Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32011149

RESUMO

Synthetic nano- and micromotors interact with each other and their surroundings in a complex manner. Here, we report on the anisotropy of active-passive particle interaction in a soft matter system containing an immobile yet photochemical Ag/AgCl-based Janus particle embedded in a dense matrix of passive beads in pure water. The asymmetry in the chemical gradient around the Janus particle, triggered upon visible light illumination, distorts the isotropy of the surrounding electric potential and results in the repulsion of adjacent passive beads to a certain distance away from the Janus particle. This exclusion effect is found to be anisotropic with larger distances to passive beads in front of the Ag/AgCl cap of the Janus particle. We provide insight into this phenomenon by performing the angular analysis of the radii of exclusion and tracking their time evolution at the level of a single bead. Our study provides a novel fundamental insight into the collective behavior of a complex mixture of active and passive particles and is relevant for various application scenarios, e.g., particle transport at micro- and nanoscale and local chemical sensing.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32039541

RESUMO

Despite the recent progress in the synthesis of crystalline boronate ester covalent organic frameworks (BECOFs) in powder and thin-film through solvothermal method and on-solid-surface synthesis, respectively, their applications in electronics, remain less explored due to the challenges in thin-film processability and device integration associated with the control of film thickness, layer orientation, stability and crystallinity. Moreover, although the crystalline domain sizes of the powder samples can reach micrometer scale (up to ≈1.5 µm), the reported thin-film samples have so far rather small crystalline domains up to 100 nm. Here we demonstrate a general and efficient synthesis of crystalline two-dimensional (2D) BECOF films composed of porphyrin macrocycles and phenyl or naphthyl linkers (named as 2D BECOF-PP or 2D BECOF-PN) by employing a surfactant-monolayer-assisted interfacial synthesis (SMAIS) on the water surface. The achieved 2D BECOF-PP is featured as free-standing thin film with large single-crystalline domains up to ≈60 µm2 and tunable thickness from 6 to 16 nm. A hybrid memory device composed of 2D BECOF-PP film on silicon nanowire-based field-effect transistor is demonstrated as a bio-inspired system to mimic neuronal synapses, displaying a learning-erasing-forgetting memory process.

3.
Nanotechnology ; 31(20): 205603, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31958787

RESUMO

The present study describes a novel antimicrobial surface using anodic oxidation of titanium and biofunctional detonation nanodiamonds (ND). ND have been loaded with antibiotics (amoxicillin or ampicillin) using poly(diallyldimethylammonium chloride) (PDDA). Successful conjugation with PDDA was determined by dynamic light scattering, which showed increase in the hydrodynamic diameter of ND agglomerates and shift of zeta potential towards positive values. The surface loading of amoxicillin was determined using UV-vis spectroscopy and the maximum of 44% surface loading was obtained. Biofunctional ND were immobilized by anodic oxidation within a titanium oxide layer, which was confirmed by scanning electron microscopy. The in vitro antimicrobial properties of ND suspensions were examined using Kirby-Bauer test with E. coli. Modified titanium surfaces comprising biofunctional ND were evaluated with E. coli inoculum by live/dead assay staining. Both biofunctional ND suspensions and modified titanium surfaces presented inhibition of bacteria growth and increase in bacteria lethality.

4.
J Mater Chem B ; 8(1): 155-160, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31782469

RESUMO

Oxytocin is a peptide hormone with high affinity to both Zn2+ and Cu2+ ions compared to other metal ions. This affinity makes oxytocin an attractive recognition layer for monitoring the levels of these essential ions in biofluids. Native oxytocin cannot differentiate between Cu2+ and Zn2+ ions and hence it is not useful for sensing Zn2+ in the presence of Cu2+. We elucidated the effect of the terminal amine group of oxytocin on the affinity toward Cu2+ using theoretical calculations. We designed a new Zn2+ selective oxytocin-based biosensor that utilizes the terminal amine for surface anchoring, also preventing the response to Cu2+. The biosensor shows exceptional selectivity and very high sensitivity to Zn2+ in impedimetric biosensing. This study shows for the first time an oxytocin derived sensor that can be used directly for sensing Zn2+ in the presence of Cu2+.

5.
ACS Nano ; 14(1): 1011-1017, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31829618

RESUMO

The acene series represents a model system to investigate the intriguing electronic properties of extended π-electron structures in the one-dimensional limit, which are important for applications in electronics and spintronics and for the fundamental understanding of electronic transport. Here, we present the on-surface generation of the longest acene obtained so far: dodecacene. Scanning tunneling spectroscopy gives access to the energy position and spatial distribution of its electronic states on the Au(111) surface. We observe that, after a progressive closing of the gap and a stabilization to about 1 eV at the length of decacene and undecacene, the energy gap of dodecacene unexpectedly increases to 1.4 eV. Considering the acene series as an exemplary general case, we discuss the evolution with length of the single tunneling resonances in comparison with ionization energy, electronic affinity, and optical gap.

6.
Phys Chem Chem Phys ; 21(43): 24007-24016, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31646309

RESUMO

Flavin mononucleotide sodium (FMNS) was recently reported as a highly efficient dispersant for the exfoliation of defect-free, few-layer, stabilized aqueous graphene dispersions. Most importantly, FMNS is innocuous and eco-friendly and can facilitate biomedical applications of graphene. Complementing those experimental studies, the influence of FMNS molecules on the aggregation behavior of graphene flakes in solution is investigated via all-atom molecular dynamics simulations. The stabilizing role of FMNS is demonstrated by the potential of mean force calculations for pairs of graphene flakes covered by FMNS molecules. These results indicate that the optimal amount ratio between FMNS molecules and carbon atoms in monolayer graphene is about 0.026 leading to a surface coverage of 0.34 FMNS molecules per nm2 on the graphene flakes. Overall the simulations support the high efficiency of FMNS as a surfactant compared to other surfactants.

7.
Nat Commun ; 10(1): 4225, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31548543

RESUMO

Engineering conducting polymer thin films with morphological homogeneity and long-range molecular ordering is intriguing to achieve high-performance organic electronics. Polyaniline (PANI) has attracted considerable interest due to its appealing electrical conductivity and diverse chemistry. However, the synthesis of large-area PANI thin film and the control of its crystallinity and thickness remain challenging because of the complex intermolecular interactions of aniline oligomers. Here we report a facile route combining air-water interface and surfactant monolayer as templates to synthesize crystalline quasi-two-dimensional (q2D) PANI with lateral size ~50 cm2 and tunable thickness (2.6-30 nm). The achieved q2D PANI exhibits anisotropic charge transport and a lateral conductivity up to 160 S cm-1 doped by hydrogen chloride (HCl). Moreover, the q2D PANI displays superior chemiresistive sensing toward ammonia (30 ppb), and volatile organic compounds (10 ppm). Our work highlights the q2D PANI as promising electroactive materials for thin-film organic electronics.

8.
Adv Sci (Weinh) ; 6(15): 1900522, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31406669

RESUMO

In the pool of nanostructured materials, silicon nanostructures are known as conventionally used building blocks of commercially available electronic devices. Their application areas span from miniaturized elements of devices and circuits to ultrasensitive biosensors for diagnostics. In this Review, the current trends in the developments of silicon nanowire-based devices are summarized, and their functionalities, novel architectures, and applications are discussed from the point of view of analog electronics, arisen from the ability of (bio)chemical gating of the carrier channel. Hybrid nanowire-based devices are introduced and described as systems decorated by, e.g., organic complexes (biomolecules, polymers, and organic films), aimed to substantially extend their functionality, compared to traditional systems. Their functional diversity is explored considering their architecture as well as areas of their applications, outlining several groups of devices that benefit from the coatings. The first group is the biosensors that are able to represent label-free assays thanks to the attached biological receptors. The second group is represented by devices for optoelectronics that acquire higher optical sensitivity or efficiency due to the specific photosensitive decoration of the nanowires. Finally, the so-called new bioinspired neuromorphic devices are shown, which are aimed to mimic the functions of the biological cells, e.g., neurons and synapses.

9.
Nanoscale ; 11(41): 19408-19421, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31386739

RESUMO

Nanosystems are able to enhance bone regeneration, a complex process requiring the mutual interplay between immune and skeletal cells. Activated monocytes can communicate pro-osteogenic signals to mesenchymal stem cells and promote osteogenesis. Thus, the activation of monocytes is a promising strategy to improve bone regeneration. Nanomaterials specifically selected to provoke immune-mediated bone formation are still missing. As a proof of concept, we apply here the intrinsic immune-characteristics of graphene oxide (GO) with the well-recognized osteoinductive capacity of calcium phosphate (CaP) in a biocompatible nanomaterial called maGO-CaP (monocytes activator GO complexed with CaP). In the presence of monocytes, the alkaline phosphatase activity and the expression of osteogenic markers increased. Studying the mechanisms of action, we detected an up-regulation of Wnt and BMP signaling, two key osteogenic pathways. The role of the immune activation was evidenced by the over-production of oncostatin M, a pro-osteogenic factor produced by monocytes. Finally, we tested the pro-osteogenic effects of maGO-CaP in vivo. maGO-CaP injected into the tibia of mice enhanced local bone mass and the bone formation rate. Our study suggests that maGO-CaP can activate monocytes to enhance osteogenesis ex vivo and in vivo.

10.
Langmuir ; 35(34): 11114-11122, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31361147

RESUMO

Peptides are very common recognition entities that are usually attached to surfaces using multistep processes. These processes require modification of the native peptides and of the substrates. Using functional groups in native peptides for their assembly on surfaces without affecting their biological activity can facilitate the preparation of biosensors. Herein, we present a simple single-step formation of native oxytocin monolayer on gold surface. These surfaces were characterized by atomic force spectroscopy, spectroscopic ellipsometry, and X-ray photoelectron spectroscopy. We took advantage of the native disulfide bridge of the oxytocin for anchoring the peptide to the Au surface, while preserving the metal-ion binding properties. Self-assembled oxytocin monolayer was used by electrochemical impedance spectroscopy for metal-ion sensing leading to subnanomolar sensitivities for zinc or copper ions.

11.
Nat Commun ; 10(1): 2466, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31165738

RESUMO

The functionality of organic semiconductor devices crucially depends on molecular energies, namely the ionisation energy and the electron affinity. Ionisation energy and electron affinity values of thin films are, however, sensitive to film morphology and composition, making their prediction challenging. In a combined experimental and simulation study on zinc-phthalocyanine and its fluorinated derivatives, we show that changes in ionisation energy as a function of molecular orientation in neat films or mixing ratio in blends are proportional to the molecular quadrupole component along the π-π-stacking direction. We apply these findings to organic solar cells and demonstrate how the electrostatic interactions can be tuned to optimise the energy of the charge-transfer state at the donor-acceptor interface and the dissociation barrier for free charge carrier generation. The confirmation of the correlation between interfacial energies and quadrupole moments for other materials indicates its relevance for small molecules and polymers.

12.
J Phys Condens Matter ; 31(40): 405502, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31195387

RESUMO

The molecular quantum cellular automata paradigm (m-QCA) offers a promising alternative framework to current CMOS implementations. A crucial aspect for implementing this technology concerns the construction of a device which effectively controls intramolecular charge-transfer processes. Tentative experimental implementations have been developed in which a voltage drop is created generating the forces that drive a molecule into a logic state. However, important factors such as the electric field profile, its possible time-dependency and the influence of temperature in the overall success of charge-transfer are relevant issues to be considered in the design of a reliable device. In this work, we theoretically study the role played by these processes in the overall intramolecular charge-transfer process. We have used a Landau-Zener (LZ) model, where different time-dependent electric field profiles have been simulated. The results have been further corroborated employing density functional tight-binding method. The role played by the nuclear motions in the electron-transfer process has been investigated beyond the Born-Oppenheimer approximation by computing the effect of the external electric field in the behavior of the potential energy surface. Hence, we demonstrate that the intramolecular charge-transfer process is a direct consequence of the coherent LZ nonadiabatic tunneling and the hybridization of the diabatic vibronic states which effectively reduces the trapping of the itinerant electron at the donor group.

13.
J Tissue Eng Regen Med ; 13(9): 1672-1684, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31250556

RESUMO

Bone development and homeostasis are intricate processes that require co-existence and dynamic interactions among multiple cell types. However, controlled dynamic niches that derive and support stable propagation of these cells from single stem cell source is not sustainable in conventional culturing vessels. In bioreactor cultures that support dynamic niches, the limited source and stability of growth factors are often a major limiting factor for long-term in vitro cultures. Hence, alternative growth factor-free differentiation approaches are designed and their efficacy to achieve different osteochondral cell types is investigated. Briefly, a dynamic niche is achieved by varying medium pH, oxygen tension (pO2 ) distribution in bioreactor, initiating chondrogenic differentiation with chondroitin sulphate A (CSA), and implementing systematic differentiation regimes. In this study, we demonstrated that CSA is a potent chondrogenic inducer, specifically in combination with acidic medium and low pO2 . Further, endochondral ossification is recapitulated through a systematic chondrogenic-osteogenic (ch-os) differentiation regime, and multiple osteochondral cell types are derived. Chondrogenic hypertrophy was also enhanced specifically in high pO2 regions. Consequently, mineralised constructs with higher structural integrity, volume, and tailored dimensions are achieved. In contrast, a continuous osteogenic differentiation regime (os-os) has derived compact and dense constructs, whereas a continuous chondrogenic differentiation regime (ch-ch) has attenuated construct mineralisation and impaired development. In conclusion, a growth factor-free differentiation approach is achieved through interplay of pO2 , medium pH, and systematic differentiation regimes. The controlled dynamic niches have recapitulated endochondral ossification and can potentially be exploited to derive larger bone constructs with near physiological properties.

14.
ACS Appl Mater Interfaces ; 11(24): 21807-21814, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31099237

RESUMO

We explore an n-type doping strategy of semiconducting single-walled carbon nanotubes (sc-SWCNTs) by a covalent functionalization in ammonia plasma and elucidate the effect of air exposure on thermoelectric properties of the sc-SWCNTs before and after doping. Without doping, the sc-SWCNT films have a Seebeck coefficient of 125 µV/K and a power factor (PF) of 95 µW/m K2 in ambient conditions. Heating of such films in air up to 100 °C and above is not changing their thermoelectric properties noticeably; however, the films can be converted to an n-type material simply by gas desorption at low pressure and room temperature, showing an outstanding negative Seebeck coefficient of -133 µV/K and a PF of 55 µW/m K2. Doping of the sc-SWCNT films with ammonia plasma leads to the reduction of the Seebeck coefficient down to 40 µV/K in ambient conditions, which is the result of two competing effects: attachment of electron-donating functional groups during plasma treatment and adsorption of water molecules when exposing films to air. At temperatures slightly higher than the boiling point of water, the doped films of sc-SWCNTs show the lowest Seebeck coefficient of -80 µV/K in air. A similar value of the Seebeck coefficient is obtained for the same films at low pressures and room temperature. To our knowledge, this is one of the best values ever reported for n-type pure carbon nanotube films.

15.
Nano Converg ; 6(1): 14, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31065822

RESUMO

Hybrid nanostructures, such as those with nanoparticles anchored on the surface of nanowires, or decorated nanowires, have a large number of potential and tested applications such as: gas sensing, catalysis, plasmonic waveguides, supercapacitors and more. The downside of these nanostructures is their production. Generally, multi-step synthesis procedures are used, with the nanowires and the nanoparticles typically produced separately and then integrated. The few existent single-step methods are lengthy or necessitate highly dedicated setups. In this paper we report a single-step and rapid (ca. 1 min) laser ablation synthesis method which produces a wide variety of boron-rich decorated nanowires. Furthermore, the method is carried at room temperature. The synthesis process consists on a filamentary jet ejection process driven by pressure gradients generated by the ablation plume on the rims of the irradiation crater. Simultaneously nanoparticles are nucleated and deposited on the filaments thus producing hybrid decorated nanowires.

16.
Materials (Basel) ; 12(10)2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117217

RESUMO

Emerging pollutants are an essential class of recalcitrant contaminants that are not eliminated from water after conventional treatment. Here, a photocatalytic microporous membrane based on polyvinylidene difluoride-co-trifluoroethylene (PVDF-TrFE) with immobilised TiO2 nanoparticles, prepared by solvent casting, was tested against representative emerging pollutants. The structure and composition of these polymeric membranes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, porosimetry, and contact angle goniometry. The nanocomposites exhibited a porous structure with a uniform distribution of TiO2 nanoparticles. The addition of TiO2 did not change the structure of the polymeric matrix; however, it increased the wettability of the nanocomposite. The nanocomposites degraded 99% of methylene blue (MB), 95% of ciprofloxacin (CIP), and 48% of ibuprofen (IBP). The microporous nanocomposite exhibited no photocatalytic efficiency loss after four use cycles, corresponding to 20 h of UV irradiation. The reusability of this system confirms the promising nature of polymer nanocomposites as the basis for cost-effective and scalable treatments of emerging pollutants.

17.
Chem Commun (Camb) ; 55(32): 4731-4734, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30942792

RESUMO

We report on the formation of nitrogen-doped nanographenes containing five- and seven-membered rings by thermally induced cyclodehydrogenation on the Au(111) surface. Using scanning tunneling microscopy and supported by calculations, we investigated the structure of the precursor and targets, as well as of intermediates. Scanning tunneling spectroscopy shows that the electronic properties of the target nanographenes are strongly influenced by the additional formation of non-hexagonal rings.

18.
Small ; 15(23): e1901265, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31034144

RESUMO

2D molybdenum disulfide (MoS2 ) gives a new inspiration for the field of nanoelectronics, photovoltaics, and sensorics. However, the most common processing technology, e.g., liquid-phase based scalable exfoliation used for device fabrication, leads to the number of shortcomings that impede their large area production and integration. Major challenges are associated with the small size and low concentration of MoS2 flakes, as well as insufficient control over their physical properties, e.g., internal heterogeneity of the metallic and semiconducting phases. Here it is demonstrated that large semiconducting MoS2 sheets (with dimensions up to 50 µm) can be obtained by a facile cathodic exfoliation approach in nonaqueous electrolyte. The synthetic process avoids surface oxidation thus preserving the MoS2 sheets with intact crystalline structure. It is further demonstrated at the proof-of-concept level, a solution-processed large area (60 × 60 µm) flexible Ebola biosensor, based on a MoS2 thin film (6 µm thickness) fabricated via restacking of the multiple flakes on the polyimide substrate. The experimental results reveal a low detection limit (in femtomolar-picomolar range) of the fabricated sensor devices. The presented exfoliation method opens up new opportunities for fabrication of large arrays of multifunctional biomedical devices based on novel 2D materials.

19.
Chemistry ; 25(26): 6562-6568, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30900781

RESUMO

Cyano-substituted polyphenylene vinylenes (PPVs) have been the focus of research for several decades owing to their interesting optoelectronic properties and potential applications in organic electronics. With the advent of organic two-dimensional (2D) crystals, the question arose as to how the chemical and optoelectronic advantages of PPVs evolve in 2D compared with their linear counterparts. In this work, we present the efficient synthesis of two novel 2D fully sp2 -carbon-linked crystalline PPVs and investigate the essentiality of inorganic bases for their catalytic formation. Notably, among all bases screened, cesium carbonate (Cs2 CO3 ) plays a crucial role and enables reversibility in the first step with subsequent structure locking by formation of a C=C double bond to maintain crystallinity, which is supported by density functional theory (DFT) calculations. A quantifiable energy diagram of a "quasi-reversible reaction" is proposed, which allows the identification of further suitable C-C bond formation reactions for 2D polymerizations. Moreover, the narrowing of the HOMO-LUMO gap is delineated by expanding the conjugation into two dimensions. To enable environmentally benign processing, the post-modification of 2D PPVs is further performed, which renders stable dispersions in the aqueous phase.

20.
Langmuir ; 35(8): 2997-3004, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30707589

RESUMO

The ability to tune the electronic properties of oxide-bearing semiconductors such as Si/SiO2 or transparent metal oxides such as indium-tin oxide (ITO) is of great importance in both electronic and optoelectronic device applications. In this work, we describe a process that was conducted on n-type Si/SiO2 and ITO to induce changes in the substrate work function (WF). The substrates were modified by a two-step synthesis comprising a covalent attachment of coupling agents' monolayer followed by in situ anchoring reactions of polarizable chromophores. The coupling agents and chromophores were chosen with opposite dipole orientations, which enabled the tunability of the substrates' WF. In the first step, two coupling agents with opposite molecular dipole were assembled. The coupling agent with a negative dipole induced a decrease in WF of modified substrates, while the coupling agent with a positive dipole produced an increase in WFs of both ITO and Si substrates. The second modification step consisted of in situ anchoring reaction of polarizable chromophores with opposite dipoles to the coupling layer. This modification led to an additional change in the WFs of both Si/SiO2 and ITO substrates. The WF was measured by contact potential difference and modeled by density functional theory-based theoretical calculations of the WF for each of the assembly steps. A good fit was obtained between the calculated and experimental trends. This ability to design and tune the WF of ITO substrates was implemented in an organic electronic device with improved I- V characteristics in comparison to a bare ITO-based device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA