Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 398
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS One ; 15(3): e0230514, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32187237

RESUMO

Several pathological conditions predict the use of glucocorticoids for the management of the inflammatory response; however, chronic or high dose glucocorticoid treatment is associated with hyperglycemia, hyperlipidemia, and insulin resistance and can be considered a risk factor for cardiovascular disease. Therefore, we investigated the mechanisms involved in the vascular responsiveness and inflammatory profile of mesenteric arteries of rats treated with high doses of glucocorticoids. Wistar rats were divided into a control (CO) group and a dexamethasone (DEX) group, that received dexamethasone for 7 days (2mg/kg/day, i.p.). Blood samples were used to assess the lipid profile and insulin tolerance. Vascular reactivity to Phenylephrine (Phe) and insulin, and O2•-production were evaluated. The intracellular insulin signaling pathway PI3K/AKT/eNOS and MAPK/ET-1 were investigated. Regarding the vascular inflammatory profile, TNF-α, IL-6, IL-1ß and IL-18 were assessed. Dexamethasone-treated rats had decreased insulin tolerance test and endothelium-dependent vasodilation induced by insulin. eNOS inhibition caused vasoconstriction in the DEX group, which was abolished by the ET-A antagonist. Insulin-mediated relaxation in the DEX group was restored in the presence of the O2.- scavenger TIRON. Nevertheless, in the DEX group there was an increase in Phe-induced vasoconstriction. In addition, the intracellular insulin signaling pathway PI3K/AKT/eNOS was impaired, decreasing NO bioavailability. Regarding superoxide anion generation, there was an increase in the DEX group, and all measured proinflammatory cytokines were also augmented in the DEX group. In addition, the DEX-group presented an increase in low-density lipoprotein cholesterol (LDL-c) and total cholesterol (TC) and reduced high-density lipoprotein cholesterol (HDL-c) levels. In summary, treatment with high doses of dexamethasone promoted changes in insulin-induced vasodilation, through the reduction of NO bioavailability and an increase in vasoconstriction via ET-1 associated with generation of O2•- and proinflammatory cytokines.

2.
Endocrine ; 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31997150

RESUMO

PURPOSE: Diabetes mellitus (DM) has a multifactorial etiology that imparts a particular challenge to effective pharmacotherapy. Thyroid hormone actions have demonstrated beneficial effects in diabetic as well as obese rats. In both conditions, inflammation status plays a crucial role in the development of insulin resistance. Taking this into consideration, the present study aimed to demonstrate another possible pathway of thyroid hormone action on insulin sensitivity in a spontaneous type 2 diabetic rat model: the Goto-Kakizaki (GK) rats. GK animals present all typical hallmarks of type 2 DM (T2DM), except the usual peripheric inflammatory condition, observed in the other T2DM animal models. METHODS: GK rats were treated or not with 3,5,3'triiodothyronine (T3). Insulin sensitivity, glucose tolerance, and proteins related to glucose uptake and utilization were evaluated in the skeletal muscle, white adipose tissue, and liver. RESULTS: GK rats T3-treated presented enhanced insulin sensitivity, increased GLUT-4 content in the white adipose tissue and skeletal muscle, and increased hexokinase and citrate synthase content in skeletal muscle. Both non-treated and T3-treated GK rats did not present alterations in cytokine content in white adipose tissue, skeletal muscle, liver, and serum. CONCLUSIONS: These results indicate that T3 improves insulin sensitivity in diabetic rats by a novel inflammatory-independent mechanism.

3.
Chem Biol Interact ; 317: 108903, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31811862

RESUMO

The snake venom miotoxin (MT)-III is a group IIA secreted phospholipase A2 (sPLA2) with pro-inflammatory activities. Previous studies have demonstrated that MT-III has the ability to stimulate macrophages to release inflammatory lipid mediators derived from arachidonic acid metabolism. Among them, we highlight prostaglandin (PG)E2 produced by the cyclooxygenase (COX)-2 pathway, through activation of nuclear factor (NF)-κB. However, the mechanisms coordinating this process are not fully understood. This study investigates the regulatory mechanisms exerted by other groups of bioactive eicosanoids derived from 12-lipoxygenase (12-LO), in particular 12-hydroxyeicosatetraenoic (12-HETE), on group IIA sPLA2-induced (i) PGE2 release, (ii) COX-2 expression, and (iii) activation of signaling pathways p38 mitogen-activated protein kinases(p38MAPK), protein C kinase (PKC), extracellular signal-regulated kinase 1/2 (ERK1/2), and NF-κB. Stimulation of macrophages with group IIA sPLA2 resulted in release of 12-HETE without modification of 12-LO protein levels. Pre-treatment of these cells with baicalein, a 12-LO inhibitor, decreased the sPLA2-induced PGE2 production, significantly reduced COX-2 expression, and inhibited sPLA2-induced ERK; however, it did not affect p38MAPK or PKC phosphorylation. In turn, sPLA2-induced PGE2 release and COX-2 expression, but not NF-κB activation, was attenuated by pre-treating macrophages with PD98059 an inhibitor of ERK1/2. These results suggest that, in macrophages, group IIA sPLA2-induced PGE2 release and COX-2 protein expression are distinctly mediated through 12-HETE followed by ERK1/2 pathway activation, independently of NF-κB activation. These findings highlight an as yet undescribed mechanism by which 12-HETE regulates one of the distinct signaling pathways for snake venom group IIA sPLA2-induced PGE2 release and COX-2 expression in macrophages.

4.
Chem. Biol. Interact. ; 317: 108903, 2020.
Artigo | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17481

RESUMO

The snake venom miotoxin (MT)-III is a group IIA secreted phospholipase A2 (sPLA2) with pro-inflammatory activities. Previous studies have demonstrated that MT-III has the ability to stimulate macrophages to release inflammatory lipid mediators derived from arachidonic acid metabolism. Among them, we highlight prostaglandin (PG)E2 produced by the cyclooxygenase (COX)-2 pathway, through activation of nuclear factor (NF)-capaB. However, the mechanisms coordinating this process are not fully understood. This study investigates the regulatory mechanisms exerted by other groups of bioactive eicosanoids derived from 12-lipoxygenase (12-LO), in particular 12-hydroxyeicosatetraenoic (12-HETE), on group IIA sPLA2-induced (i) PGE2 release, (ii) COX-2 expression, and (iii) activation of signaling pathways p38 mitogen-activated protein kinases(p38MAPK), protein C kinase (PKC), extracellular signal-regulated kinase 1/2 (ERK1/2), and NF-?B. Stimulation of macrophages with group IIA sPLA2 resulted in release of 12-HETE without modification of 12-LO protein levels. Pre-treatment of these cells with baicalein, a 12-LO inhibitor, decreased the sPLA2-induced PGE2 production, significantly reduced COX-2 expression, and inhibited sPLA2-induced ERK; however, it did not affect p38MAPK or PKC phosphorylation. In turn, sPLA2-induced PGE2 release and COX-2 expression, but not NF-capaB activation, was attenuated by pre-treating macrophages with PD98059 an inhibitor of ERK1/2. These results suggest that, in macrophages, group IIA sPLA2-induced PGE2 release and COX-2 protein expression are distinctly mediated through 12-HETE followed by ERK1/2 pathway activation, independently of NF-?B activation. These findings highlight an as yet undescribed mechanism by which 12-HETE regulates one of the distinct signaling pathways for snake venom group IIA sPLA2-induced PGE2 release and COX-2 expression in macrophages.

5.
J Med Food ; 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31634026

RESUMO

The impact of oral supplementation with an effervescent glutamine formulation on the beneficial effects of antiretroviral therapies was evaluated in people living with HIV/AIDS. For this purpose, 12 HIV/AIDS carrier patients with CD4+ T cell counts <500, and who had received the same antiretroviral therapy for at least 1 year before starting this investigation were selected. The patients were required to dissolve the effervescent glutamine formulation (supplied in sachets) in water immediately before oral ingestion (12.4 g), once a day, after lunch or after dinner during 30 days. CD4+ T cell counts, complete blood cell counts, serum cytokines, and amino acids levels were quantified; biochemical and toxicological measurements were performed. The numbers of CD4+ T cells were increased (P < .05), and the serum C-reactive protein levels decreased (P < .01) after the administration of effervescent glutamine formulation. Serum levels of interferon-gamma inducible protein-10, RANTES, and macrophage inflammatory protein-1ß were decreased after the treatment with effervescent glutamine formulation. No changes were observed in the serum levels of amino acids, hematological, toxicological, and biochemical parameters. In conclusion, the treatment during 30 days with effervescent glutamine formulation was well tolerated, promoted reduction of inflammation, and improved the beneficial effects of antiretroviral therapies in HIV/AIDS carrier patients.

6.
Nutr Metab (Lond) ; 16: 63, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31528182

RESUMO

Background: Obesity can lead to a chronic systemic inflammatory state that increases the risk of cancer development. Therefore, this study aimed to evaluate the alterations in tumor non-infiltrated lymphocytes function and melanoma growth in animals maintained on a high-fat diet and/or moderate physical exercise program in a murine model of melanoma. Methods: Female mice were randomly divided into eight groups: 1) normolipidic control (N), 2) normolipidic + melanoma (NM), 3) high-fat control (H), 4) high-fat + melanoma (HM), 5) normolipidic control + physical exercise (NE), 6) normolipidic melanoma + physical exercise (NEM), 7) high-fat control + physical exercise (HE), and 8) high-fat melanoma + physical exercise (HEM). After 8 weeks of diet treatment and/or moderate physical exercise protocol, melanoma was initiated by explanting B16F10 cells into one-half of the animals. Results: Animals fed a high-fat diet presented high-energy consumption (30%) and body weight gain (H and HE vs N and NE, 37%; HM and HEM vs NM and NEM, 73%, respectively), whether or not they carried melanoma explants. Although the tumor growth rate was higher in animals from the HM group than in animals from any other sedentary group, it was reduced by the addition of a physical exercise regimen. We also observed an increase in stimulated peripheral lymphocyte proliferation and a decrease in the T-helper 1 response in the HEM group. Conclusions: The results of the present study support the hypothesis that altering function of tumor non-infiltrated lymphocytes via exercise-related mechanisms can slow melanoma progression, indicating that the incorporation of a regular practice of moderate-intensity exercises can be a potential strategy for current therapeutic regimens in treating advanced melanoma.

7.
Life Sci ; 234: 116793, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31465735

RESUMO

INTRODUCTION: Environmental factors have a key role in the control of gut microbiota and obesity. TLR2 knockout (TLR2-/-) mice in some housing conditions are protected from diet-induced insulin resistance. However, in our housing conditions these animals are not protected from diet-induced insulin-resistance. AIM: The aim of the present study was to investigate the influence of our animal housing conditions on the gut microbiota, glucose tolerance and insulin sensitivity in TLR2-/- mice. MATERIAL AND METHODS: The microbiota was investigated by metagenomics, associated with hyperinsulinemic euglycemic clamp and GTT associated with insulin signaling through immunoblotting. RESULTS: The results showed that TLR2-/- mice in our housing conditions presented a phenotype of metabolic syndrome characterized by insulin resistance, glucose intolerance and increase in body weight. This phenotype was associated with differences in microbiota in TLR2-/- mice that showed a decrease in the Proteobacteria and Bacteroidetes phyla and an increase in the Firmicutesphylum, associated with and in increase in the Oscillospira and Ruminococcus genera. Furthermore there is also an increase in circulating LPS and subclinical inflammation in TLR2-/-. The molecular mechanism that account for insulin resistance was an activation of TLR4, associated with ER stress and JNK activation. The phenotype and metabolic behavior was reversed by antibiotic treatment and reproduced in WT mice by microbiota transplantation. CONCLUSIONS: Our data show, for the first time, that the intestinal microbiota can induce insulin resistance and obesity in an animal model that is genetically protected from these processes.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Insulina/metabolismo , Receptor 2 Toll-Like/genética , Animais , Estresse do Retículo Endoplasmático , Deleção de Genes , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Intolerância à Glucose/microbiologia , Abrigo para Animais , Resistência à Insulina/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 2 Toll-Like/metabolismo
8.
Cell Physiol Biochem ; 53(1): 200-214, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31287628

RESUMO

BACKGROUND/AIMS: Skeletal mass loss is reported in several catabolic conditions and it has been associated with a reduced intracellular L-glutamine content. We investigated the association of intracellular L-glutamine concentration with the protein content in skeletal muscle cells. METHODS: We cultivated C2C12 myotubes in the absence or presence of 2 (reference condition), 8 or 16 mM L-glutamine for 48 hours, and the variations in the contents of amino acids and proteins measured. We used an inhibitor of L-glutamine synthesis (L-methionine sulfoximine - MSO) to promote a further reduction in intracellular L-glutamine levels. Amino acids contents in cells and media were measured using LC-MS/MS. We measured changes in phosphorylated Akt, RP-S6, and 4E-BP1contents in the absence or presence of insulin by western blotting. RESULTS: Reduced intracellular L-glutamine concentration was associated with decreased protein content and increased protein breakdown. Low intracellular glutamine levels were also associated with decreased p-Akt contents in the presence of insulin. A further decrease in intracellular L-glutamine caused by glutamine synthetase inhibitor reduced protein content and levels of amino acids generated from glutamine metabolism and increased bAib still further. Cells exposed to high medium glutamine levels did not have any change in protein content but exhibited increased contents of the amino acids derived from L-glutamine metabolism. CONCLUSION: Intracellular L-glutamine levels per se play a role in the control of protein content in skeletal muscle myotubes.


Assuntos
Proteínas de Transporte/metabolismo , Glutamina/metabolismo , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína S6 Ribossômica/metabolismo , Animais , Proteínas de Transporte/análise , Proteínas de Ciclo Celular , Linhagem Celular , Cromatografia Líquida , Fatores de Iniciação em Eucariotos , Glutamina/análise , Insulina/análise , Camundongos , Fibras Musculares Esqueléticas/química , Fosfoproteínas/análise , Fosforilação , Proteínas Proto-Oncogênicas c-akt/análise , Proteína S6 Ribossômica/análise , Espectrometria de Massas em Tandem
9.
Am J Med Genet A ; 179(8): 1535-1542, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31215128

RESUMO

Fetal gastroschisis is a paraumbilical abdominal wall defect with herniation of the abdominal organs. This multifactorial malformation occurs in young pregnant women, and the underlying cause of the disease remains unknown; however, nutritional factors may play a role in its development. This case-control study explored the association of maternal nutrient intake with the occurrence of gastroschisis. The gastroschisis group (GG) comprised 57 pregnant women with fetuses with gastroschisis, and the control group (CG) comprised 114 pregnant women with normal fetuses matched for maternal age, gestational age, and preconception body mass index classification. Nutritional assessments related to the preconception period were obtained using the food consumption frequency questionnaire, and nutrient intakes were calculated using nutrition programs. The median daily calorie intake was higher (2,382.43 vs. 2,198.81; p = .041) in the GG than in the CG. The median intake of methionine (763.89 vs. 906.34; p = .036) and threonine (1,248.34 vs. 1,437.01; p = .018) was lower in the GG than in the CG. Pregnant women with fetuses with gastroschisis have a diet characterized by higher calorie intake and lower levels of essential amino acids (methionine and threonine) during the preconception period than pregnant women with normal fetuses.

10.
J Nutr Biochem ; 70: 202-214, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31233980

RESUMO

L-Glutamine (L-Gln) supplementation has been pointed out as an anticatabolic intervention, but its effects on protein synthesis and degradation signaling in skeketal muscle are still poorly known. The effects of L-Gln pretreatment (1 g kg-1 day-1 body weight for 10 days) on muscle fiber cross-sectional area (CSA), amino acid composition (measured by LC-MS/MS) and protein synthesis (Akt-mTOR) and degradation (ubiquitin ligases) signaling in soleus and extensor digitorum longus (EDL) muscles in 24-h-fasted mice were investigated. The fiber CSA of EDL muscle was not different between the L-Gln-fasted and L-Gln-fed groups. This finding was associated with reduced contents of L-Leu and L-Iso and activation of protein synthesis signaling (p-RPS6Ser240/244 and Akt-mTOR). The spectrum of soleus muscle fiber CSA distribution was larger in L-Gln-fasted as compared with placebo-fasted mice. This effect of L-Gln pretreatment was associated with changes in red fibers L-Gln metabolism as indicated by increased intracellular L-glutamine/L-glutamate ratio, L-aspartate and GABA levels. L-Gln supplementation reduced fasting-induced mass loss in tibialis anterior and gastrocnemius muscles. Evidence is presented that pretreatment with L-glutamine attenuates skeletal muscle atrophy induced by 24-h fasting through mechanisms that vary with the muscle fiber type.

11.
Sci Rep ; 9(1): 4281, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862840

RESUMO

Crotoxin (CTX) is the primary toxin of South American rattlesnake Crotalus durissus terrificus venom. CTX reduces tumour mass, and tumour cell proliferation and these effects seem to involve the formation of new vessels. Angiogenesis has a key role in tumour growth and progression and is regulated by macrophage secretory activity. Herein, the effect of CTX on macrophage secretory activity associated with angiogenesis was investigated in vitro. Thymic endothelial cells (EC) were incubated in the presence of macrophages treated with CTX (12.5 nM) or supernatants of CTX-treated macrophages and endothelial cell proliferation, migration and adhesion activities, and the capillary-like tube formation in the matrigel-3D matrix was measured. Angiogenic mediators (MMP-2, VEGF and TNF-α) were measured in the cell culture medium. Macrophages pre-treated with CTX and supernatant of CTX-treated macrophages inhibited EC proliferation, adhesion to its natural ligands, and migration (as evaluated in a wound-healing model and Time Lapse assay) activities. Decreased capillary-like tube formation and MMP-2, VEGF and TNF-α levels in the supernatant of macrophages treated with CTX was also described. CTX promotes macrophage reprogramming towards an antiangiogenic phenotype.

12.
Life Sci ; 222: 103-111, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30822426

RESUMO

AIMS: We investigated the effects of physical detraining on lipogenesis/lipolysis and cellularity (apoptosis/adipogenesis) in rat subcutaneous (inguinal; SC) and visceral (retroperitoneal; RP) white adipose depots. MAIN METHODS: Three groups of male Wistar rats (6-wk old) were studied: (1) (T) trained for 12 weeks; (2) (D) trained for 8 weeks and detrained for 4 weeks; and (3) (S) age-matched sedentary. Training consisted of treadmill running sessions (1 h/day, 5 days/week, 50-60% maximal race capacity). KEY FINDINGS: Physical detraining increased glucose oxidation, lipogenesis, and adipocyte size in the SC and RP depots. The number of apoptotic SC adipocytes was reduced by 53% in the T (p < 0.0001) and by 43% in the D (p < 0.001) as compared with S. RP adipocyte apoptosis in the T and D was 9.48% and 10.9% greater compared to the S, respectively (p < 0.05). In the SC stromal vascular fraction (SVF) of D rats, adiponectin, sterol regulatory element binding protein (SREBP)-1c, Peroxisome proliferator-activated receptor gamma (PPARγ), and Perilipin A mRNA expressions were more pronounced than S group, suggesting a more intense adipogenesis. This putative adipogenic effect was not observed in the RP depot. The physical detraining promoted rapid increase in the SC and RP depots however not through the same mechanisms. SIGNIFICANCE: Physical detraining induced fat cell hypertrophy (increase of lipogenesis) in both SC and RP whereas hyperplasia (increase of adipogenesis and reduction of apoptosis) was found in SC only. These results indicate the mechanism associated with obesogenic effects of detraining varies with the fat depot.


Assuntos
Adipogenia/fisiologia , Adiposidade/fisiologia , Obesidade/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Masculino , Obesidade/patologia , Obesidade/prevenção & controle , Condicionamento Físico Animal/tendências , Distribuição Aleatória , Ratos , Ratos Wistar
13.
Pharmacol Ther ; 196: 117-134, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30521881

RESUMO

Cancer cachexia is a multifactorial syndrome that develops during malignant tumor growth. Changes in plasma levels of several hormones and inflammatory factors result in an intense catabolic state, decreased activity of anabolic pathways, anorexia, and marked weight loss, leading to cachexia development and/or accentuation. Inflammatory mediators appear to be related to the control of a highly regulated process of muscle protein degradation that accelerates the process of cachexia. Several mediators have been postulated to participate in this process, including TNF-α, myostatin, and activated protein degradation pathways. Some interventional therapies have been proposed, including nutritional (dietary, omega-3 fatty acid supplementation), hormonal (insulin), pharmacological (clenbuterol), and nonpharmacological (physical exercise) therapies. Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid, are recognized for their anti-inflammatory properties and have been used in therapeutic approaches to treat or attenuate cancer cachexia. In this review, we discuss recent findings on cellular and molecular mechanisms involved in inflammation in the cancer cachexia syndrome and the effectiveness of n-3 PUFAs to attenuate or prevent cancer cachexia.

14.
Methods Mol Biol ; 1916: 167-176, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30535694

RESUMO

Due to the difficulty of performing research protocols that reproduce human skeletal muscle disuse conditions, an experimental animal model of "hindlimb suspension" (or hindlimb unloading) was developed. This method was created in the 1970s and utilizes rats and mice to mimic space flight and bed rest in humans. It provides an alternative to investigate mechanisms associated with skeletal muscle mass loss and interventions designed to attenuate atrophy induced by hindlimb unloading. The mentioned protocol also allows investigating quality of bones and changes in several physiological parameters such as blood pressure, heart rate, plasma or tissue lipid composition, and glycemia.


Assuntos
Atrofia/sangue , Elevação dos Membros Posteriores/métodos , Músculo Esquelético/fisiopatologia , Atrofia Muscular/sangue , Animais , Atrofia/genética , Atrofia/fisiopatologia , Pressão Sanguínea , Humanos , Lipídeos/sangue , Músculo Esquelético/metabolismo , Atrofia Muscular/fisiopatologia , Ratos , Roedores
15.
Sci Rep ; 9: 4281, 2019.
Artigo | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15876

RESUMO

Crotoxin (CTX) is the primary toxin of South American rattlesnake Crotalus durissus terrificus venom. CTX reduces tumour mass, and tumour cell proliferation and these effects seem to involve the formation of new vessels. Angiogenesis has a key role in tumour growth and progression and is regulated by macrophage secretory activity. Herein, the effect of CTX on macrophage secretory activity associated with angiogenesis was investigated in vitro. Thymic endothelial cells (EC) were incubated in the presence of macrophages treated with CTX (12.5?nM) or supernatants of CTX-treated macrophages and endothelial cell proliferation, migration and adhesion activities, and the capillary-like tube formation in the matrigel-3D matrix was measured. Angiogenic mediators (MMP-2, VEGF and TNF-a) were measured in the cell culture medium. Macrophages pre-treated with CTX and supernatant of CTX-treated macrophages inhibited EC proliferation, adhesion to its natural ligands, and migration (as evaluated in a wound-healing model and Time Lapse assay) activities. Decreased capillary-like tube formation and MMP-2, VEGF and TNF-a levels in the supernatant of macrophages treated with CTX was also described. CTX promotes macrophage reprogramming towards an antiangiogenic phenotype.

16.
Sci Rep ; 8(1): 17534, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510205

RESUMO

Obesity and diabetes implicate in various health complications and increased mortality caused by infection. Innate immune system is broadly affected by these diseases, leading the patients to an immunosuppressive state. A mechanism that leads innate immune cells to a less capacity of killing microorganism is the impaired TLR4 activation. TLR4 recognizes a component of the outer membrane of Gram-negative bacteria, lipopolysaccharide (LPS), and when activated increases the production of inflammatory substances. Neutrophils are components of the innate immune system and are the first responders to an invading agent. The correct activation of TLR4 in these cells is required for the initiation of the inflammatory process and elimination of the microorganisms. The aim of this study was to evaluate the influence of type 2 diabetes and obesity in the TLR4 pathway in rat neutrophils. Two experimental models were used: Goto-Kakizaki rats and high-fat-diet induced obese Wistar rats. To evaluate neutrophil response to LPS, intratracheal LPS instillation was used. Neutrophils from obese and diabetic animals exhibited tolerance to LPS, mainly by the impaired production of cytokines and chemokines and the low content of phospho-NFκB and phospho-IKBα. Neutrophils from both experimental models had increased cell death, impaired in vivo migration and myeloperoxidase activity.


Assuntos
Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 2/imunologia , Tolerância Imunológica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/imunologia , Obesidade/imunologia , Animais , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Imunidade Inata/efeitos dos fármacos , Neutrófilos/patologia , Obesidade/patologia , Ratos , Ratos Wistar , Receptor 4 Toll-Like/imunologia
17.
PLoS One ; 13(10): e0205338, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30307983

RESUMO

This study investigated the effects of palmitoleic acid on different phases of the healing process. Macroscopic analyses were performed on wounds in rats with or without palmitoleic acid treatment, and the results showed that palmitoleic acid directly hastened wound closure. The topical treatment of wounds with palmitoleic acid resulted in smaller wounds than those observed in the control group. The anti-inflammatory activity of palmitoleic acid may be responsible for healing, especially in the stages of granulation tissue formation and remodelling. Palmitoleic acid modified TNF-α, IL-1ß, IL-6, CINC-2α/ß, MIP-3α and VEGF-α profiles at the wound site 24, 48, 120, 216 and 288 hours post-wounding. Assays assessing neutrophil migration and exudate formation in sterile inflammatory air pouches revealed that palmitoleic acid had potent anti-inflammatory activity, inhibiting the LPS-induced release of TNF-α (73.14%, p≤0.05), IL-1ß (66.19%, p≤0.001), IL-6 (75.19%, p≤0.001), MIP-3α (70.38%, p≤0.05), and l-selectin (16%, p≤0.05). Palmitoleic acid also inhibited LPS-stimulated neutrophil migration. We concluded that palmitoleic acid accelerates wound healing via an anti-inflammatory effect.


Assuntos
Anti-Inflamatórios/administração & dosagem , Ácidos Graxos Monoinsaturados/administração & dosagem , Inflamação/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Administração Tópica , Animais , Citocinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Inflamação/patologia , Interleucina-1beta/genética , Ratos , Pele/efeitos dos fármacos , Pele/patologia , Fator de Necrose Tumoral alfa/genética , Cicatrização/genética
18.
Nutrients ; 10(11)2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30360490

RESUMO

Glutamine is the most abundant and versatile amino acid in the body. In health and disease, the rate of glutamine consumption by immune cells is similar or greater than glucose. For instance, in vitro and in vivo studies have determined that glutamine is an essential nutrient for lymphocyte proliferation and cytokine production, macrophage phagocytic plus secretory activities, and neutrophil bacterial killing. Glutamine release to the circulation and availability is mainly controlled by key metabolic organs, such as the gut, liver, and skeletal muscles. During catabolic/hypercatabolic situations glutamine can become essential for metabolic function, but its availability may be compromised due to the impairment of homeostasis in the inter-tissue metabolism of amino acids. For this reason, glutamine is currently part of clinical nutrition supplementation protocols and/or recommended for immune suppressed individuals. However, in a wide range of catabolic/hypercatabolic situations (e.g., ill/critically ill, post-trauma, sepsis, exhausted athletes), it is currently difficult to determine whether glutamine supplementation (oral/enteral or parenteral) should be recommended based on the amino acid plasma/bloodstream concentration (also known as glutaminemia). Although the beneficial immune-based effects of glutamine supplementation are already established, many questions and evidence for positive in vivo outcomes still remain to be presented. Therefore, this paper provides an integrated review of how glutamine metabolism in key organs is important to cells of the immune system. We also discuss glutamine metabolism and action, and important issues related to the effects of glutamine supplementation in catabolic situations.


Assuntos
Suplementos Nutricionais , Glutamina/administração & dosagem , Nutrição Enteral , Glutamina/deficiência , Humanos , Nutrição Parenteral
19.
Nutrients ; 10(9)2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201883

RESUMO

Both high fat diet (HFD) and high carbohydrate diet (HCD) modulate brain fatty acids (FA) composition. Notwithstanding, there is a lack of information on time sequence of brain FA deposition either for HFD or HCD. The changes in brain FA composition in mice fed with HFD or HCD for 7, 14, 28, or 56 days were compared with results of 0 (before starting given the diets). mRNA expressions of allograft inflammatory factor 1 (Aif1), cyclooxygenase-2 (Cox 2), F4/80, inducible nitric oxide synthase (iNOS), integrin subunit alpha m (Itgam), interleukin IL-1ß (IL-1ß), IL-6, IL-10, and tumor necrosis factor alpha (TNF-α) were measured. The HFD group had higher speed of deposition of saturated FA (SFA), monounsaturated FA (MUFA), and polyunsaturated FA (PUFA) at the beginning of the experimental period. However, on day 56, the total amount of SFA, MUFA, and PUFA were similar. mRNA expressions of F4/80 and Itgam, markers of microglia infiltration, were increased (p < 0.05) in the brain of the HCD group whereas inflammatory marker index (IMI) was higher (46%) in HFD group. In conclusion, the proportion of fat and carbohydrates in the diet modulates the speed deposition of FA and expression of inflammatory gene markers.


Assuntos
Encéfalo/metabolismo , Dieta da Carga de Carboidratos/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Carboidratos da Dieta/efeitos adversos , Gorduras na Dieta/efeitos adversos , Ácidos Graxos/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Antígeno CD11b/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Cadeias alfa de Integrinas/metabolismo , Masculino , Camundongos , Proteínas dos Microfilamentos/metabolismo , Óxido Nítrico Sintase/metabolismo , RNA Mensageiro/metabolismo
20.
Sci Rep ; 8(1): 11013, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30030460

RESUMO

We investigated the effect of the crude herbal extract from Uncaria tomentosa (UT) on non-alcoholic fatty liver disease (NAFLD) in two models of obesity: high fat diet (HFD) and genetically obese (ob/ob) mice. Both obese mouse models were insulin resistant and exhibited an abundance of lipid droplets in the hepatocytes and inflammatory cell infiltration in the liver, while only the HFD group had collagen deposition in the perivascular space of the liver. UT treatment significantly reduced liver steatosis and inflammation in both obese mouse models. Furthermore, serine phosphorylation of IRS-1 was reduced by 25% in the HFD mice treated with UT. Overall, UT treated animals exhibited higher insulin sensitivity as compared to vehicle administration. In conclusion, Uncaria tomentosa extract improved glucose homeostasis and reverted NAFLD to a benign hepatic steatosis condition and these effects were associated with the attenuation of liver inflammation in obese mice.


Assuntos
Unha-de-Gato/metabolismo , Resistência à Insulina/fisiologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Insulina/farmacologia , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/fisiopatologia , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA