Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 915
Filtrar
1.
J Am Chem Soc ; 145(38): 20897-20906, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37721427

RESUMO

Transition metal-layered hydroxides have been extensively studied in order to address the key challenge of slow kinetics of the oxygen evolution reaction (OER). However, how the catalytically active sites are evolved and the corresponding heterogeneous structure-property relationship remain unclear. Herein, using cobalt-layered hydroxide as a representative catalyst, we report a strategy for the comprehensive in situ investigation of the electrocatalytic OER process at the single electrocatalyst level using combined electrochemiluminescence (ECL) and vis-absorption microscopy. The stepwise heterogeneous electrocatalytic responses of single-cobalt hydroxide nanoplates are unveiled with ECL imaging, and the corresponding valence state changes are revealed by vis-absorption imaging. The correlated in situ and ex situ multimode analyses indicate that, during the oxidation process, the Co2+ cations in the tetrahedral sites (CoTd2+) turned into CoTd3+ and even the highly unstable CoTd4+, assisted by the interlayer water in a metastable CoOOH·xH2O phase. Crucially, the CoTd4+ sites are mainly distributed in the inner part of the nanoplates and show superior electrocatalytic properties. The correlative single-particle imaging approach for electrocatalytic process analysis with high spatiotemporal and chemical resolution enables in-depth mechanistic insights to be generated and, in turn, will benefit the rational design of electrocatalysts with enhanced performance.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37728675

RESUMO

As a sustainable management of fossil fuel resources and ecological environment protection, recycling used lubricating oil has received widespread attention. However, large amounts of waste lubricating-oil regeneration wastewater (WLORW) are inevitably produced in the recycling process, and challenges are faced by traditional biological treatment of WLORW. Thus, this study investigated the effectiveness of electrocoagulation (EC) as pretreatment and its removal mechanism. The electrolysis parameters (current density, initial pH, and inter-electrode distance) were considered, and maximal 60.06% of oil removal was achieved at a current density of 15 mA/cm2, initial pH of 7, and an inter-electrode distance of 2 cm. The dispersed oil of WLORW was relatively easily removed, and most of the oil removal was contributed by emulsified oil within 5-10 µm. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that effective removal of the biorefractory organic compounds could contribute to the improvement of biodegradability of WLORW. Thus, the 5-day biochemical oxygen demand/chemical oxygen demand ratio (BOD5/COD) was significantly enhanced by 4.31 times, which highly benefits future biological treatment. The routes of WLORW removal could be concluded as charge neutralization, adsorption bridging, sweep flocculation, and air flotation. The results demonstrate that EC has potential as an effective pretreatment technology for WLORW biological treatment.

4.
CNS Neurosci Ther ; 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37664879

RESUMO

AIMS: A post hoc analysis of RICAMIS trial to evaluate functional outcomes in relation to patient age. METHODS: Patients in RICAMIS were divided into six age groups. The primary outcome was excellent functional outcome at 90 days, defined as modified Rankin Scale (mRS) score of 0-1. Compared with patients receiving usual care alone, we investigated the association of remote ischemic conditioning (RIC) effect with functional outcomes in each group and the interaction between RIC effect and age. RESULTS: Of 1776 patients, 498 were assigned to <60 years, 326 to 60 to <65 years, 325 to 65 to <70 years, 278 to 70 to <75 years, 206 to 75 to <80 years, and 143 to ≥80 years. Higher proportions of primary outcome were found associated with RIC in <60 years group (72.6% vs. 64.8%; adjusted risk difference [RD], 6.8%; 95% CI, -1.6% to 15.1%; p = 0.11), 60 to <65 years group (70.7% vs. 67.1%; adjusted RD, 3.1%; 95% CI, -7.2% to 13.3%; p = 0.56), 65 to <70 years group (70.5% vs. 63.6%; adjusted RD, 3.5%; 95% CI, -6.8% to 13.8%; p = 0.51), 70 to <75 years group (59.7% vs. 54.9%; adjusted RD, 4.7%; 95% CI, -7.1% to 16.4%; p = 0.61), 75 to <80 years group (61.5% vs. 55.9%; adjusted RD, 5.7%; 95% CI, -7.8% to 19.1%; p = 0.41), and ≥ 80 years group (59.2% vs. 59.7%; adjusted RD, -2.6%; 95% CI, -18.8% to 13.5%; p = 0.75). No significant interaction between RIC effect and age was found among groups. CONCLUSIONS: This is the first report that RIC effect may be attenuated with increasing age in patients with acute moderate ischemic stroke with respect to functional outcome.

5.
Front Immunol ; 14: 1223433, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662925

RESUMO

Three rat sarcoma (RAS) gene isoforms, KRAS, NRAS, and HRAS, constitute the most mutated family of small GTPases in cancer. While the development of targeted immunotherapies has led to a substantial improvement in the overall survival of patients with non-KRAS-mutant cancer, patients with RAS-mutant cancers have an overall poorer prognosis owing to the high aggressiveness of RAS-mutant tumors. KRAS mutations are strongly implicated in lung, pancreatic, and colorectal cancers. However, RAS mutations exhibit diverse patterns of isoforms, substitutions, and positions in different types of cancers. Despite being considered "undruggable", recent advances in the use of allele-specific covalent inhibitors against the most common mutant form of RAS in non-small-cell lung cancer have led to the development of effective pharmacological interventions against RAS-mutant cancer. Sotorasib (AMG510) has been approved by the FDA as a second-line treatment for patients with KRAS-G12C mutant NSCLC who have received at least one prior systemic therapy. Other KRAS inhibitors are on the way to block KRAS-mutant cancers. In this review, we summarize the progress and promise of small-molecule inhibitors in clinical trials, including direct inhibitors of KRAS, pan-RAS inhibitors, inhibitors of RAS effector signaling, and immune checkpoint inhibitors or combinations with RAS inhibitors, to improve the prognosis of tumors with RAS mutations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Alelos , Inibidores de Checkpoint Imunológico , Imunoterapia
6.
J Chem Phys ; 159(11)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37721329

RESUMO

The formation of angulon, stemming from the rotor (molecule or impurity), rotating in the quantum many-body field, adds a new member to the quasi-particles' family and has aroused intense interest in multiple research fields. However, the analysis of the coupling strength between the rotor and its hosting environment remains a challenging task, both in theory and experiment. Here, we develop the all-coupling theory of the angulon by introducing a unitary transformation, where the renormalization of the rotational constants for different molecules in the helium nanodroplets is reproduced, getting excellent agreement with the experimental data collected during the past decades. Moreover, the strength of molecule-helium coupling and the effective radius of the solvation shell co-rotating along with the molecular rotor could be estimated qualitatively. This model not only provides significant enlightenment for analyzing the rotational spectroscopy of molecules in the phononic environment, but also provides a new method to study the transfer of the phonon angular momentum in the angulon frame.

7.
BMC Anesthesiol ; 23(1): 285, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608299

RESUMO

BACKGROUND: Hypokalemia is common in patients of various operations, especially gastrointestinal surgery, which seriously affects the safety and enhanced recovery after surgery. Our study aims to explore the risk factors of preoperative hypokalemia of radical gastrectomy for gastric cancer and analyze its impact on postoperative recovery. METHODS: A total of 122 patients scheduled for radical gastrectomy from September, 2022 to December, 2022 were retrospectively analyzed. According to the serum potassium level before skin incision, patients were divided into hypokalemia group (n = 64) and normokalemia group (n = 58). Factors including age, gender, BMI, ASA classification, glutamic pyruvic transaminase (ALT), glutamic oxaloacetic transaminase (AST), creatinine, blood urea nitrogen (BUN), albumin, hypertension history, whether taking calcium channel blockers, ß-receptor blockers, angiotensin converting enzyme inhibitors (ACEI) or angiotensin receptor antagonist (ARB), thiazide diuretics and other drugs, anemia history, diabetes mellitus history, inability to eat or intestinal obstruction, vomiting, diarrhea, hypokalemia on admission and whether under cooperation with clinical nurse specialist were compared between groups. Univariate logistic regression analysis was used to determine risk factors for hypokalemia with p < 0.2 included as a cutoff. Multivariate logistic regression was used to analyze the influencing factors of preoperative hypokalemia for the indicators with differences. A receiver operating characteristic (ROC) curve was used to evaluate the efficacy of the regression model. Primary exhaust time and defecation time after surgery were compared between the two groups. RESULTS: The use of ACEI or ARB [OR 0.08, 95% CI (0.01 to 0.58), p = 0.012] and thiazide diuretics [OR 8.31, 95% CI (1.31 to 52.68), p = 0.025], inability to eat for more than 3 days or intestinal obstruction [OR 17.96, 95% CI (2.16 to 149.43), p = 0.008], diarrhea for more than 48 h [OR 6.21, 95% CI (1.18 to 32.61), p = 0.031] and hypokalemia on admission [OR 8.97, 95% CI (1.05 to 77.04), p = 0.046] were independent influencing factors of hypokalemia before skin incision. Primary postoperative exhaust time and defecation time was significantly longer in the hypokalemia group than in the normokalemia group, no matter after laparoscopic radical gastrectomy (p = 0.044, p = 0.045, respectively) or open radical gastrectomy (p = 0.033, p = 0.019, respectively). CONCLUSION: Early attention and management of serum potassium in patients undergoing radical gastrectomy can better reduce perioperative adverse reactions and promote recovery of gastrointestinal function.


Assuntos
Hipopotassemia , Humanos , Hipopotassemia/epidemiologia , Estudos Retrospectivos , Antagonistas de Receptores de Angiotensina , Inibidores de Simportadores de Cloreto de Sódio , Inibidores da Enzima Conversora de Angiotensina , Fatores de Risco , Gastrectomia/efeitos adversos , Diarreia , Potássio
8.
Adv Sci (Weinh) ; : e2302880, 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37635171

RESUMO

The imbalanced carrier mobility remains a bottleneck for performance breakthrough in even those organic solar cells (OSCs) with recorded power conversion efficiencies (PCEs). Herein, a counter electrode doping strategy is proposed to reshape the internal potential distribution, which targets to extract the low mobility carriers at far end. Device simulations reveal that the key of this strategy is to partially dope the active layer with a certain depth, therefore it strengthens the electric field for low mobility carriers near counter electrode region while avoids zeroing the electric field near collection electrode region. Taking advantage of these, PCE enhancements are obtained from 15.4% to 16.2% and from 16.9% to 18.0%, respectively, via cathode p-doping and anode n-doping. Extending its application from opaque to semitransparent devices, the PCE of dilute cell rises from 10.5% to 12.1%, with a high light utilization efficiency (LUE) of 3.5%. The findings provide practical solutions to the core device physical problem in OSCs.

9.
Biomaterials ; 301: 122263, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37549506

RESUMO

The in-situ generation of therapeutic agents in targeted lesions is promising for revolutionizing oncotherapy but is limited by the low production efficiency. Given the specific tumor microenvironment (TME) of colorectal cancer (CRC), i.e., mild acidity, overexpressed H2O2, glutathione (GSH) and H2S, we develop phycocyanin (PC) encapsulated PZTC/SS/HA nanocapsules (NCs) for TME-responsive, protein-assisted "turn-on'' therapy of CRC. The NCs are prepared by sequentially assembling Cu2+-tannic acid (TA) coordination shell, disulfide bond-bearing cross-linker, and hyaluronic acid (HA) on the sacrificial template ZIF-8, thus achieving pH-, GSH-responsiveness, and tumor targeting capability, respectively. Once reaching the CRC sites, the NCs can quickly disintegrate and release Cu2+ and PC, accompanied by subsequent endogenous H2S-triggered generation of copper sulfide (CuS). Significantly, the intracellular sulfidation process can be accelerated by PC, thereby enabling efficient photothermal therapy (PTT) under NIR-Ⅱ laser. Besides, Cu2+-associated chemodynamic therapy (CDT) can be simultaneously activated and enhanced by PTT-induced local hyperthermia and disulfide bond-induced GSH consumption. This CRC-targeted and TME-activated synergistic PTT/CDT strategy displays high therapeutic efficacy both in vitro and in vivo, which can open up a new avenue for biomolecule-assisted in-situ nanoagent generation and effective TME-responsive synergistic treatment of CRC.


Assuntos
Neoplasias Colorretais , Nanocápsulas , Nanopartículas , Neoplasias , Humanos , Ficocianina/uso terapêutico , Cobre , Peróxido de Hidrogênio , Microambiente Tumoral , Glutationa , Ácido Hialurônico , Neoplasias Colorretais/tratamento farmacológico , Dissulfetos , Linhagem Celular Tumoral
10.
Sci Rep ; 13(1): 12718, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543637

RESUMO

Diabetes mellitus (DM) has become the third chronic non-infectious disease affecting patients after tumor, cardiovascular and cerebrovascular diseases, becoming one of the major public health issues worldwide. Detection of early warning risk factors for DM is key to the prevention of DM, which has been the focus of some previous studies. Therefore, from the perspective of residents' self-management and prevention, this study constructed Bayesian networks (BNs) combining feature screening and multiple resampling techniques for DM monitoring data with a class imbalance in Shanxi Province, China, to detect risk factors in chronic disease monitoring programs and predict the risk of DM. First, univariate analysis and Boruta feature selection algorithm were employed to conduct the preliminary screening of all included risk factors. Then, three resampling techniques, SMOTE, Borderline-SMOTE (BL-SMOTE) and SMOTE-ENN, were adopted to deal with data imbalance. Finally, BNs developed by three algorithms (Tabu, Hill-climbing and MMHC) were constructed using the processed data to find the warning factors that strongly correlate with DM. The results showed that the accuracy of DM classification is significantly improved by the BNs constructed by processed data. In particular, the BNs combined with the SMOTE-ENN resampling improved the most, and the BNs constructed by the Tabu algorithm obtained the best classification performance compared with the hill-climbing and MMHC algorithms. The best-performing joint Boruta-SMOTE-ENN-Tabu model showed that the risk factors of DM included family history, age, central obesity, hyperlipidemia, salt reduction, occupation, heart rate, and BMI.


Assuntos
Algoritmos , Diabetes Mellitus , Humanos , Teorema de Bayes , Fatores de Risco , Análise Fatorial
12.
Molecules ; 28(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570753

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory disease significantly impacting patients' lives. This study aimed to elucidate the alleviating effect of ethyl acetate extract (TBEA) from Terminalia bellirica fruit on UC and to explore its mechanism. TBEA was the fraction with the best anti-inflammatory activity screened using in vitro anti-inflammatory assays, and HPLC initially characterized its composition. The mice model of ulcerative colitis was established after free drinking of 2.5% dextran sulfate sodium for six days, and the experimental group was treated with 50 mg/kg and 100 mg/kg TBEA for seven days. We found that TBEA significantly alleviated symptoms in UC mice, including a physiologically significant reduction in disease activity index and pathological damage to colonic tissue. TBEA dramatically slowed down oxidative stress and inflammatory process in UC mice, as evidenced by decreasing myeloperoxidase and malondialdehyde activities and increasing glutathione and catalase levels by reducing the concentrations of IL-6, IL-1ß, TNF-α, and NO in UC mice, as well as by regulating key proteins in the IL-6/JAK2/STAT3 pathway. Meanwhile, TBEA maintained intestinal homeostasis by regulating intestinal flora structure. Our study provides new ideas for developing TBEA into a new drug to treat UC.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Terminalia , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Citocinas/metabolismo , Terminalia/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Frutas/metabolismo , Colo/metabolismo , Anti-Inflamatórios/uso terapêutico , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colite/tratamento farmacológico
13.
RSC Adv ; 13(35): 24692-24698, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37601599

RESUMO

In order to study the relationship between the HLB value of oil and emulsion stabilization, the optimal formation of emulsification system was determined, and then, the properties of emulsion, such as particle size, stability, interfacial tension and zeta potential, were tested by laser particle analyzer, stability analyzer, and interfacial tensiometer. Experimental results showed that the optimal ratio of emulsification was Tween 80 : Span 80 = 5 : 5. Meanwhile, when the HLB value of the emulsification system was close to that of oil, the emulsion exhibited the best stability. This phenomenon is due to the fact that when the HLB values are close, the surfactant molecules are arranged more closely on the oil-water interface, leading to smaller sized emulsion droplet, which is conducive to emulsion stability. This study provides new insights into the effective adjustment of emulsion stability.

14.
J Stroke ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37608533

RESUMO

Background and Purpose: Intravenous tenecteplase (TNK) efficacy has not been well demonstrated in acute ischemic stroke (AIS) beyond 4.5 hours after onset. This study aimed to determine the effect of intravenous TNK for AIS within 4.5 to 24 hours of onset. Methods: In this pilot trial, eligible AIS patients with diffusion-weighted imaging (DWI)-fluid attenuated inversion recovery (FLAIR) mismatch were randomly allocated to intravenous TNK (0.25 mg/kg) or standard care within 4.5-24 hours of onset. The primary endpoint was excellent functional outcome at 90 days (modified Rankin Scale [mRS] score of 0-1). The primary safety endpoint was symptomatic intracranial hemorrhage (sICH). Results: Of the randomly assigned 80 patients, the primary endpoint occurred in 52.5% (21/40) of TNK group and 50.0% (20/40) of control group, with no significant difference (unadjusted odds ratio, 1.11; 95% confidence interval 0.46-2.66; P=0.82). More early neurological improvement occurred in TNK group than in control group (11 vs. 3, P=0.03), but no significant differences were found in other secondary endpoints, such as mRS 0-2 at 90 days, shift analysis of mRS at 90 days, and change in National Institutes of Health Stroke Scale score at 24 hours and 7 days. There were no cases of sICH in this trial; however, asymptomatic intracranial hemorrhage occurred in 3 of the 40 patients (7.5%) in the TNK group. Conclusion This phase 2, randomized, multicenter study suggests that intravenous TNK within 4.5-24 hours of onset may be safe and feasible in AIS patients with a DWI-FLAIR mismatch.

15.
Eur J Neurosci ; 58(5): 3330-3346, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37452630

RESUMO

Isoleucine is a branched chain amino acid. The role of isoleucine in cerebral ischemia-reperfusion injury remains unclear. Here, we show that the concentration of isoleucine is decreased in cerebrospinal fluid in a rat model of cerebral ischemia-reperfusion injury, the rat middle cerebral artery occlusion (MCAO). To our surprise, the level of intraneuronal isoleucine is increased in an in vitro model of cerebral ischemia injury, the oxygen-glucose deprivation (OGD). We found that the increased activity of LAT1, an L-type amino acid transporter 1, leads to the elevation of intraneuronal isoleucine after OGD insult. Reducing the level of intraneuronal isoleucine promotes cell survival after cerebral ischemia-reperfusion injury, but supplementing isoleucine aggravates the neuronal damage. To understand how isoleucine promotes ischemia-induced neuronal death, we reveal that isoleucine acts upstream to reduce the expression of CBFB (core binding factor ß, a transcript factor involved in cell development and growth) and that the phosphatase PTEN acts downstream of CBFB to mediate isoleucine-induced neuronal damage after OGD insult. Interestingly, we demonstrate that direct-current stimulation reduces the level of intraneuronal isoleucine in cortical cultures subjected to OGD and that transcranial direct-current stimulation (tDCS) decreases the cerebral infarct volume of MCAO rat through reducing LAT1-depencent increase of intraneuronal isoleucine. Together, these results lead us to conclude that LAT1 over activation-dependent isoleucine-CBFB-PTEN signal transduction pathway may mediate ischemic neuronal injury and that tDCS exerts its neuroprotective effect by suppressing LAT1 over activation-dependent signalling after cerebral ischemia-reperfusion injury.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Estimulação Transcraniana por Corrente Contínua , Ratos , Animais , Isoleucina/farmacologia , Neuroproteção , Isquemia Encefálica/metabolismo , Transdução de Sinais , Infarto da Artéria Cerebral Média/metabolismo , Traumatismo por Reperfusão/metabolismo , Fármacos Neuroprotetores/farmacologia , Oxigênio
16.
Mol Neurobiol ; 60(11): 6715-6730, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37477767

RESUMO

Humans exhibit a rich intestinal microbiome that contain high levels of bacteria capable of producing 3-oxo-lithocholic acid (3-oxoLCA) and other secondary bile acids (BAs). The molecular mechanism mediating the role of 3-oxoLCA in cerebral ischemia-reperfusion (I/R) injury remains unclear. We investigated the role of 3-oxoLCA in a rat cerebral I/R injury model. We found that the concentrations of 3-oxoLCA within the cerebrospinal fluid were increased following I/R. In the in vitro oxygen-glucose deprivation (OGD) model, the levels of intraneuronal 3-oxoLCA was elevated following OGD insult. We showed that the increase of membrane ASBT (apical sodium-dependent bile acid transporter) contributed to OGD-induced elevation of intraneuronal 3-oxoLCA. Increasing intraneuronal 3-oxoLCA promoted ischemia-induced neuronal death, whereas reducing 3-oxoLCA levels were neuroprotective. Our results revealed that PLOD2 (procollagen-lysine, 2-oxoglutarate 5-dioxygenases 2) functioned upstream of PTEN (the phosphatase and tensin homolog deleted on chromosome 10) and downstream of 3-oxoLCA to promote OGD-induced neuronal injury. We further demonstrated that direct-current stimulation (DCS) decreased the levels of intraneuronal 3-oxoLCA and membrane ASBT in OGD-insulted neurons, while bilateral transcranial DCS (tDCS) reduced brain infarct volume following I/R by inhibiting ASBT. Together, these data suggest that increased expression of ASBT promotes neuronal death via 3-oxoLCA-PLOD2-PTEN signaling pathway. Importantly, bilateral tDCS suppresses ischemia-induced increase of ASBT, thereby conferring neuroprotection after cerebral I/R injury.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Estimulação Transcraniana por Corrente Contínua , Humanos , Ratos , Animais , Neuroproteção , Transdução de Sinais , Isquemia Encefálica/metabolismo , Oxigênio/metabolismo , Infarto Cerebral , Glucose/metabolismo , Traumatismo por Reperfusão/metabolismo , Apoptose , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , PTEN Fosfo-Hidrolase/metabolismo
17.
Pediatr Res ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507474

RESUMO

BACKGROUND: To assess the sedative failure rate over different dose combinations of intranasal dexmedetomidine and oral midazolam for procedural sedation. METHODS: This was a retrospective study. Four groups were established according to the initial dose of sedatives. The primary outcome was the sedative failure rate for different doses of the two-drug combination. The risk factors associated with sedation failure were analyzed. RESULTS: A total of 2165 patients were included in the final analysis. Of these, 394 children were classified as sedation failure after the initial dose of a combination of intranasal dexmedetomidine and oral midazolam. Although the initial doses of intranasal dexmedetomidine and oral midazolam administered to patients varied widely, no significant differences were detected in the sedation outcomes among the groups. Multivariate analysis showed that sedation history, a history of sedation failure, and echocardiography were independent risk factors for sedation failure after an initial dose of intranasal dexmedetomidine and oral midazolam. In contrast, patients undergoing lung function and MRI were more likely to be successfully sedated. CONCLUSION: A combination of low-dose intranasal dexmedetomidine and oral midazolam provides adequate sedation efficacy without any increase in side effects, especially for patients undergoing MRI or lung function examination. IMPACT: This is an original article about the risk factors of sedation failure with an initial dose of intranasal dexmedetomidine and oral midazolam for procedure sedation. For patients undergoing echocardiogram, it is better to choose other sedatives, while a combination of intranasal dexmedetomidine and oral midazolam is a good option for patients undergoing MRI or lung function. The selection of sedative drugs should be personalized according to different procedures.

18.
Adv Mater ; : e2304414, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515580

RESUMO

Structural engineering of nanomaterials offers a promising way for developing high-performance catalysts towards catalysis. However, the delicate modulation of thermodynamically unfavorable nanostructures with unconventional phases still remains a challenge. Here, we report the synthesis of hierarchical AuCu nanostructures with hexagonal close-packed (2H-type)/face-centered cubic (fcc) heterophase, high-index facets, planar defects (e.g., stacking faults, twin boundaries, and grain boundaries), and tunable Cu content. The obtained 2H/fcc Au99 Cu1 hierarchical nanosheets exhibit excellent performance for the electrocatalytic CO2 reduction to produce CO, outperforming the 2H/fcc Au91 Cu9 and fcc Au99 Cu1 . Our experimental results, especially those obtained by in situ differential electrochemical mass spectroscopy and attenuated total reflection Fourier-transform infrared spectroscopy, suggest that the enhanced catalytic performance of 2H/fcc Au99 Cu1 arises from the unconventional 2H/fcc heterophase, high-index facets, planar defects, and appropriate alloying of Cu. Impressively, the 2H/fcc Au99 Cu1 shows CO Faradaic efficiencies of 96.6% and 92.6% at industrial current densities of 300 mA cm-2 and 500 mA cm-2 , respectively, as well as good durability, placing it among the best CO2 reduction electrocatalysts for CO production. Our atomically structural regulation based on phase engineering of nanomaterials (PEN) provides an avenue for the rational design and preparation of high-performance electrocatalysts for various catalytic applications. This article is protected by copyright. All rights reserved.

19.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298102

RESUMO

Heterosis is a complex biological phenomenon regulated by genetic variations and epigenetic changes. However, the roles of small RNAs (sRNAs), an important epigenetic regulatory element, on plant heterosis are still poorly understood. Here, an integrative analysis was performed with sequencing data from multi-omics layers of maize hybrids and their two homologous parental lines to explore the potential underlying mechanisms of sRNAs in plant height (PH) heterosis. sRNAome analysis revealed that 59 (18.61%) microRNAs (miRNAs) and 64,534 (54.00%) 24-nt small interfering RNAs (siRNAs) clusters were non-additively expressed in hybrids. Transcriptome profiles showed that these non-additively expressed miRNAs regulated PH heterosis through activating genes involved in vegetative growth-related pathways while suppressing those related to reproductive and stress response pathways. DNA methylome profiles showed that non-additive methylation events were more likely to be induced by non-additively expressed siRNA clusters. Genes associated with low-parental expression (LPE) siRNAs and trans-chromosomal demethylation (TCdM) events were enriched in developmental processes as well as nutrients and energy metabolism, whereas genes associated with high-parental expression (HPE) siRNAs and trans-chromosomal methylation (TCM) events were gathered in stress response and organelle organization pathways. Our results provide insights into the expression and regulation patterns of sRNAs in hybrids and help to elucidate their potential targeting pathways contributing to PH heterosis.


Assuntos
Vigor Híbrido , MicroRNAs , Vigor Híbrido/genética , Zea mays/genética , Zea mays/metabolismo , Multiômica , Transcriptoma , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Hibridização Genética
20.
J Colloid Interface Sci ; 648: 527-534, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37307609

RESUMO

Sodium ion batteries (SIBs) attract most of the attention as alterative secondary battery systems for future large-scale energy storage and power batteries due to abundance resource and low cost. However, the lack of anode materials with high-rate performance and high cycling-stability has limited the commercial application of SIBs. In this paper, Cu7.2S4@N, S co-doped carbon (Cu7.2S4@NSC) honeycomb-like composite structure was designed and prepared by a one-step high-temperature chemical blowing process. As an anode material for SIBs, Cu7.2S4@NSC electrode exhibited an ultra-high initial Coulomb efficiency (94.9%) and an excellent electrochemical property including a high reversible capacity of 441.3 mAh g-1 after 100 cycles at 0.2 A g-1, an excellent rate performance of 380.4 mAh g-1 even at 5 A g-1, and a superior long-cycle stability with a capacity retention rate of approximately 100% after 700 cycles at 1A g-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...