Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(21): 8422-8429, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36214509

RESUMO

The ability to create a robust and well-defined artificial atomic charge in graphene and understand its carrier-dependent electronic properties represents an important goal toward the development of graphene-based quantum devices. Herein, we devise a new pathway toward the atomically precise embodiment of point charges into a graphene lattice by posterior (N) ion implantation into a back-gated graphene device. The N dopant behaves as an in-plane proton-like charge manifested by formation of the characteristic resonance state in the conduction band. Scanning tunneling spectroscopy measurements at varied charge carrier densities reveal a giant energetic renormalization of the resonance state up to 220 meV with respect to the Dirac point, accompanied by the observation of gate-tunable long-range screening effects close to individual N dopants. Joint density functional theory and tight-binding calculations with modified perturbation potential corroborate experimental findings and highlight the short-range character of N-induced perturbation.

2.
J Am Chem Soc ; 144(35): 16012-16019, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36017775

RESUMO

While enormous progress has been achieved in synthesizing atomically precise graphene nanoribbons (GNRs), the preparation of GNRs with a fully predetermined length and monomer sequence remains an unmet challenge. Here, we report a fabrication method that provides access to structurally diverse and monodisperse "designer" GNRs through utilization of an iterative synthesis strategy, in which a single monomer is incorporated into an oligomer chain during each chemical cycle. Surface-assisted cyclodehydrogenation is subsequently employed to generate the final nanoribbons, and bond-resolved scanning tunneling microscopy is utilized to characterize them.


Assuntos
Grafite , Nanotubos de Carbono , Grafite/química , Nanotubos de Carbono/química
3.
J Am Chem Soc ; 144(30): 13696-13703, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35867847

RESUMO

The design of a spin imbalance within the crystallographic unit cell of bottom-up engineered 1D graphene nanoribbons (GNRs) gives rise to nonzero magnetic moments within each cell. Here, we demonstrate the bottom-up assembly and spectroscopic characterization of a one-dimensional Kondo spin chain formed by a chevron-type GNR (cGNR) physisorbed on Au(111). Substitutional nitrogen core doping introduces a pair of low-lying occupied states per monomer within the semiconducting gap of cGNRs. Charging resulting from the interaction with the gold substrate quenches one electronic state for each monomer, leaving behind a 1D chain of radical cations commensurate with the unit cell of the ribbon. Scanning tunneling microscopy (STM) and spectroscopy (STS) reveal the signature of a Kondo resonance emerging from the interaction of S = 1/2 spin centers in each monomer core with itinerant electrons in the Au substrate. STM tip lift-off experiments locally reduce the effective screening of the unpaired radical cation being lifted, revealing a robust exchange coupling between neighboring spin centers. First-principles DFT-LSDA calculations support the presence of magnetic moments in the core of this GNR when it is placed on Au.

4.
Adv Mater ; 34(38): e2204579, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35902365

RESUMO

The spontaneous formation of electronic orders is a crucial element for understanding complex quantum states and engineering heterostructures in 2D materials. A novel 19 $\sqrt {19} $ × 19 $\sqrt {19} $ charge order in few-layer-thick 1T-TaTe2 transition metal dichalcogenide films grown by molecular beam epitaxy, which has not been realized, is report. The photoemission and scanning probe measurements demonstrate that monolayer 1T-TaTe2 exhibits a variety of metastable charge density wave orders, including the 19 $\sqrt {19} $ × 19 $\sqrt {19} $ superstructure, which can be selectively stabilized by controlling the post-growth annealing temperature. Moreover, it is found that only the 19 $\sqrt {19} $ × 19 $\sqrt {19} $ order persists in 1T-TaTe2 films thicker than a monolayer, up to 8 layers. The findings identify the previously unrealized novel electronic order in a much-studied transition metal dichalcogenide and provide a viable route to control it within the epitaxial growth process.

5.
Nano Lett ; 22(13): 5301-5306, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35760394

RESUMO

The low mass density and high mechanical strength of graphene make it an attractive candidate for suspended-membrane energy transducers. Typically, the membrane size dictates the operational frequency and bandwidth. However, in many cases it would be desirable to both lower the resonance frequency and increase the bandwidth, while maintaining overall membrane size. We employ focused ion beam milling or laser ablation to create kirigami-like modification of suspended pure-graphene membranes ranging in size from microns to millimeters. Kirigami engineering successfully reduces the resonant frequency, increases the displacement amplitude, and broadens the effective bandwidth of the transducer. Our results present a promising route to miniaturized wide-band energy transducers with enhanced operational parameter range and efficiency.


