Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Zootaxa ; 4564(1): zootaxa.4564.1.6, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-31716519


The taxonomic status and systematic nomenclature of the Australian dingo remain contentious, resulting in decades of inconsistent applications in the scientific literature and in policy. Prompted by a recent publication calling for dingoes to be considered taxonomically as domestic dogs (Jackson et al. 2017, Zootaxa 4317, 201-224), we review the issues of the taxonomy applied to canids, and summarise the main differences between dingoes and other canids. We conclude that (1) the Australian dingo is a geographically isolated (allopatric) species from all other Canis, and is genetically, phenotypically, ecologically, and behaviourally distinct; and (2) the dingo appears largely devoid of many of the signs of domestication, including surviving largely as a wild animal in Australia for millennia. The case of defining dingo taxonomy provides a quintessential example of the disagreements between species concepts (e.g., biological, phylogenetic, ecological, morphological). Applying the biological species concept sensu stricto to the dingo as suggested by Jackson et al. (2017) and consistently across the Canidae would lead to an aggregation of all Canis populations, implying for example that dogs and wolves are the same species. Such an aggregation would have substantial implications for taxonomic clarity, biological research, and wildlife conservation. Any changes to the current nomen of the dingo (currently Canis dingo Meyer, 1793), must therefore offer a strong, evidence-based argument in favour of it being recognised as a subspecies of Canis lupus Linnaeus, 1758, or as Canis familiaris Linnaeus, 1758, and a successful application to the International Commission for Zoological Nomenclature - neither of which can be adequately supported. Although there are many species concepts, the sum of the evidence presented in this paper affirms the classification of the dingo as a distinct taxon, namely Canis dingo.

Canidae , Lobos , Animais , Austrália , Cães , Filogenia
PLoS One ; 14(5): e0214640, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31042731


Screams are acoustically distinct, high-pitched and high-amplitude calls, produced by many social species. Despite a wide range of production contexts, screams are characterised by an acoustic structure that appears to serve in altering the behaviour of targeted receivers during agonistic encounters. In chimpanzees, this can be achieved by callers producing acoustic variants that correlate with their identity, social role, relationship with the targeted recipient, the composition of the audience and the nature of the event. Although vervet monkeys (Chlorocebus pygerythrus) have been studied for decades, not much is known about their agonistic screams. Here, we examined agonistic screams produced by wild vervet monkeys to investigate the degree to which caller identity, social role and conflict severity affected call structure. We found that screams were both individually distinctive and dependent of the agonistic events. In particular, victim screams were longer and higher-pitched than aggressor screams, while screams produced in severe conflicts (chases, physical contact) had higher entropy than those in mild conflicts. We discuss these findings in terms of their evolutionary significance and suggest that acoustic variation might serve to reduce the aggression level of opponents, while simultaneously attracting potential helpers.

Comportamento Agonístico/fisiologia , Vocalização Animal/fisiologia , Animais , Evolução Biológica , Feminino , Masculino , Variações Dependentes do Observador , Comportamento Social
Sci Rep ; 6: 30556, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27460289


Multicomponent signals can be formed by the uninterrupted concatenation of multiple call types. One such signal is found in dingoes, Canis familiaris dingo. This stereotyped, multicomponent 'bark-howl' vocalisation is formed by the concatenation of a noisy bark segment and a tonal howl segment. Both segments are structurally similar to bark and howl vocalisations produced independently in other contexts (e.g. intra- and inter-pack communication). Bark-howls are mainly uttered in response to human presence and were hypothesized to serve as alarm calls. We investigated the function of bark-howls and the respective roles of the bark and howl segments. We found that dingoes could discriminate between familiar and unfamiliar howl segments, after having only heard familiar howl vocalisations (i.e. different calls). We propose that howl segments could function as 'identity signals' and allow receivers to modulate their responses according to the caller's characteristics. The bark segment increased receivers' attention levels, providing support for earlier observational claims that barks have an 'alerting' function. Lastly, dingoes were more likely to display vigilance behaviours upon hearing bark-howl vocalisations, lending support to the alarm function hypothesis. Canid vocalisations, such as the dingo bark-howl, may provide a model system to investigate the selective pressures shaping complex communication systems.

Canidae , Vocalização Animal , Animais , Comportamento Animal , Feminino , Masculino
Behav Processes ; 129: 94-100, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27343622


Dingoes (genus Canis) produce a stereotyped bark-howl vocalisation, which is a unimodal complex signal formed by the concatenation of two call types (a bark and a howl). Bark-howls may function as alarm signals, although there has been no empirical investigation of this vocalisation's structure or function. We quantified the content and efficacy of the bark and howl segments separately and when combined, using 140 calls from 10 individuals. We found that both segments are individually distinctive, although howl segments are more accurately classified, suggesting a higher level of individuality. Furthermore, howls convey signature characteristics that are conserved across different contexts of production, and thus may act as 'identity signals'. The individual distinctiveness of full bark-howls increases above that of isolated segments, which may be a result of selection on improved signal discriminability. Propagation tests revealed that bark-howls are best described as medium-range signals, with both segments potentially allowing for individual discrimination up to 200m regardless of environmental conditions. We discuss our findings regarding the fitness benefits of encoding identity cues in a potential alarm call and propose additional hypotheses for the function(s) of bark and howl segments.

Canidae/fisiologia , Canidae/psicologia , Sinais (Psicologia) , Individualidade , Vocalização Animal , Animais , Feminino , Masculino
PLoS One ; 10(11): e0142975, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26571266


Evidence of animal multimodal signalling is widespread and compelling. Dogs' aggressive vocalisations (growls and barks) have been extensively studied, but without any consideration of the simultaneously produced visual displays. In this study we aimed to categorize dogs' bimodal aggressive signals according to the redundant/non-redundant classification framework. We presented dogs with unimodal (audio or visual) or bimodal (audio-visual) stimuli and measured their gazing and motor behaviours. Responses did not qualitatively differ between the bimodal and two unimodal contexts, indicating that acoustic and visual signals provide redundant information. We could not further classify the signal as 'equivalent' or 'enhancing' as we found evidence for both subcategories. We discuss our findings in relation to the complex signal framework, and propose several hypotheses for this signal's function.

Agressão/fisiologia , Comunicação Animal , Animais Domésticos/fisiologia , Estimulação Acústica , Animais , Cães , Feminino , Fixação Ocular/fisiologia , Habituação Psicofisiológica , Masculino , Atividade Motora , Estimulação Luminosa