Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microb Pathog ; 146: 104237, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32387391

RESUMO

Fusarium verticillioides is often responsible for contamination of poultry feed with the mycotoxin fumonisin. The aim of this study was to determine whether oxidative stress caused by intake of fumonisin-contaminated feed affects broiler performance at an early stage of development, as well as to test whether the addition of açai residue flour to contaminated feed would minimize these negative effects of redox metabolism. Birds were divided into four groups, with four repetitions of five animals each: control (TC) - birds that received basal feed; TCA treatment - basal feed supplemented with 2% açai flour; TF treatment - feed experimentally contaminated with fumonisin (10 ppm); TFA treatment - fumonisin-contaminated feed (10 ppm) and supplemented with açai fluor (2%). The experiment lasted 20 days, that is, the first 20 days of the chicks' lives. At the end of the experiment, the birds were weighed, and blood, intestine and liver samples were collected. The TCA and TFA had greater body weights and weight gain than did TF. Further, TCA and TFA had lower feed conversion than did TF. Açai flour intake (TCA and TFA) stimulated albumin synthesis and reduced serum AST activity. Nitrate/nitrite (NOx) levels were higher in serum of fumonisin-challenged (TF) birds than in groups; NOx levels were also higher in the livers of all test groups (TF, TCA and TFA) than in TC. Serum glutathione S-transferase (GST) activity was lower in fumonisin-consuming groups (TF and TFA); this was different from what occurred in the liver, that is, higher GST activity in TF and lower activity in TFA than in TC. Catalase activity (CAT) was also higher in the fumonisin-challenged groups (TF and TFA) and the groups supplemented with açai flour (TCA) than in TC. Serum reactive species (RS) and TBARS (lipid peroxidation) levels in the liver were lower in birds supplemented with açai flour and exposed to fumonisin. These data suggest that the addition of açai flour in the feed of early chickens improves animal performance and minimizes the effects of hepatic oxidative stress in birds fed fumonisin-contaminated feed.

2.
Microb Pathog ; : 104261, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32422333

RESUMO

Glycerol monolaurate (GML) is composed of lauric acid and glycerol. Research has shown that such organic acids can minimize negative effects caused by mycotoxins. Therefore, the objective of this study was to determine whether adding GML (free or encapsulated) to chick feed minimizes the effects of natural contamination by fumonisin (Fusarium verticillioides), evaluating parameters such as biochemistry, antioxidant properties, histological analysis and chick growth. Were weighed 84 chicks of the Cobb 500 strain and randomly distributed them into six groups of two replicates each (n = 14). The F group consumed feed containing fumonisin (levels 400 ppb), with no performance enhancer; F + ZB- feed with fumonisin (levels 400 ppb) + zinc bacitracin; F + GLM100 - feed with fumonisin (levels 400 ppb) + 100 mg of GML/kg of feed; F + NGLM4 - feed with fumonisin (levels 400 ppb) + 4 mg GML/kg in nanocapsules added to the feed; F + NGLM8 - fumonisin feed (levels 400 ppb) + 8 mg GML/kg in nanocapsules in the feed; and F0 - fumonisin-free feed (negative control) + zinc bacitracin. The body weights of birds fed with feed fumonisin-contaminated feed (F, F + ZB, F + GLM100, F + NGLM4 and F + NGLM8) were significantly lower (P < 0.05) than those of the negative control (F0), despite the use of GML (free and nanoencapsulated). Serum levels of triglycerides, globulins and cholesterol were significantly lower in the F0 group than in the other groups (P < 0.05), except for the F + NGLM8 group. Significantly greater levels of lipid peroxidation were observed in livers in the groups that consumed fumonisin than in the control group (F0) (P < 0.05). Serum levels of reactive oxygen species were significantly lower in groups F + NGLM8 and F0 than in the other treatments (P < 0.05). Superoxide dismutase activity was significantly greater in groups F + NGLM8 and F0 than in groups F, F + ZB and F + NGLM4. Hepatic catalase activity was significantly lower in birds that consumed contaminated feed (F, F + ZB, F + GLM100, F + NGLM4 and F + NGLM8) than in the control group (F0). Greater hepatic glutathione S-transferase activity was observed in the F + NGLM8 group than in the F0 group. Despite changes in cellular lesions in the liver, no histological changes were observed in the liver or intestines, even though visually there was yellowing of the liver. Taken together, the data suggest that free or nano-encapsulated GML did not minimize oxidative stress caused by fumonisin, and consequently, these birds had less weight gain.