Assuntos
Grafite , Desenho de Equipamento , Transdutores , Vibração
6.
Nat Mater ; 21(7): 748-753, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35710632

RESUMO

One-dimensional electron systems exhibit fundamentally different properties than higher-dimensional systems. For example, electron-electron interactions in one-dimensional electron systems have been predicted to induce Tomonaga-Luttinger liquid behaviour. Naturally occurring grain boundaries in single-layer transition metal dichalcogenides exhibit one-dimensional conducting channels that have been proposed to host Tomonaga-Luttinger liquids, but charge density wave physics has also been suggested to explain their behaviour. Clear identification of the electronic ground state of this system has been hampered by an inability to electrostatically gate such boundaries and tune their charge carrier concentration. Here we present a scanning tunnelling microscopy and spectroscopy study of gate-tunable mirror twin boundaries in single-layer 1H-MoSe2 devices. Gating enables scanning tunnelling microscopy and spectroscopy for different mirror twin boundary electron densities, thus allowing precise characterization of electron-electron interaction effects. Visualization of the resulting mirror twin boundary electronic structure allows unambiguous identification of collective density wave excitations having two velocities, in quantitative agreement with the spin-charge separation predicted by finite-length Tomonaga-Luttinger liquid theory.

7.
Nat Commun ; 13(1): 906, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173153

RESUMO

Monolayers of two-dimensional van der Waals materials exhibit novel electronic phases distinct from their bulk due to the symmetry breaking and reduced screening in the absence of the interlayer coupling. In this work, we combine angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy to demonstrate the emergence of a unique insulating 2 × 1 dimer ground state in monolayer 1T-IrTe2 that has a large band gap in contrast to the metallic bilayer-to-bulk forms of this material. First-principles calculations reveal that phonon and charge instabilities as well as local bond formation collectively enhance and stabilize a charge-ordered ground state. Our findings provide important insights into the subtle balance of interactions having similar energy scales that occurs in the absence of strong interlayer coupling, which offers new opportunities to engineer the properties of 2D monolayers.

8.
Nano Lett ; 22(1): 238-245, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34978444

RESUMO

The flat bands resulting from moiré superlattices exhibit fascinating correlated electron phenomena such as correlated insulators, ( Nature 2018, 556 (7699), 80-84), ( Nature Physics 2019, 15 (3), 237) superconductivity, ( Nature 2018, 556 (7699), 43-50), ( Nature 2019, 572 (7768), 215-219) and orbital magnetism. ( Science 2019, 365 (6453), 605-608), ( Nature 2020, 579 (7797), 56-61), ( Science 2020, 367 (6480), 900-903) Such magnetism has been observed only at particular integer multiples of n0, the density corresponding to one electron per moiré superlattice unit cell. Here, we report the experimental observation of ferromagnetism at noninteger filling (NIF) of a flat Chern band in a ABC-TLG/hBN moiré superlattice. This state exhibits prominent ferromagnetic hysteresis behavior with large anomalous Hall resistivity in a broad region of densities centered in the valence miniband at n = -2.3n0. We observe that, not only the magnitude of the anomalous Hall signal, but also the sign of the hysteretic ferromagnetic response can be modulated by tuning the carrier density and displacement field. Rotating the sample in a fixed magnetic field demonstrates that the ferromagnetism is highly anisotropic and likely purely orbital in character.

9.
Sci Adv ; 7(52): eabl5892, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34936436

RESUMO

The incorporation of nonhexagonal rings into graphene nanoribbons (GNRs) is an effective strategy for engineering localized electronic states, bandgaps, and magnetic properties. Here, we demonstrate the successful synthesis of nanoribbons having four-membered ring (cyclobutadienoid) linkages by using an on-surface synthesis approach involving direct contact transfer of coronene-type precursors followed by thermally assisted [2 + 2] cycloaddition. The resulting coronene-cyclobutadienoid nanoribbons feature a narrow 600-meV bandgap and novel electronic frontier states that can be interpreted as linear chains of effective px and py pseudo-atomic orbitals. We show that these states give rise to exceptional physical properties, such as a rigid indirect energy gap. This provides a previously unexplored strategy for constructing narrow gap GNRs via modification of precursor molecules whose function is to modulate the coupling between adjacent four-membered ring states.

10.
ACS Nano ; 15(12): 20633-20642, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34842409

RESUMO

Bottom-up graphene nanoribbons (GNRs) have recently been shown to host nontrivial topological phases. Here, we report the fabrication and characterization of deterministic GNR quantum dots whose orbital character is defined by zero-mode states arising from nontrivial topological interfaces. Topological control was achieved through the synthesis and on-surface assembly of three distinct molecular precursors designed to exhibit structurally derived topological electronic states. Using a combination of low-temperature scanning tunneling microscopy and spectroscopy, we have characterized two GNR topological quantum dot arrangements synthesized under ultrahigh vacuum conditions. Our results are supported by density-functional theory and tight-binding calculations, revealing that the magnitude and sign of orbital hopping between topological zero-mode states can be tuned based on the bonding geometry of the interconnecting region. These results demonstrate the utility of topological zero modes as components for designer quantum dots and advanced electronic devices.

11.
Nano Lett ; 21(21): 8993-8998, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699239

RESUMO

Experimental realizations of graphene-based stadium-shaped quantum dots (QDs) have been few and have been incompatible with scanned probe microscopy. Yet, the direct visualization of electronic states within these QDs is crucial for determining the existence of quantum chaos in these systems. We report the fabrication and characterization of electrostatically defined stadium-shaped QDs in heterostructure devices composed of monolayer graphene (MLG) and bilayer graphene (BLG). To realize a stadium-shaped QD, we utilized the tip of a scanning tunneling microscope to charge defects in a supporting hexagonal boron nitride flake. The stadium states visualized are consistent with tight-binding-based simulations but lack clear quantum chaos signatures. The absence of quantum chaos features in MLG-based stadium QDs is attributed to the leaky nature of the confinement potential due to Klein tunneling. In contrast, for BLG-based stadium QDs (which have stronger confinement) quantum chaos is precluded by the smooth confinement potential which reduces interference and mixing between states.


Assuntos
Grafite , Pontos Quânticos , Diagnóstico por Imagem , Eletrônica , Grafite/química , Pontos Quânticos/química
12.
Nano Lett ; 21(20): 8770-8776, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34653333

RESUMO

The spatial arrangement of adsorbates deposited onto a clean surface under vacuum typically cannot be reversibly tuned. Here we use scanning tunneling microscopy to demonstrate that molecules deposited onto graphene field-effect transistors (FETs) exhibit reversible, electrically tunable surface concentration. Continuous gate-tunable control over the surface concentration of charged F4TCNQ molecules was achieved on a graphene FET at T = 4.5K. This capability enables the precisely controlled impurity doping of graphene devices and also provides a new method for determining molecular energy level alignment based on the gate-dependence of molecular concentration. Gate-tunable molecular concentration is explained by a dynamical molecular rearrangement process that reduces total electronic energy by maintaining Fermi level pinning in the device substrate. The molecular surface concentration is fully determined by the device back-gate voltage, its geometric capacitance, and the energy difference between the graphene Dirac point and the molecular LUMO level.


Assuntos
Grafite , Capacitância Elétrica , Eletrônica , Microscopia de Tunelamento , Transistores Eletrônicos
13.
Nano Lett ; 21(12): 4944-4949, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34102057

RESUMO

The measurement of electrical activity across systems of excitable cells underlies current progress in neuroscience, cardiac pharmacology, and neurotechnology. However, bioelectricity spans orders of magnitude in intensity, space, and time, posing substantial technological challenges. The development of methods permitting network-scale recordings with high spatial resolution remains key to studies of electrogenic cells, emergent networks, and bioelectric computation. Here, we demonstrate single-shot and label-free imaging of extracellular potentials with high resolution across a wide field-of-view. The critically coupled waveguide-amplified graphene electric field (CAGE) sensor leverages the field-sensitive optical transitions in graphene to convert electric potentials into the optical regime. As a proof-of-concept, we use the CAGE sensor to detect native electrical activity from cardiac action potentials with tens-of-microns resolution, simultaneously map the propagation of these potentials at tissue-scale, and monitor their modification by pharmacological agents. This platform is robust, scalable, and compatible with existing microscopy techniques for multimodal correlative imaging.


Assuntos
Grafite , Potenciais de Ação , Fenômenos Eletrofisiológicos , Coração , Microscopia
14.
Nat Commun ; 12(1): 2516, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947845

RESUMO

The discovery of interaction-driven insulating and superconducting phases in moiré van der Waals heterostructures has sparked considerable interest in understanding the novel correlated physics of these systems. While a significant number of studies have focused on twisted bilayer graphene, correlated insulating states and a superconductivity-like transition up to 12 K have been reported in recent transport measurements of twisted double bilayer graphene. Here we present a scanning tunneling microscopy and spectroscopy study of gate-tunable twisted double bilayer graphene devices. We observe splitting of the van Hove singularity peak by ~20 meV at half-filling of the conduction flat band, with a corresponding reduction of the local density of states at the Fermi level. By mapping the tunneling differential conductance we show that this correlated system exhibits energetically split states that are spatially delocalized throughout the different regions in the moiré unit cell, inconsistent with order originating solely from onsite Coulomb repulsion within strongly-localized orbitals. We have performed self-consistent Hartree-Fock calculations that suggest exchange-driven spontaneous symmetry breaking in the degenerate conduction flat band is the origin of the observed correlated state. Our results provide new insight into the nature of electron-electron interactions in twisted double bilayer graphene and related moiré systems.

15.
Nano Lett ; 21(6): 2363-2369, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33719457

RESUMO

Lateral single-layer transition metal dichalcogenide (TMD) heterostructures are promising building blocks for future ultrathin devices. Recent advances in the growth of coherent heterostructures have improved the structural precision of lateral heterojunctions, but an understanding of the electronic effects of the chemical transition at the interface and associated strain is lacking. Here we present a scanning tunneling microscopy study of single-layer coherent TMD heterostructures with nearly uniform strain on each side of the heterojunction interface. We have characterized the local topography and electronic structure of single-layer WS2/WSe2 heterojunctions exhibiting ultrasharp coherent interfaces. Uniform built-in strain on each side of the interface arising from lattice mismatch results in a reduction of the bandgap of WS2. By mapping the tunneling differential conductance across the interface, we find type-II band alignment and an ultranarrow electronic transition region only ∼3 nm in width that arises from wave function mixing between the two materials.

16.
J Am Chem Soc ; 143(11): 4174-4178, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33710887

RESUMO

The scope of graphene nanoribbon (GNR) structures accessible through bottom-up approaches is defined by the intrinsic limitations of either all-on-surface or all-solution-based synthesis. Here, we report a hybrid bottom-up synthesis of GNRs based on a Matrix-Assisted Direct (MAD) transfer technique that successfully leverages technical advantages inherent to both solution-based and on-surface synthesis while sidestepping their drawbacks. Critical structural parameters tightly controlled in solution-based polymerization reactions can seamlessly be translated into the structure of the corresponding GNRs. The transformative potential of the synergetic bottom-up approaches facilitated by the MAD transfer techniques is highlighted by the synthesis of chevron-type GNRs (cGNRs) featuring narrow length distributions and a nitrogen core-doped armchair GNR (N4-7-ANGR) that remains inaccessible using either a solution-based or an on-surface bottom-up approach alone.

17.
Nat Mater ; 20(7): 945-950, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33558718

RESUMO

Moiré superlattices in transition metal dichalcogenide (TMD) heterostructures can host novel correlated quantum phenomena due to the interplay of narrow moiré flat bands and strong, long-range Coulomb interactions1-9. However, microscopic knowledge of the atomically reconstructed moiré superlattice and resulting flat bands is still lacking, which is critical for fundamental understanding and control of the correlated moiré phenomena. Here we quantitatively study the moiré flat bands in three-dimensional (3D) reconstructed WSe2/WS2 moiré superlattices by comparing scanning tunnelling spectroscopy (STS) of high-quality exfoliated TMD heterostructure devices with ab initio simulations of TMD moiré superlattices. A strong 3D buckling reconstruction accompanied by large in-plane strain redistribution is identified in our WSe2/WS2 moiré heterostructures. STS imaging demonstrates that this results in a remarkably narrow and highly localized K-point moiré flat band at the valence band edge of the heterostructure. A series of moiré flat bands are observed at different energies that exhibit varying degrees of localization. Our observations contradict previous simplified theoretical models but agree quantitatively with ab initio simulations that fully capture the 3D structural reconstruction. Our results reveal that the strain redistribution and 3D buckling in TMD heterostructures dominate the effective moiré potential and the corresponding moiré flat bands at the Brillouin zone K points.

18.
ACS Nano ; 15(2): 2635-2642, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33492120

RESUMO

The rational bottom-up synthesis of graphene nanoribbons (GNRs) provides atomically precise control of widths and edges that give rise to a wide range of electronic properties promising for electronic devices such as field-effect transistors (FETs). Since the bottom-up synthesis commonly takes place on catalytic metallic surfaces, the integration of GNRs into such devices requires their transfer onto insulating substrates, which remains one of the bottlenecks in the development of GNR-based electronics. Herein, we report on a method for the transfer-free placement of GNRs on insulators. This involves growing GNRs on a gold film deposited onto an insulating layer followed by gentle wet etching of the gold, which leaves the nanoribbons to settle in place on the underlying insulating substrate. Scanning tunneling microscopy and Raman spectroscopy confirm that atomically precise GNRs of high density uniformly grow on the gold films deposited onto SiO2/Si substrates and remain structurally intact after the etching process. We have also demonstrated transfer-free fabrication of ultrashort channel GNR FETs using this process. A very important aspect of the present work is that the method can scale up well to 12 in. wafers, which is extremely difficult for previous techniques. Our work here thus represents an important step toward large-scale integration of GNRs into electronic devices.

19.
Nature ; 597(7878): 650-654, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34588665

RESUMO

The Wigner crystal1 has fascinated condensed matter physicists for nearly 90 years2-14. Signatures of two-dimensional (2D) Wigner crystals were first observed in 2D electron gases under high magnetic field2-4, and recently reported in transition metal dichalcogenide moiré superlattices6-9. Direct observation of the 2D Wigner crystal lattice in real space, however, has remained an outstanding challenge. Conventional scanning tunnelling microscopy (STM) has sufficient spatial resolution but induces perturbations that can potentially alter this fragile state. Here we demonstrate real-space imaging of 2D Wigner crystals in WSe2/WS2 moiré heterostructures using a specially designed non-invasive STM spectroscopy technique. This employs a graphene sensing layer held close to the WSe2/WS2 moiré superlattice. Local STM tunnel current into the graphene layer is modulated by the underlying Wigner crystal electron lattice in the WSe2/WS2 heterostructure. Different Wigner crystal lattice configurations at fractional electron fillings of n = 1/3, 1/2 and 2/3, where n is the electron number per site, are directly visualized. The n = 1/3 and n = 2/3 Wigner crystals exhibit triangular and honeycomb lattices, respectively, to minimize nearest-neighbour occupations. The n = 1/2 state spontaneously breaks the original C3 symmetry and forms a stripe phase. Our study lays a solid foundation for understanding Wigner crystal states in WSe2/WS2 moiré heterostructures and provides an approach that is generally applicable for imaging novel correlated electron lattices in other systems.

20.
Nat Commun ; 11(1): 5524, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139701

RESUMO

The incorporation of metal-organic frameworks into advanced devices remains a desirable goal, but progress is hindered by difficulties in preparing large crystalline metal-organic framework films with suitable electronic performance. We demonstrate the direct growth of large-area, high quality, and phase pure single metal-organic framework crystals through chemical vapor deposition of a dimolybdenum paddlewheel precursor, Mo2(INA)4. These exceptionally uniform, high quality crystals cover areas up to 8600 µm2 and can be grown down to thicknesses of 30 nm. Moreover, scanning tunneling microscopy indicates that the Mo2(INA)4 clusters assemble into a two-dimensional, single-layer framework. Devices are readily fabricated from single vapor-phase grown crystals and exhibit reversible 8-fold changes in conductivity upon illumination at modest powers. Moreover, we identify vapor-induced single crystal transitions that are reversible and responsible for 30-fold changes in conductivity of the metal-organic framework as monitored by in situ device measurements. Gas-phase methods, including chemical vapor deposition, show broader promise for the preparation of high-quality molecular frameworks, and may enable their integration into devices, including detectors and actuators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...