with relative standard deviations of 3.6% and 2.3%, respectively. CONCLUSION: This semi-automated method has few manual transfer steps, thus minimizing common manual errors and saving time. Therefore, this method would be very helpful to responding laboratories in a large-scale exposure event related to HD.


Assuntos
Biomarcadores/urina , Substâncias para a Guerra Química , Cromatografia Líquida/métodos , Gás de Mostarda/metabolismo , Sulfetos/urina , Sulfonas/urina , Espectrometria de Massas em Tandem/métodos , Exposição Ambiental/análise , Humanos , Liases/metabolismo , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray/métodos , Sulfetos/química , Sulfonas/química , Sulfóxidos/química , Sulfóxidos/urina
19.
J Sep Sci ; 36(5): 971-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23371431

RESUMO

Increasing importation of food and the diversity of potential contaminants have necessitated more analytical testing of these foods. Historically, mass spectrometric methods for testing foods were confined to monitoring selected ions (SIM or MRM), achieving sensitivity by focusing on targeted ion signals. A limiting factor in this approach is that any contaminants not included on the target list are not typically identified and retrospective data mining is limited. A potential solution is to utilize high-resolution MS to acquire accurate mass full-scan data. Based on the instrumental resolution, these data can be correlated to the actual mass of a contaminant, which would allow for identification of both target compounds and compounds that are not on a target list (nontargets). The focus of this research was to develop software algorithms to provide rapid and accurate data processing of LC/MS data to identify both targeted and nontargeted analytes. Software from a commercial vendor was developed to process LC/MS data and the results were compared to an alternate, vendor-supplied solution. The commercial software performed well and demonstrated the potential for a fully automated processing solution.


Assuntos
Cromatografia Líquida/instrumentação , Mineração de Dados , Espectrometria de Massas/instrumentação , Algoritmos , Software
20.
J Am Soc Mass Spectrom ; 23(9): 1569-78, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22711514

RESUMO

Resolution improvements in time-of-flight instrumentation and the emergence of the Orbitrap mass spectrometer have researchers using high resolution mass spectrometry to determine elemental compositions and performing screening methods based on the full-scan data from these instruments. This work is focused on examining instrument performance of both a QTOF and a bench-top Orbitrap. In this study, the impact of chromatographic resolution on mass measurement accuracy, mass measurement precision, and ion suppression is examined at a fundamental level. This work was extended to a mixture of over 200 pesticides to determine how well two different software algorithms componentized and correctly identified these compounds under different sets of chromatographic conditions, where co-elution was expected to vary markedly.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Algoritmos , Modelos Químicos , Praguicidas/química , Praguicidas/isolamento & purificação , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA