Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Atmos Chem Phys ; 18(14): 10199-10218, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30450115


The evaluation and intercomparison of air quality models is key to reducing model errors and uncertainty. The projects AQMEII3 and EURODELTA-Trends, in the framework of the Task Force on Hemispheric Transport of Air Pollutants and the Task Force on Measurements and Modelling, respectively (both task forces under the UNECE Convention on the Long Range Transport of Air Pollution, LTRAP), have brought together various regional air quality models to analyze their performance in terms of air concentrations and wet deposition, as well as to address other specific objectives. This paper jointly examines the results from both project communities by intercomparing and evaluating the deposition estimates of reduced and oxidized nitrogen (N) and sulfur (S) in Europe simulated by 14 air quality model systems for the year 2010. An accurate estimate of deposition is key to an accurate simulation of atmospheric concentrations. In addition, deposition fluxes are increasingly being used to estimate ecological impacts. It is therefore important to know by how much model results differ and how well they agree with observed values, at least when comparison with observations is possible, such as in the case of wet deposition. This study reveals a large variability between the wet deposition estimates of the models, with some performing acceptably (according to previously defined criteria) and others underestimating wet deposition rates. For dry deposition, there are also considerable differences between the model estimates. An ensemble of the models with the best performance for N wet deposition was made and used to explore the implications of N deposition in the conservation of protected European habitats. Exceedances of empirical critical loads were calculated for the most common habitats at a resolution of 100 × 100 m2 within the Natura 2000 network, and the habitats with the largest areas showing exceedances are determined. Moreover, simulations with reduced emissions in selected source areas indicated a fairly linear relationship between reductions in emissions and changes in the deposition rates of N and S. An approximate 20 % reduction in N and S deposition in Europe is found when emissions at a global scale are reduced by the same amount. European emissions are by far the main contributor to deposition in Europe, whereas the reduction in deposition due to a decrease in emissions in North America is very small and confined to the western part of the domain. Reductions in European emissions led to substantial decreases in the protected habitat areas with critical load exceedances (halving the exceeded area for certain habitats), whereas no change was found, on average, when reducing North American emissions in terms of average values per habitat.

Sci Total Environ ; 644: 884-898, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743886


An assessment of potential carcinogenic and toxic health outcomes related to atmospheric emissions from the new-generation coal fired power plant of Torrevaldaliga Nord, in Central Italy, has been conducted. A chemical-transport model was applied on the reference year 2010 in the area of the plant, in order to calculate airborne concentrations of a set of 17 emitted pollutants of health concern. Inhalation cancer risks and hazard quotients, for each pollutant and for each target organ impacted via the inhalation pathway, were calculated and mapped on the study domain for the overall ambient concentrations and for the sole contribution of the plant to airborne concentrations, allowing to assess the relative contribution of the power plant to the risk from all sources. Cancer risks, cumulated on all pollutants, resulted around 5 × 10-5 for the concentrations from all sources and below 3 × 10-7 for the plant contribution, mainly targeting the respiratory system. On each part of the study domain, the plant contributed for less than 6% to the overall cancer risk. Hazard quotients from all sources, cumulated on all pollutants, reached values of 2.5 for the respiratory and 1.5 for the cardiovascular systems. Hazard quotients of non-carcinogenic risks from the plant, cumulated on all pollutants, resulted below 0.03 for the respiratory system and 0.02 for the cardiovascular system. On each part of the study domain, the plant contributed for less than 5% to the respiratory and cardiovascular risks. Both cancer risks and hazard quotients related to the plant are far below international thresholds for human health protection, while the values from all sources require consideration. The proposed method provides an instrument for prospective health risk assessment of large industrial sources, with some limitations presented and discussed.

Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Exposição por Inalação/estatística & dados numéricos , Centrais Elétricas , Poluentes Atmosféricos/análise , Carvão Mineral , Exposição Ambiental/estatística & dados numéricos , Humanos , Itália , Material Particulado/análise , Estudos Prospectivos , Medição de Risco