Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 132: 104723, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31208937

RESUMO

BACKGROUND: DNA methylation (DNAm) may contribute to processes that underlie associations between air pollution and poor health. Therefore, our objective was to evaluate associations between DNAm and ambient concentrations of particulate matter (PM) ≤2.5, ≤10, and 2.5-10 µm in diameter (PM2.5; PM10; PM2.5-10). METHODS: We conducted a methylome-wide association study among twelve cohort- and race/ethnicity-stratified subpopulations from the Women's Health Initiative and the Atherosclerosis Risk in Communities study (n = 8397; mean age: 61.5 years; 83% female; 45% African American; 9% Hispanic/Latino American). We averaged geocoded address-specific estimates of daily and monthly mean PM concentrations over 2, 7, 28, and 365 days and 1 and 12 months before exams at which we measured leukocyte DNAm in whole blood. We estimated subpopulation-specific, DNAm-PM associations at approximately 485,000 Cytosine-phosphate-Guanine (CpG) sites in multi-level, linear, mixed-effects models. We combined subpopulation- and site-specific estimates in fixed-effects, inverse variance-weighted meta-analyses, then for associations that exceeded methylome-wide significance and were not heterogeneous across subpopulations (P < 1.0 × 10-7; PCochran's Q > 0.10), we characterized associations using publicly accessible genomic databases and attempted replication in the Cooperative Health Research in the Region of Augsburg (KORA) study. RESULTS: Analyses identified significant DNAm-PM associations at three CpG sites. Twenty-eight-day mean PM10 was positively associated with DNAm at cg19004594 (chromosome 20; MATN4; P = 3.33 × 10-8). One-month mean PM10 and PM2.5-10 were positively associated with DNAm at cg24102420 (chromosome 10; ARPP21; P = 5.84 × 10-8) and inversely associated with DNAm at cg12124767 (chromosome 7; CFTR; P = 9.86 × 10-8). The PM-sensitive CpG sites mapped to neurological, pulmonary, endocrine, and cardiovascular disease-related genes, but DNAm at those sites was not associated with gene expression in blood cells and did not replicate in KORA. CONCLUSIONS: Ambient PM concentrations were associated with DNAm at genomic regions potentially related to poor health among racially, ethnically and environmentally diverse populations of U.S. women and men. Further investigation is warranted to uncover mechanisms through which PM-induced epigenomic changes may cause disease.

2.
Environ Int ; 129: 118-135, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31125731

RESUMO

Can mitigating only particle mass, as the existing air quality measures do, ultimately lead to reduction in ultrafine particles (UFP)? The aim of this study was to provide a broader urban perspective on the relationship between UFP, measured in terms of particle number concentration (PNC) and PM2.5 (mass concentration of particles with aerodynamic diameter < 2.5 µm) and factors that influence their concentrations. Hourly average PNC and PM2.5 were acquired from 10 cities located in North America, Europe, Asia, and Australia over a 12-month period. A pairwise comparison of the mean difference and the Kolmogorov-Smirnov test with the application of bootstrapping were performed for each city. Diurnal and seasonal trends were obtained using a generalized additive model (GAM). The particle number to mass concentration ratios and the Pearson's correlation coefficient were calculated to elucidate the nature of the relationship between these two metrics. Results show that the annual mean concentrations ranged from 8.0 × 103 to 19.5 × 103 particles·cm-3 and from 7.0 to 65.8 µg·m-3 for PNC and PM2.5, respectively, with the data distributions generally skewed to the right, and with a wider spread for PNC. PNC showed a more distinct diurnal trend compared with PM2.5, attributed to the high contributions of UFP from vehicular emissions to PNC. The variation in both PNC and PM2.5 due to seasonality is linked to the cities' geographical location and features. Clustering the cities based on annual median concentrations of both PNC and PM2.5 demonstrated that a high PNC level does not lead to a high PM2.5, and vice versa. The particle number-to-mass ratio (in units of 109 particles·µg-1) ranged from 0.14 to 2.2, >1 for roadside sites and <1 for urban background sites with lower values for more polluted cities. The Pearson's r ranged from 0.09 to 0.64 for the log-transformed data, indicating generally poor linear correlation between PNC and PM2.5. Therefore, PNC and PM2.5 measurements are not representative of each other; and regulating PM2.5 does little to reduce PNC. This highlights the need to establish regulatory approaches and control measures to address the impacts of elevated UFP concentrations, especially in urban areas, considering their potential health risks.

3.
Artigo em Inglês | MEDLINE | ID: mdl-30934830

RESUMO

The relationship between the worsening of air quality during the colder season of the year and respiratory health problems among the exposed population in many countries located in cold climates has been well documented in numerous studies. Silesian Voivodeship, a region located in southern Poland, is one of the most polluted regions in Europe. The aim of this study was to assess the relationship between daily concentration of particulate matter (PM: PM2.5 and PM10) in ambient air and exacerbations of respiratory diseases during the period from 1 January 2016 to 31 August 2017 in the central agglomeration area of Silesian Voivodeship. The study results confirmed a significant increase of daily fine particulate matter concentration in ambient air during the cold season in Silesian Voivodeship with a simultaneous increase of the number of outpatient visits and hospitalizations due to respiratory diseases. The moving average concentration was better suited for the modelling of biological response as a result of PM2.5 or PM10 exposure than the temporal lag of health effects. Each increase of dose expressed in the form of moving average concentration over a longer time leads to an increase in the daily number of respiratory effects. The highest risk of hospitalization due to respiratory diseases was related to longer exposure of PM expressed by two to four weeks of exposure; outpatient visits was related to a shorter exposure duration of 3 days.


Assuntos
Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Material Particulado/análise , Doenças Respiratórias/epidemiologia , Poluição do Ar/análise , Hospitalização , Humanos , Polônia/epidemiologia , Estações do Ano , Fatores de Tempo
4.
Sci Rep ; 9(1): 1946, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760868

RESUMO

Previous studies have reported increased risks of myocardial infarction in association with elevated ambient particulate matter (PM) in the previous hour(s). However, whether PM can trigger mechanisms that act on this time scale is still unclear. We hypothesized that increases in PM are associated with rapid changes in measures of heart rate variability and repolarization. We used data from panel studies in Augsburg, Germany, and Rochester, New York, USA, and two controlled human exposure studies in Rochester. Data included ECG recordings from all four studies, controlled exposures to (concentrated) ultrafine particles (UFP; particles with an aerodynamic diameter <100 nm) and ambient concentrations of UFP and fine PM (PM2.5, aerodynamic diameter <2.5 µm). Factor analysis identified three representative ECG parameters: standard deviation of NN-intervals (SDNN), root mean square of successive differences (RMSSD), and T-wave complexity. Associations between air pollutants and ECG parameters in the concurrent and previous six hours were estimated using additive mixed models adjusting for long- and short-term time trends, meteorology, and study visit number. We found decreases in SDNN in relation to increased exposures to UFP in the previous five hours in both of the panel studies (e.g. Augsburg study, lag 3 hours: -2.26%, 95% confidence interval [CI]: -3.98% to -0.53%; Rochester panel study, lag 1 hour: -2.69%; 95% CI: -5.13% to -0.26%) and one of the two controlled human exposure studies (1-hour lag: -13.22%; 95% CI: -24.11% to -2.33%). Similarly, we observed consistent decreases in SDNN and RMSSD in association with elevated PM2.5 concentrations in the preceding six hours in both panel studies. We did not find consistent associations between particle metrics and T-wave complexity. This study provided consistent evidence that recent exposures to UFP and PM2.5 can induce acute pathophysiological responses.

5.
Artigo em Alemão | MEDLINE | ID: mdl-29761364

RESUMO

Low Emission Zones (LEZs) were implemented as a measure for improving the quality of ambient air. As of February 2018, 58 LEZs were in operation in Germany; however they differ significantly, especially regarding their size.The effectiveness of LEZs has been investigated by dispersion modelling as well as by analysis of PM10 (particles which pass through a size-selective inlet with a 50 % efficiency cut-off at 10 µm aerodynamic diameter) and nitrogen dioxide (NO2) measurement values. Recent studies show a clear trend. In sufficiently large and strictly regulated LEZs, a reduction of PM10 concentration between 5 and 10% can be shown, and at some traffic sites above 10%. The current (currently valid) limit values for PM10 were introduced in 2005, mainly due to the adverse health effects of fine particles on respiratory and cardiovascular morbidity and mortality. The most health-relevant PM10 particle fraction consists mainly of traffic-related particles and here especially of diesel soot particles. Therefore, the German regulations for LEZs promote using diesel particulate filters in diesel cars.Unfortunately, the evaluation of the LEZ effects is mostly restricted to PM10, a particle fraction containing only a comparatively small portion of highly toxic exhaust-related particles. The analysis of air pollutants that are more traffic specific (such as elemental carbon, ultrafine particles, PM2.5 [particles which pass through a size-selective inlet with a 50 % efficiency cut-off at 10 µm aerodynamic diameter]) would be more adequate. For "powerful" LEZs, more pronounced reductions of such pollutants have clearly been shown. This also means that the benefit of LEZs on human health is by far greater than is presently visible from routine measurements of PM10.Since the stickers for LEZs are in fact meant to reduce particulate matter, it is not surprising that the introduction of LEZs has not resulted in a demonstrable reduction in NO2 concentrations.

6.
Environ Int ; 116: 186-196, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29689465

RESUMO

BACKGROUND: Although epidemiological studies have reported associations between mortality and both ambient air pollution and air temperature, it remains uncertain whether the mortality effects of air pollution are modified by temperature and vice versa. Moreover, little is known on the interactions between ultrafine particles (diameter ≤ 100 nm, UFP) and temperature. OBJECTIVE: We investigated whether the short-term associations of particle number concentration (PNC in the ultrafine range (≤100 nm) or total PNC ≤ 3000 nm, as a proxy for UFP), particulate matter ≤ 2.5 µm (PM2.5) and ≤ 10 µm (PM10), and ozone with daily total natural and cardiovascular mortality were modified by air temperature and whether air pollution levels affected the temperature-mortality associations in eight European urban areas during 1999-2013. METHODS: We first analyzed air temperature-stratified associations between air pollution and total natural (nonaccidental) and cardiovascular mortality as well as air pollution-stratified temperature-mortality associations using city-specific over-dispersed Poisson additive models with a distributed lag nonlinear temperature term in each city. All models were adjusted for long-term and seasonal trend, day of the week, influenza epidemics, and population dynamics due to summer vacation and holidays. City-specific effect estimates were then pooled using random-effects meta-analysis. RESULTS: Pooled associations between air pollutants and total and cardiovascular mortality were overall positive and generally stronger at high relatively compared to low air temperatures. For example, on days with high air temperatures (>75th percentile), an increase of 10,000 particles/cm3 in PNC corresponded to a 2.51% (95% CI: 0.39%, 4.67%) increase in cardiovascular mortality, which was significantly higher than that on days with low air temperatures (<25th percentile) [-0.18% (95% CI: -0.97%, 0.62%)]. On days with high air pollution (>50th percentile), both heat- and cold-related mortality risks increased. CONCLUSION: Our findings showed that high temperature could modify the effects of air pollution on daily mortality and high air pollution might enhance the air temperature effects.

7.
Biom J ; 60(3): 480-497, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29532948

RESUMO

The ultrafine particle measurements in the Augsburger Umweltstudie, a panel study conducted in Augsburg, Germany, exhibit measurement error from various sources. Measurements of mobile devices show classical possibly individual-specific measurement error; Berkson-type error, which may also vary individually, occurs, if measurements of fixed monitoring stations are used. The combination of fixed site and individual exposure measurements results in a mixture of the two error types. We extended existing bias analysis approaches to linear mixed models with a complex error structure including individual-specific error components, autocorrelated errors, and a mixture of classical and Berkson error. Theoretical considerations and simulation results show, that autocorrelation may severely change the attenuation of the effect estimations. Furthermore, unbalanced designs and the inclusion of confounding variables influence the degree of attenuation. Bias correction with the method of moments using data with mixture measurement error partially yielded better results compared to the usage of incomplete data with classical error. Confidence intervals (CIs) based on the delta method achieved better coverage probabilities than those based on Bootstrap samples. Moreover, we present the application of these new methods to heart rate measurements within the Augsburger Umweltstudie: the corrected effect estimates were slightly higher than their naive equivalents. The substantial measurement error of ultrafine particle measurements has little impact on the results. The developed methodology is generally applicable to longitudinal data with measurement error.

8.
Sci Total Environ ; 631-632: 191-200, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29524895

RESUMO

OBJECTIVE: to study the sources contributing to quasi-ultrafine particle (UFP) organic carbon and the spatial temporal variability of the sources. METHOD: 24h quasi-UFP (particulate matter <0.36µm in this study) was sampled at a reference site continuously and at one of 5 other sites (T1, T2, T3, T4 and B1) in parallel in Augsburg, Germany from April 11th, 2014 to February 22nd, 2015, attempting to conduct 2-week campaigns at each site in 3 different seasons. Positive matrix factorization (PMF) was applied to measured organic tracers for source apportionment analyses. Pearson correlation coefficient r and coefficient of divergence (COD) were calculated to investigate spatial temporal variation of source contributions. RESULT: 5 sources were identified comprising biomass burning (BB), traffic emissions (Traffic), biogenic secondary organic aerosol (bioSOA), isoprene originated secondary organic aerosol (isoSOA) and biomass burning related secondary organic aerosol (bbSOA). In general, good temporal correlation and uniform distribution within the study area are found for bioSOA and bbSOA, probably resulting from regional formation/transport. Lower temporal correlation and spatial heterogeneity of isoSOA were found at the city background site with local influence from green space and less traffic impact. BB demonstrated very good temporal correlation, but higher contributions at sites influenced by local residential heating emissions were observed. Traffic showed the least seasonality and lower correlation over time among the sources. However, it demonstrated low spatial heterogeneity of absolute contribution, and only a few days of elevated contribution was found at T3 when wind came directly from the street nearby. CONCLUSION: temporal correlation and spatial variability of sources contributing to the organic fraction of quasi-UFP vary among sites and source types and show source-specific characteristics. Therefore, caution should be taken when using one monitor site measurement to assess human exposure in health effect studies of quasi-UFP.

9.
Int J Hyg Environ Health ; 221(3): 510-518, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29428699

RESUMO

BACKGROUND: Long-term exposure to ambient air pollution contributes to the global burden of disease by particularly affecting cardiovascular (CV) causes of death. We investigated the association between particle number concentration (PNC), a marker for ultrafine particles, and other air pollutants and high sensitivity C-reactive protein (hs-CRP) as a potential link between air pollution and CV disease. METHODS: We cross-sectionally analysed data from the second follow up (2013 and 2014) of the German KORA baseline survey which was conducted in 1999-2001. Residential long-term exposure to PNC and various other size fractions of particulate matter (PM10 with size of <10 µm in aerodynamic diameter, PMcoarse 2.5-10 µm or PM2.5 < 2.5 µm, respectively), soot (PM2.5abs: absorbance of PM2.5), nitrogen oxides (nitrogen dioxide NO2 or oxides NOx, respectively) and ozone (O3) were estimated by land-use regression models. Associations between annual air pollution concentrations and hs-CRP were modeled in 2252 participants using linear regression models adjusted for several confounders. Potential effect-modifiers were examined by interaction terms and two-pollutant models were calculated for pollutants with Spearman inter-correlation <0.70. RESULTS: Single pollutant models for PNC, PM10, PMcoarse, PM2.5abs, NO2 and NOx showed positive but non-significant associations with hs-CRP. For PNC, an interquartile range (2000 particles/cm3) increase was associated with a 3.6% (95% CI: -0.9%, 8.3%) increase in hs-CRP. A null association was found for PM2.5. Effect estimates were higher for women, non-obese participants, for participants without diabetes and without a history of cardiovascular disease whereas ex-smokers showed lower estimates compared to smokers or non-smokers. For O3, the dose-response function suggested a non-linear relationship. In two-pollutant models, adjustment for PM2.5 strengthened the effect estimates for PNC and PM10 (6.3% increase per 2000 particles/cm3 [95% CI: 0.4%; 12.5%] and 7.3% per 16.5 µg/m3 [95% CI: 0.4%; 14.8%], respectively). CONCLUSION: This study adds to a scarce but growing body of literature showing associations between long-term exposure to ultrafine particles and hs-CRP, one of the most intensely studied blood biomarkers for cardiovascular health. Our results highlight the role of ultrafine particles within the complex mixture of ambient air pollution and their inflammatory potential.

10.
Sci Total Environ ; 615: 828-837, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28992506

RESUMO

To investigate the organic composition and their sources of very fine atmospheric particulate matter (PM), size-segregated PM was sampled using rotating drum impactor (RDI) in series with a sequential filter sampler in Augsburg, Germany, from April 2014 to February 2015. Organic speciation analysis and organic carbon/elemental carbon (OC/EC) analysis was performed for the smallest size fraction PM0.36 (PM<360nm). Different OC fractions were determined by thermal optical EC/OC analyzer, and OC2, OC3 and OC4 refer to OC fractions that were derived at 280, 480 and 580°C, respectively. Positive matrix factorization (PMF) analysis was applied for source apportionment study. PMF resolved 5 sources including biogenic dominated secondary organic aerosol (bioSOA), isoprene dominated SOA (isoSOA), traffic, biomass burning (BB) and biomass burning originated SOA (bbSOA). On annual average, PMF results indicate the largest contribution of biogenic originated SOA (bioSOA plus isoSOA) to OC, followed by traffic and then BB related sources (BB plus bbSOA). Traffic was found to be associated with the smallest particles; whereas bioSOA and BB are associated with larger particles. Secondary organic marker compounds from biogenic precursors, OC2, OC3 and bioSOA, isoSOA source factors show summer maximum. Polycyclic aromatic hydrocarbons (PAHs), biomass burning markers, OC4 and BB, bbSOA source factors show winter maximum. Hopanes and the traffic source factor show little seasonal variation. Summer peaks of OC3 and OC2 are well modeled by PMF and are attributed mainly to biogenic SOA. OC4 was generally poorly modeled due to lack of characteristic low volatile markers. Summer maxima of biogenic SOA related compounds and source factors are positively correlated with temperature, global radiation, O3 concentration and mixing layer height (MLH). Winter maxima of BB related compounds and source factors are negatively correlated with temperature and MLH; whereas positively correlated with NO2 level.

11.
Eur Heart J ; 38(13): 983-990, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28417138

RESUMO

Aims: We investigated whether traffic-related air pollution and noise are associated with incident hypertension in European cohorts. Methods and results: We included seven cohorts of the European study of cohorts for air pollution effects (ESCAPE). We modelled concentrations of particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5), ≤10 µm (PM10), >2.5, and ≤10 µm (PMcoarse), soot (PM2.5 absorbance), and nitrogen oxides at the addresses of participants with land use regression. Residential exposure to traffic noise was modelled at the facade according to the EU Directive 2002/49/EC. We assessed hypertension as (i) self-reported and (ii) measured (systolic BP ≥ 140 mmHg or diastolic BP ≥ 90 mmHg or intake of BP lowering medication (BPLM). We used Poisson regression with robust variance estimation to analyse associations of traffic-related exposures with incidence of hypertension, controlling for relevant confounders, and combined the results from individual studies with random-effects meta-analysis. Among 41 072 participants free of self-reported hypertension at baseline, 6207 (15.1%) incident cases occurred within 5-9 years of follow-up. Incidence of self-reported hypertension was positively associated with PM2.5 (relative risk (RR) 1.22 [95%-confidence interval (CI):1.08; 1.37] per 5 µg/m³) and PM2.5 absorbance (RR 1.13 [95% CI:1.02; 1.24] per 10 - 5m - 1). These estimates decreased slightly upon adjustment for road traffic noise. Road traffic noise was weakly positively associated with the incidence of self-reported hypertension. Among 10 896 participants at risk, 3549 new cases of measured hypertension occurred. We found no clear associations with measured hypertension. Conclusion: Long-term residential exposures to air pollution and noise are associated with increased incidence of self-reported hypertension.


Assuntos
Poluição do Ar/efeitos adversos , Hipertensão/etiologia , Ruído dos Transportes/efeitos adversos , Idoso , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Anti-Hipertensivos/uso terapêutico , Europa (Continente)/epidemiologia , Feminino , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Incidência , Masculino , Pessoa de Meia-Idade , Material Particulado/efeitos adversos , Material Particulado/análise , Prognóstico , Estudos Prospectivos , Autorrelato
12.
Sci Total Environ ; 593-594: 337-346, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28346907

RESUMO

Air pollution, traffic noise and noise annoyance are suggested to be associated with hypertension and blood pressure (BP); however, the evidence remains inconsistent. Our study examined the long-term associations of modeled and self-reported measures of air pollution and traffic noise on prevalent hypertension and BP. We analyzed cross-sectional data from 2552 participants aged 31-72years from the KORA F4 (2006-2008) study conducted in the region of Augsburg, Germany. Land-use regression models were used to estimate residential long-term exposure to particulate matter <2.5µm (PM2.5), soot content of PM2.5 (PM2.5abs) and nitrogen dioxide (NO2). Road traffic noise levels at the facade of the dwellings were estimated for the participants' residences. Participants filled-in a questionnaire on noise annoyance and heavy traffic passing their residence. Linear and logistic regression models adjusting for confounders were used to assess the association between exposure measures and hypertension and BP. An interquartile increase in annual mean PM2.5 (1µg/m3) was significantly associated with 15% higher prevalence of hypertension, without (95% CI: 2.5; 28.0%) and with (95% CI: 0.7; 30.8%) adjustment for traffic noise. Diastolic blood pressure (DBP) was associated with air pollutants and traffic noise with percent increases in mean of 0.7 (95% CI: 0.2; 1.2), 0.6 (95% CI: 0.1; 1.1) and 0.3 (95% CI: 0.0; 0.7) for an interquartile increase in PM2.5 (1µg/m3) and PM2.5abs (0.2∗10-5/m), and 5dB(A) increase in 24-hour road traffic noise, respectively. Associations of PM2.5abs and NO2 with hypertension or DBP were stronger in men and diabetic individuals. No clear associations were seen with systolic BP or noise annoyance. In conclusion, self-reported measures of air pollution or noise did not perform better than the objective measures. Our findings provide further evidence for a link between air pollution, noise and cardiovascular disease and indicate a stronger association for men and diabetic individuals.


Assuntos
Poluição do Ar/análise , Pressão Sanguínea , Exposição Ambiental , Hipertensão/epidemiologia , Ruído , Adulto , Idoso , Estudos Transversais , Diabetes Mellitus/epidemiologia , Feminino , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Dióxido de Nitrogênio/análise , Material Particulado/análise , Autorrelato
13.
Epidemiology ; 28(2): 172-180, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27922535

RESUMO

BACKGROUND: Epidemiologic evidence on the association between short-term exposure to ultrafine particles and mortality is weak, due to the lack of routine measurements of these particles and standardized multicenter studies. We investigated the relationship between ultrafine particles and particulate matter (PM) and daily mortality in eight European urban areas. METHODS: We collected daily data on nonaccidental and cardiorespiratory mortality, particle number concentrations (as proxy for ultrafine particle number concentration), fine and coarse PM, gases and meteorologic parameters in eight urban areas of Finland, Sweden, Denmark, Germany, Italy, Spain, and Greece, between 1999 and 2013. We applied city-specific time-series Poisson regression models and pooled them with random-effects meta-analysis. RESULTS: We estimated a weak, delayed association between particle number concentration and nonaccidental mortality, with mortality increasing by approximately 0.35% per 10,000 particles/cm increases in particle number concentration occurring 5 to 7 days before death. A similar pattern was found for cause-specific mortality. Estimates decreased after adjustment for fine particles (PM2.5) or nitrogen dioxide (NO2). The stronger association found between particle number concentration and mortality in the warmer season (1.14% increase) became null after adjustment for other pollutants. CONCLUSIONS: We found weak evidence of an association between daily ultrafine particles and mortality. Further studies are required with standardized protocols for ultrafine particle data collection in multiple European cities over extended study periods.


Assuntos
Poluição do Ar/estatística & dados numéricos , Cidades , Exposição Ambiental/estatística & dados numéricos , Mortalidade , Dióxido de Nitrogênio , Material Particulado , População Urbana/estatística & dados numéricos , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Dinamarca , Europa (Continente) , Feminino , Finlândia , Alemanha , Grécia , Humanos , Lactente , Recém-Nascido , Itália , Masculino , Pessoa de Meia-Idade , Distribuição de Poisson , Análise de Regressão , Espanha , Suécia , Fatores de Tempo , Adulto Jovem
14.
Sci Total Environ ; 579: 1531-1540, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27916311

RESUMO

Important health relevance has been suggested for ultrafine particles (UFP) and ozone, but studies on long-term effects are scarce, mainly due to the lack of appropriate spatial exposure models. We designed a measurement campaign to develop land use regression (LUR) models to predict the spatial variability focusing on particle number concentration (PNC) as indicator for UFP, ozone and several other air pollutants in the Augsburg region, Southern Germany. Three bi-weekly measurements of PNC, ozone, particulate matter (PM10, PM2.5), soot (PM2.5abs) and nitrogen oxides (NOx, NO2) were performed at 20 sites in 2014/15. Annual average concentration were calculated and temporally adjusted by measurements from a continuous background station. As geographic predictors we offered several traffic and land use variables, altitude, population and building density. Models were validated using leave-one-out cross-validation. Adjusted model explained variance (R2) was high for PNC and ozone (0.89 and 0.88). Cross-validation adjusted R2 was slightly lower (0.82 and 0.81) but still indicated a very good fit. LUR models for other pollutants performed well with adjusted R2 between 0.68 (PMcoarse) and 0.94 (NO2). Contrary to previous studies, ozone showed a moderate correlation with NO2 (Pearson's r=-0.26). PNC was moderately correlated with ozone and PM2.5, but highly correlated with NOx (r=0.91). For PNC and NOx, LUR models comprised similar predictors and future epidemiological analyses evaluating health effects need to consider these similarities.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental/métodos , Modelos Teóricos , Óxidos de Nitrogênio/análise , Ozônio/análise , Material Particulado/análise , Altitude , Alemanha
15.
Int J Epidemiol ; 45(5): 1528-1538, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27892410

RESUMO

BACKGROUND: Short-term exposure to air pollution is associated with morbidity and mortality. Metabolites are intermediaries in biochemical processes, and associations between air pollution and metabolites can yield unique mechanistic insights. METHODS: We used independent cross-sectional samples with targeted metabolomics (138 metabolites across five metabolite classes) from three cohort studies, each a part of the Cooperative Health Research in the Region of Augsburg (KORA). The KORA cohorts are numbered (1 to 4) according to which survey they belong to, and lettered S or F according to whether the survey was a baseline or follow-up survey. KORA F4 (N = 3044) served as our discovery cohort, with KORA S4 (N = 485) serving as the primary replication cohort. KORA F4 and KORA S4 were primarily fasting cohorts. We used the non-fasting KORA F3 (N = 377) cohort to evaluate replicated associations in non-fasting individuals, and we performed a random effects meta-analysis of all three cohorts. Associations between the 0-4-day lags and the 5-day average of particulate matter (PM)2.5, NO2 and ozone were modelled via generalized additive models. All air pollution exposures were scaled to the interquartile range, and effect estimates presented as percent changes relative to the geometric mean of the metabolite concentration (ΔGM). RESULTS: There were 10 discovery cohort associations, of which seven were lysophosphatidylcholines (LPCs); NO2 was the most ubiquitous exposure (5/10). The 5-day average NO2-LPC(28:0) association was associated at a Bonferroni corrected P-value threshold (P < 1.2x10-4) in KORA F4 [ΔGM = 11.5%; 95% confidence interval (CI) = 6.60, 16.3], and replicated (P < 0.05) in KORA S4 (ΔGM = 21.0%; CI = 4.56, 37.5). This association was not observed in the non-fasting KORA F3 cohort (ΔGM = -5.96%; CI = -26.3, 14.3), but remained in the random effects meta-analysis (ΔGM = 10.6%; CI = 0.16, 21). CONCLUSIONS: LPCs are associated with short-term exposure to air pollutants, in particular NO2 Further research is needed to understand the effect of nutritional/fasting status on these associations and the causal mechanisms linking air pollution exposure and metabolite profiles.


Assuntos
Poluição do Ar/efeitos adversos , Ácidos Graxos/sangue , Metaboloma , Dióxido de Nitrogênio/efeitos adversos , Adulto , Idoso , Consumo de Bebidas Alcoólicas/epidemiologia , Estudos Transversais , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Alemanha , Humanos , Modelos Lineares , Lisofosfatidilcolinas/sangue , Masculino , Metabolômica , Pessoa de Meia-Idade , Ozônio/análise , Material Particulado/análise , Estudos Prospectivos , Estações do Ano , Fatores Sexuais , Fumar/epidemiologia , Fatores de Tempo
16.
Oncotarget ; 7(46): 74510-74525, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27793020

RESUMO

Long-term exposure to air pollution is associated with age-related diseases. We explored the association between accelerated biological aging and air pollution, a potential mechanism linking air pollution and health. We estimated long-term exposure to PM10, PM2.5, PM2.5 absorbance/black carbon (BC), and NOx via land-use regression models in individuals from the KORA F4 cohort. Accelerated biological aging was assessed using telomere length (TeloAA) and three epigenetic measures: DNA methylation age acceleration (DNAmAA), extrinsic epigenetic age acceleration (correlated with immune cell counts, EEAA), and intrinsic epigenetic age acceleration (independent of immune cell counts, IEAA). We also investigated sex-specific associations between air pollution and biological aging, given the published association between sex and aging measures. In KORA an interquartile range (0.97 µg/m3) increase in PM2.5 was associated with a 0.33 y increase in EEAA (CI = 0.01, 0.64; P = 0.04). BC and NOx (indicators or traffic exposure) were associated with DNAmAA and IEAA in women, while TeloAA was inversely associated with BC in men. We replicated this inverse BC-TeloAA association in the Normative Aging Study, a male cohort based in the USA. A multiple phenotype analysis in KORA F4 combining all aging measures showed that BC and PM10 were broadly associated with biological aging in men. Thus, we conclude that long-term exposure to air pollution is associated with biological aging measures, potentially in a sex-specific manner. However, many of the associations were relatively weak and further replication of overall and sex-specific associations is warranted.


Assuntos
Envelhecimento , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Idoso , Envelhecimento/genética , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Material Particulado , Risco , Fatores de Tempo
17.
Eur Respir J ; 48(3): 674-82, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27338189

RESUMO

Epidemiological evidence on the associations between exposure to ultrafine particles (UFP), with aerodynamic electrical mobility diameters <100 nm, and health is limited. We gathered data on UFP from five European cities within 2001-2011 to investigate associations between short-term changes in concentrations and respiratory hospitalisations.We applied city-specific Poisson regression models and combined city-specific estimates to obtain pooled estimates. We evaluated the sensitivity of our findings to co-pollutant adjustment and investigated effect modification patterns by period of the year, age at admission and specific diagnoses.Our results for the whole time period do not support an association between UFP and respiratory hospitalisations, although we found suggestive associations among those 0-14 years old. We nevertheless report consistent adverse effect estimates during the warm period of the year, statistically significant after lag 2 when an increase by 10 000 particles per cm(3) was associated with a 4.27% (95% CI 1.68-6.92%) increase in hospitalisations. These effect estimates were robust to particles' mass or gaseous pollutants adjustment.Considering that our findings during the warm period may reflect better exposure assessment and that the main source of non-soluble UFP in urban areas is traffic, our results call for improved regulation of traffic emissions.


Assuntos
Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Hospitalização/estatística & dados numéricos , Material Particulado/efeitos adversos , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Monitoramento Ambiental , Europa (Continente) , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Tamanho da Partícula , Distribuição de Poisson , Pneumologia , Análise de Regressão , Temperatura Ambiente , Adulto Jovem
18.
Environ Res ; 150: 337-47, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27344265

RESUMO

BACKGROUND AND AIMS: Epidemiological studies have shown adverse effects of ambient air pollutants on health with inflammation and oxidative stress playing an important role. We examine the association between blood biomarkers of inflammation and coagulation and physical attributes of particulate matter which are not routinely measured such as particle length or surface area concentration and apparent density of PM. METHODS: Between 3/2007 and 12/2008 187 non-smoking individuals with type 2 diabetes mellitus (T2D) or impaired glucose tolerance (IGT) were examined within the framework of the KORA Study in Augsburg, Germany. In addition, we selected 87 participants with a potential genetic predisposition on detoxifying and inflammatory pathways. This was defined by the null polymorphism for glutathione S-transferase M1 in combination with a certain single nucleotide polymorphism on the C-reactive protein (CRP) gene (rs1205) or the fibrinogen gene (rs1800790). Participants had blood drawn up to seven different times, resulting in 1765 blood samples. Air pollutants were collected at a central measurement station and individual 24-h averages calculated. Associations between air pollutants and high sensitivity CRP, myeloperoxidase (MPO), interleukin (IL)-6 and fibrinogen were analysed using additive mixed models. RESULTS: For the panel with genetic susceptibility, increases were seen for CRP and MPO with most attributes, specifically particle length and active surface concentration. The %change of geometric mean and 95% confidence intervals for the 5-day average exposure for CRP and MPO were 34.6% [21.8;48.8] and 8.3% [3.2;13.6] per interquartile range increase of particle length concentration and 29.8% [15.9;45.3] and 10.4 [4.4;16.7] for active surface area. Results for the panel of T2D and IGT and the other blood biomarkers were less conclusive. CONCLUSIONS: Particle length concentration and active surface concentration showed strong positive associations with blood biomarkers reflecting inflammation. These air pollution metrics might reflect harmful aerosol properties better than particulate mass or number concentration. They might therefore be important for epidemiological studies.


Assuntos
Poluentes Atmosféricos/análise , Diabetes Mellitus Tipo 2/sangue , Intolerância à Glucose/sangue , Material Particulado/análise , Idoso , Coagulação Sanguínea/genética , Proteína C-Reativa/análise , Proteína C-Reativa/genética , Diabetes Mellitus Tipo 2/genética , Feminino , Fibrinogênio/análise , Fibrinogênio/genética , Intolerância à Glucose/genética , Glutationa Transferase/genética , Humanos , Inflamação/sangue , Inflamação/genética , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Peroxidase/sangue , Polimorfismo de Nucleotídeo Único
20.
Am J Respir Crit Care Med ; 194(10): 1233-1241, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27224452

RESUMO

RATIONALE: Evidence of short-term effects of ultrafine particles (UFP) on health is still inconsistent and few multicenter studies have been conducted so far especially in Europe. OBJECTIVES: Within the UFIREG project, we investigated the short-term effects of UFP and fine particulate matter (particulate matter with an aerodynamic diameter less than 2.5 µm [PM2.5]) on daily cause-specific hospital admissions in five Central and Eastern European cities using harmonized protocols for measurements and analyses. METHODS: Daily counts of cause-specific hospital admissions focusing on cardiovascular and respiratory diseases were obtained for Augsburg and Dresden (Germany), 2011-2012; Chernivtsi (Ukraine), 2013 to March 2014; and Ljubljana (Slovenia) and Prague (Czech Republic), 2012-2013. Air pollution and meteorologic data were measured at fixed monitoring sites in all cities. We analyzed city-specific associations using confounder-adjusted Poisson regression models and pooled the city-specific effect estimates using metaanalysis methods. MEASUREMENTS AND MAIN RESULTS: A 2,750 particles/cm3 increase (average interquartile range across all cities) in the 6-day average of UFP indicated a delayed and prolonged increase in the pooled relative risk of respiratory hospital admissions (3.4% [95% confidence interval, -1.7 to 8.8%]). We also found increases in the pooled relative risk of cardiovascular (exposure average of lag 2-5, 1.8% [0.1-3.4%]) and respiratory (6-d average exposure, 7.5% [4.9-10.2%]) admissions per 12.4 µg/m3 increase (average interquartile range) in PM2.5. CONCLUSIONS: Our findings indicated delayed and prolonged effects of UFP exposure on respiratory hospital admissions in Central and Eastern Europe. Cardiovascular and respiratory hospital admissions increased in association with an increase in PM2.5. Further multicenter studies are needed using harmonized UFP measurements to draw definite conclusions on health effects of UFP.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Doenças Cardiovasculares/epidemiologia , Hospitalização/estatística & dados numéricos , Material Particulado , Transtornos Respiratórios/epidemiologia , Saúde da População Urbana/estatística & dados numéricos , Idoso , Cidades , República Tcheca/epidemiologia , Feminino , Alemanha/epidemiologia , Humanos , Masculino , Eslovênia/epidemiologia , Ucrânia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA