Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 20: 100139, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34418567

RESUMO

Proteomics methodology has expanded to include protein structural analysis, primarily through cross-linking mass spectrometry (XL-MS) and hydrogen-deuterium exchange mass spectrometry (HX-MS). However, while the structural proteomics community has effective tools for primary data analysis, there is a need for structure modeling pipelines that are accessible to the proteomics specialist. Integrative structural biology requires the aggregation of multiple distinct types of data to generate models that satisfy all inputs. Here, we describe IMProv, an app in the Mass Spec Studio that combines XL-MS data with other structural data, such as cryo-EM densities and crystallographic structures, for integrative structure modeling on high-performance computing platforms. The resource provides an easily deployed bundle that includes the open-source Integrative Modeling Platform program (IMP) and its dependencies. IMProv also provides functionality to adjust cross-link distance restraints according to the underlying dynamics of cross-linked sites, as characterized by HX-MS. A dynamics-driven conditioning of restraint values can improve structure modeling precision, as illustrated by an integrative structure of the five-membered Polycomb Repressive Complex 2. IMProv is extensible to additional types of data.

2.
Anal Chem ; 93(9): 4246-4254, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33592142

RESUMO

The data analysis practices associated with hydrogen-deuterium exchange mass spectrometry (HX-MS) lag far behind that of most other MS-based protein analysis tools. A reliance on external tools from other fields and a persistent need for manual data validation restrict this powerful technology to the expert user. Here, we provide an extensive upgrade to the HX data analysis suite available in the Mass Spec Studio in the form of two new apps (HX-PIPE and HX-DEAL), completing a workflow that provides an HX-tailored peptide identification capability, accelerated validation routines, automated spectral deconvolution strategies, and a rich set of exportable graphics and statistical reports. With these new tools, we demonstrate that the peptide identifications obtained from undeuterated samples generated at the start of a project contain information that helps predict and control the extent of manual validation required. We also uncover a large fraction of HX-usable peptides that remains unidentified in most experiments. We show that automated spectral deconvolution routines can identify exchange regimes in a project-wide manner, although they remain difficult to accurately assign in all scenarios. Taken together, these new tools provide a robust and complete solution suitable for the analysis of high-complexity HX-MS data.

3.
J Proteomics ; 225: 103844, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32480078

RESUMO

Structural Mass Spectrometry (SMS) provides a comprehensive toolbox for the analysis of protein structure and function. It offers multiple sources of structural information that are increasingly useful for integrative structural modeling of complex protein systems. As MS-based structural workflows scale to larger systems, consistent and coherent data interpretation resources are needed to better support modeling. Unlike the proteomics community, practitioners of SMS lack adequate computational tools. Here, we review new developments in the Mass Spec Studio: an expandable ecosystem of workflows for the analysis of complementary SMS techniques with linkages to modeling. Current functionality in the Studio (version 2) supports three major SMS workflows (crosslinking, hydrogen/deuterium exchange and covalent labelling) and two pipelines for structural modeling, with a special focus on data integration. The Mass Spec Studio is an architecture focused on rapid and robust extension of functionality by a community of developers. SIGNIFICANCE: This review surveys the new data analysis capabilities within the Mass Spec Studio, a rich framework for rapid software development specifically targeting the community of structural proteomics and structural mass spectrometry. Updates to crosslinking, hydrogen/deuterium-exchange and covalent labeling apps are provided as well as a utility for translating such analyses into restraints that support integrative structural modeling. These new capabilities, together with the underlying design tools and content, provide the community with a wealth of resources to tackle complex structural problem and design new approaches to data analysis.


Assuntos
Ecossistema , Proteínas , Espectrometria de Massas , Proteômica , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...