Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(16): 9636-9645, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31347357

RESUMO

California methane (CH4) emissions are quantified for three years from two tower networks and one aircraft campaign. We used backward trajectory simulations and a mesoscale Bayesian inverse model, initialized by three inventories, to achieve the emission quantification. Results show total statewide CH4 emissions of 2.05 ± 0.26 (at 95% confidence) Tg/yr, which is 1.14 to 1.47 times greater than the anthropogenic emission estimates by California Air Resource Board (CARB). Some of differences could be biogenic emissions, superemitter point sources, and other episodic emissions which may not be completely included in the CARB inventory. San Joaquin Valley (SJV) has the largest CH4 emissions (0.94 ± 0.18 Tg/yr), followed by the South Coast Air Basin, the Sacramento Valley, and the San Francisco Bay Area at 0.39 ± 0.18, 0.21 ± 0.04, and 0.16 ± 0.05 Tg/yr, respectively. The dairy and oil/gas production sources in the SJV contribute 0.44 ± 0.36 and 0.22 ± 0.23 Tg CH4/yr, respectively. This study has important policy implications for regulatory programs, as it provides a thorough multiyear evaluation of the emissions inventory using independent atmospheric measurements and investigates the utility of a complementary multiplatform approach in understanding the spatial and temporal patterns of CH4 emissions in the state and identifies opportunities for the expansion and applications of the monitoring network.


Assuntos
Poluentes Atmosféricos , Metano , Aeronaves , Teorema de Bayes , California , São Francisco
2.
Environ Sci Technol ; 52(13): 7360-7370, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29870662

RESUMO

Recent studies suggest overestimates in current U.S. emission inventories of nitrogen oxides (NO x = NO + NO2). Here, we expand a previously developed fuel-based inventory of motor-vehicle emissions (FIVE) to the continental U.S. for the year 2013, and evaluate our estimates of mobile source emissions with the U.S. Environmental Protection Agency's National Emissions Inventory (NEI) interpolated to 2013. We find that mobile source emissions of NO x and carbon monoxide (CO) in the NEI are higher than FIVE by 28% and 90%, respectively. Using a chemical transport model, we model mobile source emissions from FIVE, and find consistent levels of urban NO x and CO as measured during the Southeast Nexus (SENEX) Study in 2013. Lastly, we assess the sensitivity of ozone (O3) over the Eastern U.S. to uncertainties in mobile source NO x emissions and biogenic volatile organic compound (VOC) emissions. The ground-level O3 is sensitive to reductions in mobile source NO x emissions, most notably in the Southeastern U.S. and during O3 exceedance events, under the revised standard proposed in 2015 (>70 ppb, 8 h maximum). This suggests that decreasing mobile source NO x emissions could help in meeting more stringent O3 standards in the future.


Assuntos
Poluentes Atmosféricos , Ozônio , Óxidos de Nitrogênio , Sudeste dos Estados Unidos , Emissões de Veículos
3.
Science ; 359(6377): 760-764, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29449485

RESUMO

A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)-including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products-now constitutes half of fossil fuel VOC emissions in industrialized cities. The high fraction of VCP emissions is consistent with observed urban outdoor and indoor air measurements. We show that human exposure to carbonaceous aerosols of fossil origin is transitioning away from transportation-related sources and toward VCPs. Existing U.S. regulations on VCPs emphasize mitigating ozone and air toxics, but they currently exempt many chemicals that lead to secondary organic aerosols.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Exposição Ambiental , Hidrocarbonetos/efeitos adversos , Compostos Orgânicos Voláteis/efeitos adversos , Poluentes Atmosféricos/análise , Ácido Dioctil Sulfossuccínico , Humanos , Hidrocarbonetos/análise , Estados Unidos , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA