Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
Toxins (Basel) ; 15(4)2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104186


Small grain cereals are frequently infected with mycotoxigenic Fusarium fungi. Oats have a particularly high risk of contamination with type A trichothecene mycotoxins; their glucoside conjugates have also been reported. Agronomy practices, cereal variety and weather conditions have been suggested to play a role in Fusarium infection in oats. The current study investigates concentrations of free and conjugated Fusarium mycotoxins in organic and conventional oats grown in Scotland. In 2019, 33 milling oat samples (12 organic, 21 conventional) were collected from farmers across Scotland, together with sample questionnaires. Samples were analysed for 12 mycotoxins (type A trichothecenes T-2-toxin, HT-2-toxin, diacetoxyscirpenol; type B trichothecenes deoxynivalenol, nivalenol; zearalenone and their respective glucosides) using LC-MS/MS. The prevalence of type A trichothecenes T-2/HT-2 was very high (100% of conventional oats, 83% of organic oats), whereas type B trichothecenes were less prevalent, and zearalenone was rarely found. T-2-glucoside and deoxynivalenol-glucoside were the most prevalent conjugated mycotoxins (36 and 33%), and co-occurrence between type A and B trichothecenes were frequently observed (66% of samples). Organic oats were contaminated at significantly lower average concentrations than conventional oats, whereas the effect of weather parameters were not statistically significant. Our results clearly indicate that free and conjugated T-2- and HT-2-toxins pose a major risk to Scottish oat production and that organic production and crop rotation offer potential mitigation strategies.

Fusarium , Micotoxinas , Toxina T-2 , Tricotecenos do Tipo B , Zearalenona , Micotoxinas/análise , Avena/microbiologia , Grão Comestível/química , Zearalenona/análise , Cromatografia Líquida , Contaminação de Alimentos/análise , Espectrometria de Massas em Tandem , Toxina T-2/análise , Escócia , Glucosídeos
Toxins (Basel) ; 12(10)2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066173


Mycotoxins are important food contaminants that commonly co-occur with modified mycotoxins such as mycotoxin-glucosides in contaminated cereal grains. These masked mycotoxins are less toxic, but their breakdown and release of unconjugated mycotoxins has been shown by mixed gut microbiota of humans and animals. The role of different bacteria in hydrolysing mycotoxin-glucosides is unknown, and this study therefore investigated fourteen strains of human gut bacteria for their ability to break down masked mycotoxins. Individual bacterial strains were incubated anaerobically with masked mycotoxins (deoxynivalenol-3-ß-glucoside, DON-Glc; nivalenol-3-ß-glucoside, NIV-Glc; HT-2-ß-glucoside, HT-2-Glc; diacetoxyscirpenol-α-glucoside, DAS-Glc), or unconjugated mycotoxins (DON, NIV, HT-2, T-2, and DAS) for up to 48 h. Bacterial growth, hydrolysis of mycotoxin-glucosides and further metabolism of mycotoxins were assessed. We found no impact of any mycotoxin on bacterial growth. We have demonstrated that Butyrivibrio fibrisolvens, Roseburia intestinalis and Eubacterium rectale hydrolyse DON-Glc, HT-2 Glc, and NIV-Glc efficiently and have confirmed this activity in Bifidobacterium adolescentis and Lactiplantibacillus plantarum (DON-Glc only). Prevotella copri and B. fibrisolvens efficiently de-acetylated T-2 and DAS, but none of the bacteria were capable of de-epoxydation or hydrolysis of α-glucosides. In summary we have identified key bacteria involved in hydrolysing mycotoxin-glucosides and de-acetylating type A trichothecenes in the human gut.

Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Microbioma Gastrointestinal , Intestinos/microbiologia , Micotoxinas/metabolismo , Acetilação , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Microbiologia de Alimentos , Glucosídeos/metabolismo , Humanos , Hidrólise , Micotoxinas/efeitos adversos , Medição de Risco , Especificidade por Substrato , Fatores de Tempo , Tricotecenos/metabolismo
J Agric Food Chem ; 68(1): 351-357, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31826612


Cereal foods are commonly contaminated with multiple mycotoxins resulting in frequent human mycotoxin exposure. Children are at risk of high-level exposure because of their high cereal intake relative to body weight. Hence, this study aims to assess multimycotoxin exposure in UK children using urinary biomarkers. Spot urines (n = 21) were analyzed for multimycotoxins (deoxynivalenol, DON; nivalenol, NIV; ochratoxin A, OTA; zearalenone, ZEN; α-zearalenol, α-ZEL; ß-zearalenol, ß-ZEL; T-2 toxin, T-2; HT-2 toxin, HT-2; and aflatoxin B1 and M1, AFB1, AFM1) using liquid chromatography-coupled tandem mass spectrometry. Urine samples frequently contained DON (13.10 ± 12.69 ng/mL), NIV (0.36 ± 0.16 ng/mL), OTA (0.05 ± 0.02 ng/mL), and ZEN (0.09 ± 0.07 ng/mL). Some samples (1-3) contained T-2, HT-2, α-ZEL, and ß-ZEL but not aflatoxins. Dietary mycotoxin estimation showed that children were frequently exposed to levels exceeding the tolerable daily intake (52 and 95% of cases for DON and OTA). This demonstrates that UK children are exposed to multiple mycotoxins through their habitual diet.

Biomarcadores/urina , Micotoxinas/urina , Aflatoxinas/urina , Criança , Pré-Escolar , Dieta/efeitos adversos , Exposição Ambiental/efeitos adversos , Feminino , Contaminação de Alimentos/estatística & dados numéricos , Humanos , Masculino , Ocratoxinas/urina , Inquéritos e Questionários , Toxina T-2/análogos & derivados , Toxina T-2/urina , Tricotecenos/urina , Reino Unido , Zearalenona/urina , Zeranol/análogos & derivados , Zeranol/urina
Int J Food Sci Nutr ; 71(5): 540-548, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31791183


Fusarium mycotoxins are common contaminants in cereals and often co-occur with plant-derived mycotoxin sugar conjugates. Several of these modified mycotoxins are not degraded in the small intestine and hence carried through to the large intestine where microbial transformation may occur. This study aims to assess the gastrointestinal stability of the trichothecenes HT-2 toxin (HT-2), HT-2-ß-glucoside (HT-2-Glc), diacetoxyscirpenol (DAS), DAS-α-glucoside (DAS-Glc) and fumonisin B1 (FB1), N-(1-deoxy-d-fructos-1-yl) fumonisin-B1 (NDF-FB1). All tested modified mycotoxins were stable under upper gastrointestinal (GI) conditions. In faecal batch culture experiments, HT-2-Glc was hydrolysed efficiently and no further microbial biotransformation of HT-2 was observed. DAS-Glc hydrolysis was slow and DAS was de-acetylated to 15-monoacetoxyscripenol. NDF-FB1 was hydrolysed at the slowest rate and FB1 accumulation varied between donor samples. Our results demonstrate that all tested modified mycotoxins are stable in the upper GI tract and efficiently hydrolysed by human gut microbiota, thus potentially contributing to colonic toxicity. Hence the microbial biotransformation of any novel modified mycotoxins needs to be carefully evaluated.

Grão Comestível/química , Fumonisinas/metabolismo , Fusarium , Microbioma Gastrointestinal , Glucosídeos/metabolismo , Intestino Grosso , Tricotecenos/metabolismo , Adulto , Biotransformação , Feminino , Contaminação de Alimentos , Trânsito Gastrointestinal , Humanos , Hidrólise , Intestino Grosso/metabolismo , Intestino Grosso/microbiologia , Intestino Delgado/metabolismo , Masculino , Micotoxinas Mascaradas/metabolismo , Pessoa de Meia-Idade , Micotoxinas/metabolismo , Poaceae , Toxina T-2/análogos & derivados , Toxina T-2/metabolismo , Trato Gastrointestinal Superior/metabolismo
Br J Nutr ; 121(2): 121-129, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30482256


Fe deficiency is relatively common in pregnancy and has both short- and long-term consequences. However, little is known about the effect on the metabolism of other micronutrients. A total of fifty-four female rats were fed control (50 mg Fe/kg) or Fe-deficient diets (7·5 mg/kg) before and during pregnancy. Maternal liver, placenta and fetal liver were collected at day 21 of pregnancy for Cu and Zn analysis and to measure expression of the major genes of Cu and Zn metabolism. Cu levels increased in the maternal liver (P=0·002) and placenta (P=0·018) of Fe-deficient rats. Zn increased (P<0·0001) and Cu decreased (P=0·006) in the fetal liver. Hepatic expression of the Cu chaperones antioxidant 1 Cu chaperone (P=0·042) and cytochrome c oxidase Cu chaperone (COX17, P=0·020) decreased in the Fe-deficient dams, while the expression of the genes of Zn metabolism was unaltered. In the placenta, Fe deficiency reduced the expression of the chaperone for superoxide dismutase 1, Cu chaperone for superoxide dismutase (P=0·030), ceruloplasmin (P=0·042) and Zn transport genes, ZRT/IRT-like protein 4 (ZIP4, P=0·047) and Zn transporter 1 (ZnT1, P=0·012). In fetal liver, Fe deficiency increased COX17 (P=0·020), ZRT/IRT-like protein 14 (P=0·036) and ZnT1 (P=0·0003) and decreased ZIP4 (P=0·004). The results demonstrate that Fe deficiency during pregnancy has opposite effects on Cu and Zn levels in the fetal liver. This may, in turn, alter metabolism of these nutrients, with consequences for development in the fetus and the neonate.

Cobre/metabolismo , Deficiências de Ferro , Zinco/metabolismo , Animais , Proteínas de Transporte de Cátions , Ceruloplasmina , Cobre/análise , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Feto/metabolismo , Expressão Gênica/fisiologia , Fígado/química , Fígado/embriologia , Fígado/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Chaperonas Moleculares , Placenta/química , Placenta/metabolismo , Gravidez , Ratos , Zinco/análise
Appl Environ Microbiol ; 84(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29101203


Mycotoxin contamination of cereal grains causes well-recognized toxicities in animals and humans, but the fate of plant-bound masked mycotoxins in the gut is less well understood. Masked mycotoxins have been found to be stable under conditions prevailing in the small intestine but are rapidly hydrolyzed by fecal microbiota. This study aims to assess the hydrolysis of the masked mycotoxin deoxynivalenol-3-glucoside (DON3Glc) by the microbiota of different regions of the porcine intestinal tract. Intestinal digesta samples were collected from the jejunum, ileum, cecum, colon, and feces of 5 pigs and immediately frozen under anaerobic conditions. Sample slurries were prepared in M2 culture medium, spiked with DON3Glc or free deoxynivalenol (DON; 2 nmol/ml), and incubated anaerobically for up to 72 h. Mycotoxin concentrations were determined using liquid chromatography-tandem mass spectrometry, and the microbiota composition was determined using a quantitative PCR methodology. The jejunal microbiota hydrolyzed DON3Glc very slowly, while samples from the ileum, cecum, colon, and feces rapidly and efficiently hydrolyzed DON3Glc. No further metabolism of DON was observed in any sample. The microbial load and microbiota composition in the ileum were significantly different from those in the distal intestinal regions, whereas those in the cecum, colon and feces did not differ.IMPORTANCE Results from this study clearly demonstrate that the masked mycotoxin DON3Glc is hydrolyzed efficiently in the distal small intestine and large intestine of pigs. Once DON is released, toxicity and absorption in the distal intestinal tract likely occur in vivo This study further supports the need to include masked metabolites in mycotoxin risk assessments and regulatory actions for feed and food.

Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Glucosídeos/farmacologia , Intestinos/microbiologia , Micotoxinas/farmacologia , Tricotecenos/metabolismo , Tricotecenos/farmacologia , Anaerobiose , Animais , Técnicas de Cultura Celular por Lotes , Grão Comestível/química , Fezes/química , Fezes/microbiologia , Contaminação de Alimentos , Microbioma Gastrointestinal/genética , Humanos , Hidrólise , Intestinos/anatomia & histologia , Jejuno/microbiologia , Jejuno/fisiologia , Micotoxinas/análise , Micotoxinas/metabolismo , Micotoxinas/toxicidade , Reação em Cadeia da Polimerase , Suínos , Tricotecenos/análise