Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 12(5): 3090-3102, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31965129

RESUMO

The critical issue in nanoscale medicine delivery systems is the targeted efficiency to guarantee the maximum accumulation of nanodrugs in tumors to exert better therapeutic action. In this study, we adopted an active and potent strategy based on mesenchymal stem cells (MSCs) certified with excellent tumor-tropism ability to load and ship MnO2@Ce6 nanoparticles into a tumor site. Notably, under the premise of the negligible cellular toxicity of MnO2@Ce6 on MSCs, its considerable uptake by MSCs enabled this nanoplatform (MnO2@Ce6-MSCs) to distribute increasingly inside the tumor. Briefly, a Ce6 photosensitizer was bound to MnO2 nanospheres by physical adsorption, improving its own stability in blood circulation. Furthermore, the delivered MnO2@Ce6 could modulate the tumor microenvironment (TME) by high sensitivity to excess hydrogen protons (H+) and H2O2. Thus, O2 generated by these reactions served as an abundant source for 1O2 conversion under a 633 nm laser exposure, which overcame the crucial bottleneck of the unfavorable hypoxia condition in TME for photodynamic therapy (PDT). In addition, MnO2 decomposed into Mn2+, which was represented by high T1 relaxivity in magnetic resonance imaging (MRI). The Mn2+ was finally removed rapidly from the body by liver metabolism and kidney filtration. These results endowed the original nanoplatform with striking potential for MSC-guided, Ce6-converted, MRI-monitored PDT for further innovation of a clinical cancer diagnosis-treatment agent.

2.
Analyst ; 145(4): 1219-1226, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31907495

RESUMO

The development of convenient sensing probes and strategies for the highly sensitive and specific detection of biomolecules is greatly significant for the diagnosis of diseases. Herein, a dual signal amplification strategy comprising target-triggered recycling and duplex-specific nuclease (DSN)-mediated amplifications was designed and proposed for a highly sensitive fluorescence assay of nucleic acids. In this strategy, three special hairpin structured single-stranded DNAs (i.e., H1, H2 and H3) were designed, and target-triggered recycling was operated on H1-modified AuNPs (i.e., AuNP-H1 probes) in the presence of target DNA, H2 and H3 to form trefoil DNAs on AuNPs (i.e., AuNP-trefoil). DSN was then incubated with AuNP-trefoil to cleave the double-stranded trefoil DNAs, causing the ROX molecules labelled on H2 and H3 to fall off the AuNPs, which resulted in the recovery of the previous AuNP-quenched fluorescence signal of ROX. The sensing mechanism was confirmed by polyacrylamide gel electrophoresis and fluorescence characterizations, and the sensing strategy was optimized from several aspects, such as the MCH blocking time of the AuNP-H1 probes (20 min) and the concentration (0.3 U) and immobilization time (15 min) of DSN. The practicability of the probes and the dual signal amplification strategy was investigated by a fluorescence assay of target DNA in human serum. A good linear calibration curve from 50 fM to 100 pM was obtained with a low detection limit of 47.68 fM. The sensing strategy showed good specificity, which could efficiently distinguish the target DNA from the single-base mismatched (SM) and completely unmatched (UM) DNAs. The recovery values ranging from 91.85% to 106.3% with the relative standard deviations (RSD) less than 7.30% also illustrated the good reliability of the proposed sensing probes and strategy. The AuNP-H1 probes and dual signal amplification strategy provide highly effective diagnostic agents and method for the analysis of disease-related nucleic acid biomarkers at the molecular level for early disease detection.

3.
Biomaterials ; 230: 119606, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31806405

RESUMO

Exosomes (Exos) of approximately 30-150 nm in diameters are the promising vehicles for therapeutic drugs. However, several challenges still exist in clinical applications, such as unsatisfied yield of exosomes, complicated labeling procedure and low drug loading efficiency. In this work, the gram-scale amount of high-purity urinary exosomes can be obtained from gastric cancer patients by non-invasive method. Passion fruit-like Exo-PMA/Au-BSA@Ce6 nanovehicles were fabricated by considerable freshly-urinary Exos loaded efficiently with multi-functionalized PMA/Au-BSA@Ce6 nanoparticles via instant electroporation strategy. In this system, prepared Exo-PMA/Au-BSA@Ce6 nanovehicles could be internalized into cancer cells effectively, and could delay the endocytosis of macrophages and prolong blood circulation time owing to its membrane structure and antigens. Under 633 nm laser irradiation and acidic condition, the structures of nanovehicles would be collapsed and tremendous PMA/Au-BSA@Ce6 nanoparticles could be released inside cancer cells, produced considerable singlet oxygen, inhibiting growth of tumor cells. In vivo experiment of MGC-803 tumor-bearing nude mice showed that prepared Exo-PMA/Au-BSA@Ce6 nanovehicles could target tumor cells with deep penetration and superior retention performance in tumors. This work reports a reliable conjugation-free labeling strategy for tracking exosomes harvested from human urine. Moreover, the integration of multifunctional nanoparticles with urinary Exos paves a versatile road for the development of cancer-targeted photodynamic therapy.

4.
Int J Mol Sci ; 20(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842251

RESUMO

Lateral flow immunochromatographic assays are a powerful diagnostic tool for point-of-care tests, based on their simplicity, specificity, and sensitivity. In this study, a rapid and sensitive gold nanoparticle (AuNP) immunochromatographic strip is produced for detecting aflatoxin B1 (AFB1) in suspicious fungi-contaminated food samples. The 10 nm AuNPs were encompassed by bovine serum albumin (BSA) and AFB1 antibody. Thin-layer chromatography, gel electrophoresis and nuclear magnetic resonance spectroscopy were employed for analysing the chemical complexes. Various concentrations of AFB1 antigen (0-16 ng/mL) were tested with AFB1 antibody-BSA-AuNPs (conjugated AuNPs) and then analysed by scanning electron microscopy, ultraviolet-visible spectroscopy, and Zetasizer. The results showed that the AFB1 antibody was coupled to BSA by the N-hydroxysuccinimide ester method. The AuNPs application has the potential to contribute to AFB1 detection by monitoring a visible colour change from red to purple-blue, with a detection limit of 2 ng/mL in a 96-well plate. The lateral flow immunochromatographic strip tests are rapid, taking less than 10 min., and they have a detection capacity of 10 ng/g. The smartphone analysis of strips provided the results in 3 s, with a detection limit of 0.3 ng/g for AFB1 when the concentration was below 10 ng/g. Excellent agreement was found with AFB1 determination by high-performance liquid chromatography in the determination of AFB1 among 20 samples of peanuts, corn, rice, and bread.

5.
Biomed Res Int ; 2019: 3890962, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31886206

RESUMO

Hepatitis B virus (HBV) infection is a critical incentive for chronic hepatitis B (CHB), liver cirrhosis (LC), and hepatocellular carcinoma (HCC). Different genotypes and genome mutations of HBV have been found to be related to the progression of these liver diseases. However, their clinical significance is still under debate. The objective of this study was to determine the association of HBV genotypes and hot spot mutations in the reverse transcriptase (RT) and basal core promoter-precore (BCP-PreC) region with HBV-infected diseases in a northwest Chinese population. HBV genotyping and DNA sequencing were performed in samples of 980 patients. Appropriate statistical methods were adopted to assess HBV genetic features and its clinical association. It was found that the prevalent HBV genotype in northwestern Chinese patients was HBV/C (61.33%), followed by HBV/B (36.63%). In RT region, in addition to the reported nucleoside analogue- (NA-) resistance missense mutations, new silent mutations at rt169 and rt180 were found to raise the risk of HCC in patients with HBV/C. And the heterozygous mutation status of rt169/rt180 was associated with the increased risk of both HCC and NA resistance (OR > 1, P < 0.01) regardless of HBV genotypes. In BCP-PreC region, multiple mutations and combinations, especially at nt 1762/1764 and nt 1896/1899, were characterized to be the causes of spurious HBeAg negativity and liver function injury, as well as the risk factors for HCC progression (P < 0.01). Additionally, a novel mutation at nt1799G>C was likely found to increase the risk of HCC in patients with HBV/B. These findings revealed an association between HBV genotypes and HBV genetic mutations in RT and BCP-PreC region and progression of hepatitis B. It would be helpful for risk evaluation and diagnostic improvement based on these genetic features.

6.
Opt Express ; 27(23): 34067-34078, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31878463

RESUMO

We report a high-resistivity silicon (HR-Si) prism coupled terahertz (THz) spoof surface plasmon polaritons (SSPPs) on flat subwavelength metasurface. Using a high refractive index prism as an external coupler, a more tightly confined SSPPs mode can be excited in a smaller resonant cavity, leading to strong light-matter interaction. Besides, theoretical analysis and experimental results have both indicated that the SSPPs resonance response to the filling patterns of analyte in the resonant cavity are quite different. In particular, we have found that the interaction between analyte and SSPPs wave can be maximized when the analyte filled with the whole resonant cavity and a higher sensitivity for THz sensing can be obtained. A high sensitivity varied from 0.31 THz/RIU to 0.85 THz/RIU is predicted. Furthermore, these SSPPs modes exhibit high Q-factor, and characteristic spectra of water caused by surface plasmon resonance (SPR) are observed, which is significant in promoting the THz-SPR sensing of polar liquids or aqueous analytes with THz metasurfaces.

7.
Nanoscale ; 11(47): 22849-22859, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31755508

RESUMO

Inorganic nanoparticles (NPs), particularly iron oxide (IO) and gold (Au) NPs, are widely used in a variety of biomedical applications, such as diagnosis and cancer therapy. As an important component of host defense in organisms, macrophages play a crucial role in responding to foreign substances, such as nanoparticles. Thus, it is of utmost importance to understand the nanotoxicity effects on the immune system by investigating the influences of such nanoparticles. In this study, we found that macrophages can take up large amounts of amphiphilic polymer (PMA)-modified Au and IO NPs, which will induce macrophage cell vacuolization and enhance macrophage polarization. This mechanism is an essential part of the immune response in vivo. In addition, we report that smaller-sized nanoparticles (ca. 4 nm) show more significant effects on the macrophage polarization and caused lysosomal damage compared to larger nanoparticles (ca. 14 nm). Moreover, the amount of NP uptake in macrophages decreases upon trapping the PMA with PEG, resulting in reduced vacuolization and a reduced immune response. We hypothesize that vacuoles are formed in large amounts during NP uptake by macrophages, which enhances the immune response and induces macrophages toward M1 polarization. These findings are potentially useful for disease treatment and understanding the immune response when NPs are used in vitro and in vivo.

8.
Nanomedicine (Lond) ; 14(23): 3035-3055, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31686580

RESUMO

Aim: To study the difference in biodistribution of gold nanoprisms (NPr) and nanorods (NR), PEGylated to ensure colloidal stability. Materials & methods: Surface changes were studied for nanoparticles in different media, while the biodistribution was quantified and imaged in vivo. Results: Upon interaction with the mouse serum, NR showed more abrupt changes in surface properties than NPr. In the in vivo tests, while NPr accumulated similarly in the spleen and liver, NR showed much higher gold presence in the spleen than in liver; together with some accumulation in kidneys, which was nonexistent in NPr. NPr were cleared from the tissues 2 months after administration, while NR were more persistent. Conclusion: The results suggest that the differential biodistribution is caused by size-/shape-dependent interactions with the serum.

9.
Opt Express ; 27(19): 27354-27368, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31674598

RESUMO

In Raman spectroscopy, it is crucial to focus the laser on the sample in order to guarantee the intensity and repeatability of the characteristic peaks, which is known as autofocus. In this paper, we propose a novel low-cost scheme based on the subtle placement of the laser source and the image sensor. We confirm the feasibility of monitoring the focus status through the centroid position of the laser spot's image (CPSI) in theory. Both the simulation and experimental results illustrate that the distance-ordinate function is similar in shape to the logarithm, which not only helps to shorten the autofocus time but also achieves the sub-decimeter measuring range and micrometer resolution near the focal point. Meanwhile, we discuss in detail how to obtain the desired performance by adjusting the extrinsic camera parameters and the way to overcome the disturbance of the noise, ambient light and non-normal incidence. An autofocus-free handheld Raman spectrograph utilizes this method to autofocus the alcohol in the centrifuge tube successfully and the spectral reproducibility is improved. Our results may pave the way to a novel autofocus approach for Raman mapping in vivo.

10.
Theranostics ; 9(24): 7210-7221, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695763

RESUMO

Suspension arrays based on optical encoded microspheres have attracted great attention for multiplexed detection in gene analysis, protein profiling, early disease diagnosis, treatment monitoring and so on. However, the fluorescence stability of barcodes and detection sensitivity require further improvement to meet the increasing demands of "precision diagnosis". Methods: This work reports a novel suspension array platform based on extremely stable AIEgens (AIE33 and AIE NIR800) microbeads as barcodes and AIEgens (1,1,2,3,4,5-Hexaphenyl-1H-silole, HPS) nanobeads as fluorescent signal reporter coupled with flow cytometry for multiplexed detection. Results: Due to the excellent fluorescent signal amplification effect of the HPS nanobeads, our multiplex assay showed enhanced detection sensitivity, compared to multiplex assay using QDs nanobeads (up to 3-fold improvement) and commercial organic dye of phycoerythrin (up to 5-fold improvement) as the fluorescent signal reporters. Conclusion: Furthermore, validating experiments showed similar detection performance to the clinical gold-standard method of ImmunoCAP for allergen detection in patient serum samples, demonstrating the suspension array platform based on AIEgens microbeads with excellent fluorescence stability and AIEgens nanobeads with strong signal amplification ability is promising for high-sensitivity multiplexed bioassay applications.

11.
Nanoscale ; 11(46): 22237-22242, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31740916

RESUMO

We developed a versatile and modular method for cytosolic protein delivery through metal ion-induced co-assembly of gold nanoclusters and proteins into supramolecular assemblies. The versatility and high efficiency of this strategy to assemble and deliver various proteins into living cells were demonstrated. Importantly, the activity of proteins was maintained during the delivery. This modular approach provides an exciting and promising new nano-platform for cytosolic protein delivery.

12.
Theranostics ; 9(23): 6867-6884, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31660074

RESUMO

The low efficiency of photodynamic therapy (PDT) is caused by tumor hypoxia and the adaptive immune resistance/evasion of tumor cells, while the currently emerging immune checkpoint therapy restores the intrinsic immune capacities but can't directly attack the tumor cells. Methods: Herein we report an integrated nanoplatform that combines PDT with immunotherapy to enhance photodynamic therapeutic effects and simultaneously inhibit tumor cells resistance/evasion. To achieve this, we fabricated Mn@CaCO3/ICG nanoparticles and loaded them with PD-L1-targeting siRNA. Results: Thanks to the protection of CaCO3 on the loaded ICG and the oxygen produced by MnO2, an enhanced photodynamic therapeutic effect in vitro was observed. In vivo experiments demonstrated that the nanoplatform could efficiently deliver the loaded drug to the tumor tissues and significantly improve tumor hypoxia, which further contributes to the therapeutic effect of PDT in vivo. Moreover, the synergistic benefits derived from the siRNA, which silenced the checkpoint gene PD-L1 that mediates the immune resistance/evasion, resulted in a surprising therapeutic effect to rouse the immune system. Conclusions: The combination treatment strategy has great potential to be developed as a new and robust method for enhanced PDT therapy with high efficiency and a powerful antitumor immune response based on PD-L1 blockade.

13.
Nanoscale ; 11(39): 18426-18435, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31576881

RESUMO

This work explored the application of matrix metalloproteinase 2-targeted superparamagnetic nanoprobes for magnetic resonance imaging (MRI), near infrared (NIR) fluorescence imaging and photodynamic therapy of tumors. PEG, PAMAM (G5) and matrix metalloproteinase 2 (MMP2) were attached to the surface of carboxylated Fe3O4 nanoparticles (NPs) using a chemical coupling method and then finally loaded with the photosensitizer chlorin e6 (Ce6). In vitro and in vivo experiments demonstrated that the Fe3O4-PEG-G5-MMP2@Ce6 nanoprobes exhibited excellent stability, precise tumor targeting and biocompatibility. Furthermore, the fluorescence properties of Fe3O4-PEG-G5-MMP2@Ce6 nanoprobes were analogous to Ce6 and could be employed for fluorescence imaging. Meanwhile, the Fe3O4-PEG-G5-MMP2@Ce6 nanoprobes have also been shown to be effective as contrast agents for T2-weighted MRI. The target molecule MMP2 enhanced the tumor targeting ability of Fe3O4-PEG-G5-MMP2@Ce6 nanoprobes. Additionally, the Fe3O4-PEG-G5-MMP2@Ce6 nanoprobes significantly inhibited tumor growth compared with PBS and free Ce6. This work will inspire greater enthusiasm for the construction of multifunctional magnetic nanoplatforms for biomedical applications.

14.
Anal Chem ; 91(21): 13562-13569, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31565925

RESUMO

The emergence and ongoing spread of multidrug-resistant (MDR) bacteria is a major global public health threat. MDR has extensively combated the potency of antibiotics. Development of new antibiotics requires several years with prohibitive cost that will not last. An alternative solution is to recombine failed antibiotics, which has been proven to be not only cost-effective, but also potent. However, selection of the optimal combinations of these chemicals through conventional trial-and-error methods is challenging and slow, since M candidates with N doses lead to NM possible combinations. Herein, we present a artificial intelligence (AI) guided chemical combination optimization technique, namely Streamlined Rapid Identification of Combinatorial Therapies (STRICT), which is phenotype based and can efficiently learn and identify the optimal drug-combinations with minimal experimental efforts. With the guidance of STRICT, we successfully identified potent combinations of five antibiotics from 26 antibiotics that are individually ineffective at inhibiting an artificially induced strain of MDR bacteria. Rather than examine millions of tests, STRICT accomplished this task with only 120 carefully selected tests. Our results indicate that STRICT is a powerful platform to identify efficacious multiantibiotic combinations for the treatment of MDR bacteria. The AI-guided platform introduced here is an effective tool for drug repurposing, beneficial toward large-scale drug screening for other disease models, and also has a broad application in chemical combination optimization to deliver a desired end point for a complex system.

15.
Small ; : e1903916, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31663295

RESUMO

Exosomes are secreted by most cell types and circulate in body fluids. Recent studies have revealed that exosomes play a significant role in intercellular communication and are closely associated with the pathogenesis of disease. Therefore, exosomes are considered promising biomarkers for disease diagnosis. However, exosomes are always mixed with other components of body fluids. Consequently, separation methods for exosomes that allow high-purity and high-throughput separation with a high recovery rate and detection techniques for exosomes that are rapid, highly sensitive, highly specific, and have a low detection limit are indispensable for diagnostic applications. For decades, many exosome separation and detection techniques have been developed to achieve the aforementioned goals. However, in most cases, these two techniques are performed separately, which increases operation complexity, time consumption, and cost. The emergence of microfluidics offers a promising way to integrate exosome separation and detection functions into a single chip. Herein, an overview of conventional and microfluidics-based techniques for exosome separation and detection is presented. Moreover, the advantages and drawbacks of these techniques are compared.

16.
Opt Express ; 27(18): 25647-25655, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510433

RESUMO

We experimentally demonstrated a corrugated metallic metasurface based tunable perfect absorber for terahertz (THz) frequencies in a total internal reflection geometry. The absorbance is strongly depend on the central layer of this three-layer absorber, which provides a feasible approach to tune the absorption. In particular, there exist an optimal gap that enables a perfect absorption at specific frequency. Due to the simple 1D geometric structure of metasurface, its absorption frequency can be easily tailored over a wide frequency range (0.625-1.499 THz). More importantly, the modulation of the effective refractive index and loss of medium environment can be accepted as an alternative approach for the absorption properties modulation. This prism coupling absorber provides a new route for modulation of the absorption characteristics with potential applications in biological sensing.

17.
Analyst ; 144(20): 6108-6117, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31532409

RESUMO

There is an increasing urge to investigate facile solutions for monitoring biotoxins, which are a major concern in both the food safety and the anti-terrorism fields. Current techniques, such as immunochromatographic tests (ICT), enzyme-linked immunosorbent assay (ELISA) and mass spectrometry, are still insufficient to satisfy the needs for fast, label-free, and ultra-sensitive detection. Herein, a single-molecular, label-free detection method based on atomic force microscopy was employed to solve the abovementioned problem via a photo-induced force spectrum; typically, three important biotoxins, i.e. abrin toxin (ABR), ricin toxin (RT) and Clostridium perfringens exotoxin (ETX), were used for the demonstration of single molecule detection. The photo-induced force spectrum could be successfully obtained for each of the single protein particles with molecular weights down to 30 kDa. Furthermore, principal component analysis (PCA) was applied for each protein, resulting in a standard PCA identification database. Then, individual components in a mixture of these toxin proteins were well distinguished from each other via matching with the as-built database. Using this strategy, PiFM not only could be used as a powerful tool for single protein detection, but could also be used as a potential tool in protein structural analysis.

18.
Acta Biomater ; 99: 307-319, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31513911

RESUMO

Gold nanoprisms (GNPs) have been broadly studied for the potential applications in both imaging and treatment on tumors due to their special characteristics. Herein we reported that a new nanoplatform GNPs@PSS/PDADMAC-siRNA (GNPs-siRNA) was designed and fabricated by sequentially coating the GNPs with poly (sodium 4-styrenesulfonate) (PSS) and poly (-diallyldimethylammonium chloride) (PDADMAC) to carry small interfering RNA (siRNA). Human program death-ligand 1 (PD-L1) was recently known to be crucial for cancer cell survival through the intrinsic signaling activities, besides serving as an important checkpoint gene in immune system. We successfully attached the human PD-L1 siRNA to the surface of GNPs@PSS/PDADMAC to obtain the GNPs-hPD-L1 siRNA nanoplatform. Real Time Cellular Analysis (RTCA) assay demonstrated that GNPs-hPD-L1 siRNA exhibited remarkable capacity to inhibit the proliferation of human lung cancer cells. Subsequent in vitro and in vivo experiments verified that the GNPs-hPD-L1 siRNA not only functioned as a carrier for siRNA delivery to down-regulate the hPD-L1 expression, but also served for photoacoustic (PA) imaging and photothermal agents for photothermal therapy (PTT) in both human lung cancer cells and human lung cancer cells-derived tumors. Our findings could be expected to provide an innovative direction for future clinical transformation application. STATEMENT OF SIGNIFICANCE: To our knowledge, this is the first paper related to the hPD-L1 siRNA delivery combined with the gold nanoparticles, especially the gold nanoprisms. The as-prepared GNPs-hPD-L1 siRNA nanoplatform not only functioned as a carrier for siRNA delivery to down-regulate the PD-L1 expression, but also acted as photothermal agents for theranostic effects in both human lung cancer cells and human lung cancer cells-derived tumors. The as-prepared GNPs-hPD-L1 siRNA nanoplatform could knock down human PD-L1 gene expression, which caused the inhibition on proliferation of human lung cancer cell in vitro or in vivo. The as-prepared GNPs-hPD-L1 siRNA nanoplatform possessed excellent photoacoustic imaging ability and photothermal therapy effects.

19.
Angew Chem Int Ed Engl ; 58(42): 14974-14978, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31410962

RESUMO

A nanoemulsion with a porphyrin shell (NewPS) was created by the self-assembly of porphyrin salt around an oil core. The NewPS system has excellent colloidal stability, is amenable to different porphyrin salts and oils, and is capable of co-loading with chemotherapeutics. The porphyrin salt shell enables porphyrin-dependent optical tunability. The NewPS consisting of pyropheophorbide a mono-salt has a porphyrin shell of ordered J-aggregates, which produced a narrow, red-shifted Q-band with increased absorbance. Upon nanostructure dissociation, the fluorescence and photodynamic reactivity of the porphyrin monomers are restored. The spectrally distinct photoacoustic imaging (at 715 nm by intact NewPS) and fluorescence increase (at 671 nm by disrupted NewPS) allow the monitoring of NewPS accumulation and disruption in mice bearing KB tumors to guide effective photodynamic therapy. Substituting the oil core with Lipiodol affords additional CT contrast, whereas loading paclitaxel into NewPS facilitates drug delivery.

20.
Analyst ; 144(19): 5659-5676, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31417996

RESUMO

Lateral flow immunoassay (LFIA) is a critical choice for applications of point-of-care testing (POCT) in clinical and laboratory environments because of its excellent features and versatility. To obtain authentic values of analyte concentrations and reliable detection results, the relevant research has featured the application of a diversity of methods of mathematical analysis to technical analysis to allow for use with a small quantity of data. Accordingly, a number of signal and image processing strategies have also emerged for the application of gold immunochromatographic and fluorescent strips to improve sensitivity and overcome the limitations of correlative hardware systems. Instead of traditional methods to solve the problem, researchers nowadays are interested in machine learning and its more powerful variant, deep learning technology, for LFIA detection. This review emphasizes different models for the POCT of accurate labels as well as signal processing strategies that use artificial intelligence and machine learning. We focus on the analytical mechanism, procedural flow, and the results of the assay, and conclude by summarizing the advantages and limitations of each algorithm. We also discuss the potential for application of and directions of future research on LFIA technology when combined with Artificial Intelligence and deep learning.


Assuntos
Algoritmos , Imunoensaio/métodos , Modelos Teóricos , Técnicas Biossensoriais/métodos , Cromatografia de Afinidade/métodos , Humanos , Testes Imediatos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA