Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 108(9): 1578-1589, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34265237

RESUMO

Thoracic aortic aneurysm (TAA) is characterized by dilation of the aortic root or ascending/descending aorta. TAA is a heritable disease that can be potentially life threatening. While 10%-20% of TAA cases are caused by rare, pathogenic variants in single genes, the origin of the majority of TAA cases remains unknown. A previous study implicated common variants in FBN1 with TAA disease risk. Here, we report a genome-wide scan of 1,351 TAA-affected individuals and 18,295 control individuals from the Cardiovascular Health Improvement Project and Michigan Genomics Initiative at the University of Michigan. We identified a genome-wide significant association with TAA for variants within the third intron of TCF7L2 following replication with meta-analysis of four additional independent cohorts. Common variants in this locus are the strongest known genetic risk factor for type 2 diabetes. Although evidence indicates the presence of different causal variants for TAA and type 2 diabetes at this locus, we observed an opposite direction of effect. The genetic association for TAA colocalizes with an aortic eQTL of TCF7L2, suggesting a functional relationship. These analyses predict an association of higher expression of TCF7L2 with TAA disease risk. In vitro, we show that upregulation of TCF7L2 is associated with BCL2 repression promoting vascular smooth muscle cell apoptosis, a key driver of TAA disease.


Assuntos
Aneurisma da Aorta Torácica/genética , Diabetes Mellitus Tipo 2/genética , Células Endoteliais/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Locos de Características Quantitativas , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Aorta/metabolismo , Aorta/patologia , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Estudos de Casos e Controles , Caspase 3/genética , Caspase 3/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Células Endoteliais/patologia , Regulação da Expressão Gênica , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Íntrons , Michigan , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Mutação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
2.
Cardiovasc Drugs Ther ; 35(3): 617-626, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33604704

RESUMO

PURPOSE OF REVIEW: This review focuses on the foundational evidence from the last two decades of lipid genetics research and describes the current status of data-driven approaches for transethnic GWAS, fine-mapping, transcriptome informed fine-mapping, and disease prediction. RECENT FINDINGS: Current lipid genetics research aims to understand the association mechanisms and clinical relevance of lipid loci as well as to capture population specific associations found in global ancestries. Recent genome-wide trans-ethnic association meta-analyses have identified 118 novel lipid loci reaching genome-wide significance. Gene-based burden tests of whole exome sequencing data have identified three genes-PCSK9, LDLR, and APOB-with significant rare variant burden associated with familial dyslipidemia. Transcriptome-wide association studies discovered five previously unreported lipid-associated loci. Additionally, the predictive power of genome-wide genetic risk scores amalgamating the polygenic determinants of lipid levels can potentially be used to increase the accuracy of coronary artery disease prediction. CONCLUSIONS: Lipids are one of the most successful group of traits in the era of genome-wide genetic discovery for identification of novel loci and plausible drug targets. However, a substantial fraction of lipid trait heritability remains unexplained. Further analysis of diverse ancestries and state of the art methods for association locus refinement could potentially reveal some of this missing heritability and increase the clinical application of the genomic association results.

3.
Am J Hum Genet ; 103(4): 484-497, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30245029

RESUMO

The classification of genetic variants represents a major challenge in the post-genome era by virtue of their extraordinary number and the complexities associated with ascribing a clinical impact, especially for disorders exhibiting exceptional phenotypic, genetic, and allelic heterogeneity. To address this challenge for hearing loss, we have developed the Deafness Variation Database (DVD), a comprehensive, open-access resource that integrates all available genetic, genomic, and clinical data together with expert curation to generate a single classification for each variant in 152 genes implicated in syndromic and non-syndromic deafness. We evaluate 876,139 variants and classify them as pathogenic or likely pathogenic (more than 8,100 variants), benign or likely benign (more than 172,000 variants), or of uncertain significance (more than 695,000 variants); 1,270 variants are re-categorized based on expert curation and in 300 instances, the change is of medical significance and impacts clinical care. We show that more than 96% of coding variants are rare and novel and that pathogenicity is driven by minor allele frequency thresholds, variant effect, and protein domain. The mutational landscape we define shows complex gene-specific variability, making an understanding of these nuances foundational for improved accuracy in variant interpretation in order to enhance clinical decision making and improve our understanding of deafness biology.


Assuntos
Surdez/genética , Mutação/genética , Bases de Dados Genéticas , Frequência do Gene/genética , Genômica/métodos , Perda Auditiva/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...