3.
Infect Genet Evol ; : 104355, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32389829

RESUMO

Brazil is the number one exporter of chicken meat, and this industry maintains constant microbiological vigilance. The objective of this study was to characterize the pathogenicity, antimicrobial resistance (AMR) and the profile of biofilm production of Escherchia coli strains isolated from raw refrigerated cuts of chicken meat sold in retail markets of the four largest poultry companies in Brazil. We collected 150 samples of chicken meat, in order to isolate E. coli and performed susceptibility tests (to amoxicillin associated with clavulanic acid, ceftiofur, enrofloxacin, gentamicin, and trimethoprim + sulfamethoxazole). In addition, the disc approximation test to detect extended spectrum beta-lactamases enzymes (ESBLs) producers was performed. E. coli ability to form biofilm was checked using polystyrene microplates. We also searched for ESBLs genes (blaCTY-M2, blaSHV-1, blaTEM-1, blaCTX-M2, blaOXA-1, blaPSE-1 and AmpC) and adhesion genes (sfa/foc, afa/draB, iha, hrla, fimC, tsh, papC, mat, cr1, felA, fimH and papG) in ESBL-E. coli producers and in those E. coli classified as strongly biofilm formers, respectively. The overall percentage of E. coli isolation was 58.66%, with brand A having the highest percentage (70%), followed by brands D, B and C (60, 53.3 and 50%, respectively). The highest resistance profile was observed for beta-lactams (39.5%), followed by sulfonamide associated to trimethoprim (36.9%) and polymyxin (33.4%). Of the isolates obtained, 77% were non-susceptible to at least one antimicrobial. Brand A showed the highest overall percentage of resistance with 95.23%, followed by brands C (80%), B (75%) and D (69.44%). Overall, 73.86% of the isolates were non susceptible to at least one antibiotic and 36.3% were multiresistants. A total of 17.04% of E. coli strains were identified as ESBLs producers and 70.44% were able to form biofilms (moderate-to-strong). The blaTEM-1 gene was the most prevalent (73.33%), followed by blaSHV-1 (46.66%) and blaCMY-2 (6%). Of the 31 strongly biofilm-forming strains, 26 (83.87%), 24 (77.41%) and 20 (64.51%) expressed fimC, papG and crl genes, respectively. Taken together, our results show that Brazilian chicken meat can be contaminated with E. coli that are non-susceptible to multiple antibiotics, able to form biofilm and showing a diverse repertoire of adhesins linked to pathogenicity depending on the brand evaluated.

4.
Microb Pathog ; : 104247, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32437833

RESUMO

Fusarium verticillioides is often responsible for contamination of poultry feed with the mycotoxin fumonisin. The objective of the study was to determine whether fumonisin-contaminated feed in the early phase of broiler chicks causes oxidative imbalances and interferes with weight gain. One-day-old male Cobb 500 broiler chicks (n = 80) were divided into four treatments of 20 birds each, all of which were fed basal feed until the 11th day of age. From day 12, some birds were challenged with fumonisin in the feed: Control (T0) continued receiving the basal ration; treatments T1, T2, and T3 were given feed experimentally contaminated with fumonisin at concentrations of 2.5 ppm, 5 ppm and 10 ppm, respectively. After the 5th (day 17) and 10th (day 21) days, ten birds from each treatment were euthanized for blood and tissue collection to measure histopathological, biochemical and oxidative stress markers. All animals were weighed individually at the beginning of the experiment (day 12), and at 17 and 21 days of age. Birds that ingested 10 ppm of fumonisin (T3) had lower (P < 0.05) weight gain compared to those in T0. At 21 days, the body weights of the T1, T2 and T3 chicks were 1.3%, 8.97% and 18.7% lower, respectively, than those of T0. No histological lesions in the livers were observed for any treatment; however, higher levels of reactive oxygen species (ROS: day 21) and lipoperoxidation (LPO: days 17 and 21) were observed, associated with lower liver activity of the enzymes superoxide dismutase (SOD: day 21), glutathione peroxidase (GPx: day 17 and 21) and glutathione S-transferase (GST: day 21) when birds consumed 5 or 10 ppm of fumonisin. In serum, LPO levels and SOD and GPx activities were lower for groups consuming high doses of fumonisin in the diet (T2 and T3); ROS levels and GST activity were higher in these birds. Birds that consumed fumonisin-containing diets had lower levels of alanine aminotransferase, total protein and albumin (T3); as well as lower serum glucose levels (days 17 and 21), uric acid and triglycerides (day 21) in T3 than in T0. At 21 days, there were smaller crypt sizes and intestinal villi in birds that consumed high levels of fumonisin. These results suggest that fumonisin (10 ppm) in chick diet causes hepatic oxidative stress and impairs intestinal health, consequently negatively affecting weight gain.

5.
Microb Pathog ; : 104269, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32439564

RESUMO

Escherichia coli is a bacterium normally found in the gastrointestinal tract of domestic animals that can usually control the infection. Nevertheless, some factors (high exposure, stress conditions, animal category, among others) can favor the exacerbation of E. coli infection and cause of disease. Because it is a zoonotic bacterium, it is important to control the infection, avoiding contamination of home interiors in the case of pets. There are various forms of treatment for E. coli; nevertheless, there are few options for prevention. In the present study, we evaluated homeopathy. Thus, the objective of this study was to determine whether administration of a prophylactic homeopathic in water would minimize the negative effects of E. coli infection, as well as reducing bacterial counts in the feces of a experimental model. Forty mice were divided into four experimental groups (n = 10/group). Groups NC (negative control) and PC (positive control) were not treated; In group T1, the animals received 0.002 mL/day/animal of the homeopathic in water, and animals in group T2 0.004 mL/day/animal. The experiment lasted 54 days, and on the 31st day, mice of T1, T2 and PC groups were infected orally a 0.2 mL inoculum of 1.5 × 108 CFU of E. coli. Euthanasia and sample collection were performed on the 40th and 54th days of the experiment (n = 5/group/time point). Blood, liver, spleen, intestine, and feces samples were collected from the final portion of the intestine. There was no significant difference in animal weight between groups at the end of the experiment. Neutrophil count was lower in PC group animals on day 40, while on day 54, the counts were lower in T2 and PC. Lymphocyte counts were lower only in the PC group than in the NC group on day 54. Globulins were lower in the NC and PC groups than in T1 and T2 on day 40, remaining lower the PC group and higher in T1 on day 54; levels of immunoglobulin IgG and IgM were higher in groups T1 and T2, which differed from PC and NC. TNF-α levels were higher in the T1 and T2 groups at 40 and 54 days. INF-γ levels were higher in T1, T2, and PC compared to NC on day 40, remaining higher than NC in groups T1 and T2 on day 54. Total bacterial count, total coliforms and E. coli counts were lower in group T1 and higher in NC and PC on days 40 and 54, when they were lower for T1 and T2. Histologically, no lesions were observed in extra-intestinal tissues; however the height of intestinal crypts in the PC group was smaller than the others on day 40. On day 54, villi and crypts of all infected groups were larger in T1 and T2 than in NC; sizes in the PC group were higher than those of all other groups. These data suggest that the homeopathic agent in the drinking water improved health of the mice.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32169414

RESUMO

The trend toward using plant-based ingredients in aquafeeds has raised important concerns for aquaculture owing to the negative impacts of mycotoxins on fish health; with emphasis for contamination by fumonisin B1 (FB1). The brain is an important target of FB1; however, study of the pathways linked to brain damage is limited to an analysis of histopathological alterations. Reports have demonstrated the protective effects of dietary supplementation with diphenyl diselenide (Ph2Se2) in the brains of fish subjected to several environmental insults; nevertheless, its neuroprotective effects in fish fed with diets contaminated with FB1 remain unknown. Therefore, the aim of this study was to evaluate whether oxidative damage may be a pathway associated with FB1-induced neurotoxicity, as well as to evaluate whether dietary supplementation with Ph2Se2 prevents or reduces FB1-mediated brain oxidative damage in silver catfish. Brain reactive oxygen species (ROS), lipid peroxidation (LOOH) and protein carbonylation increased on day 30 post-feeding in animals that received FB1-contaminated diets compared to the control group, while brain antioxidant capacity against peroxyl radicals (ACAP) levels and catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) activities were lower. Diphenyl diselenide dietary supplementation avoid increases in brain ROS levels, as well minimizing the augmentation of LOOH levels. Furthermore, Ph2Se2 prevented impairment of brain ACAP levels, as well as GPx and GST activities elicited by FB1-contaminated diets. These data suggest that dietary supplementation with 3 mg/kg Ph2Se2 prevented FB1-induced brain damage in silver catfish, and this protective effect occurred through avoided of excessive ROS production, as well as via prevention of brain lipid damage. Furthermore, Ph2Se2 exerted its neuroprotective effects via ameliorative effects on the enzymatic and non-enzymatic antioxidant defense systems, and may be an approach to prevent FB1-induced brain oxidative stress; however, is not an alternative to prevent the impairment on performance caused by FB1.

7.
Microb Pathog ; 142: 104070, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32081613

RESUMO

The head kidney is a lymphoid immune organ that plays a key role in the immune and inflammatory responses of teleost fish. It is associated with immunoglobulin G production and differentiation of B cells. The presence of a multi-enzymatic complex found anchored in the plasma membrane makes the head kidney an important purinergic-dependent tissue. Purinergic signaling has been associated with these responses under pathological conditions via regulation of extracellular adenosine triphosphate (ATP), the main damage molecular associated pattern agent released during bacterial infections. The aim of this study was to determine whether purinergic signaling is a pathway associated with impairment of immune responses in silver catfish (Rhamdia quelen) experimentally infected by Flavobacterium columnare, as well as to evaluate the role of P2 purine receptors in this response. Triphosphate diphosphohydrolase (NTPDase) activity in the head kidney was significantly lower in silver catfish experimentally-infected F. columnare 72 h post-infection (hpi) than in the control group, while no significant difference was observed with respect NTPDase activity on adenosine diphosphate, as well as on 5'-nucleotidase and adenosine deaminase activities. Extracellular ATP levels were significantly higher in the head kidney of experimentally-infected fish than in the control group at 72 hpi. Finally, p2ry11 and p2rx3 purine receptor levels were significantly higher in experimentally-infected fish than in the control group at 72 hpi. We conclude that purinergic signaling in the head kidney of silver catfish infected by F. columnare creates a pro-inflammatory profile that may contribute to impairment of immune and inflammatory responses via reduction of ATP hydrolysis and its accumulation in the extracellular milieu, accompanied by upregulation of p2ry11 and p2rx3 purine receptors, leading to pro-inflammatory status.

8.
Naunyn Schmiedebergs Arch Pharmacol ; 393(5): 751-759, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31953674

RESUMO

Nerolidol is a sesquiterpene found in essential oils of several plant species. It is found commonly in human and animal diets and is approved by the US Food and Drug Administration as a flavoring agent. Nevertheless, recent studies have suggested that nerolidol has potent hepatotoxic effects. Because use of plant-based products in human and animal food has expanded considerably, it is essential to develop approaches such as nanotechnology to avoid or reduce hepatic toxic effects. Therefore, the aim of the study was to determine whether nerolidol dietary supplementation elicited hepatic damage associated with impairment of energy homeostasis, as well as whether supplementation with nerolidol-loaded in nanospheres prevented hepatotoxic effects in Nile tilapia (Oreochromis niloticus). Nile tilapia were divided into five groups (A-E, n = 10 per group) with four replicates each, as follows: group A received basal feed (without supplementation); group B received feed containing 0.5 mL free nerolidol/kg; group C received feed containing 1.0 mL free nerolidol/kg; group D received feed containing 0.5 mL nanospheres nerolidol/kg; and group E received feed containing 1.0 mL nanospheres nerolidol/kg. All groups received experimental feed once a day (10% total biomass) at 2 p.m. for 60 consecutive days. Hepatic liver weight and relative liver weight were significantly lower in fish fed 1.0 mL free nerolidol/kg feed than in fish given basal diet (control group). Hepatic pyruvate kinase (1.0 mL free nerolidol/kg) and adenylate kinase (0.5 and 1.0 mL free nerolidol/kg) activities were significantly lower than in the control group, while hepatic reactive oxygen species and lipid damage levels were significantly higher. Finally, the comet assay revealed significant increases in the frequency of damage and the damage index in fish given 0.5 and 1.0 mL free nerolidol/kg in a dose-dependent manner. Nerolidol-loaded in nanospheres prevented all alterations elicited by free nerolidol. Based on these data, we concluded that dietary supplementation with free nerolidol elicited severe impairment of hepatic bioenergetics homeostasis that appeared to be mediated by excessive ROS production and lipid damage, contributing to a genotoxic effect. Dietary supplementation with nerolidol-loaded in nanospheres did not elicit hepatic damage, and therefore, should be considered as a replacement so as to limit toxicity, permitting its continued use as a dietary supplement.

9.
Microb Pathog ; 141: 103989, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31982567

RESUMO

Rampant and uncontrolled use of antibiotics is a major concern for aquaculture; the practice foments the emergence of resistant strains of Streptococcus agalactiae, among other negative impacts. Constituents of plant essential oils such as nerolidol are being considered as replacements for synthetic drugs to support fish nutrition and health. There is evidence to suggest that nanotechnology may enhance the efficacy of natural bioactive compounds; this is a substantial advance for the development and sustainability of aquaculture. Against the backdrop of this evidence, we aimed determine whether dietary supplementation with free nerolidol and nerolidol-loaded nanospheres would exert bactericidal effects against S. agalactiae, as well as prevent S. agalactiae-induced brain oxidative damage. In Experiment I, we measured the antimicrobial properties of dietary supplementation of nerolidol and nerolidol nanosphere in terms of mortality, longevity and relative percent survival. Fish infected with S. agalactiae fed 0.5 and 1.0 mL nerolidol nanospheres kg/diet demonstrated lower mortality and higher relative percent survival than the control group, while longevity was higher in all infected plus supplementation groups. Experiment II showed significantly lower microbial loads in brains of fish infected with S. agalactiae that were fed 1.0 mL nerolidol nanospheres kg/diet than in the control group. Brain nerolidol levels were significantly higher in uninfected as well as infected fish supplemented with nerolidol nanospheres than in fish supplemented with free nerolidol. Finally, brain reactive oxygen species and lipid peroxidation levels were higher in infected fish supplemented with basal diet compared to uninfected fish and supplemented with basal diet, and the supplementation with 1.0 mL/kg nerolidol nanospheres prevented this augmentation caused by infection. These data suggest that dietary supplementation with nerolidol nanospheres (1.0 mL/kg diet) has potent bactericidal effects in terms of augmentation of fish longevity and survival, and reduction of brain microbial loads. Also, S. agalactiae-induced brain oxidative damage that contributed to disease pathogenesis, and the dietary supplementation with nerolidol nanospheres (1.0 mL/kg diet) prevented this alteration. In summary, nanotechnology is a compelling approach to enhancing the efficacy of nerolidol, giving rise to reduction of S. agalactiae loads in fish brains.

10.
Microb Pathog ; 138: 103787, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31604153

RESUMO

The objective of this study was to evaluate if infection by Escherichia coli in juvenile breeder chicks alters the activity of enzymes involved in neurotransmission and cerebral immunomodulation, including acetylcholinesterase (AChE), nucleoside triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase (5'NT) and adenosine deaminase (ADA), as well as their effects on the pathogenesis of the disease. We divided 20 growing breeder chicks into two groups (n = 10 per group). One group was experimentally infected with 1 mL of culture medium containing 1 × 108 CFU of E. coli intraperitoneally. The other was the negative control. On the tenth day after infection, the animals were euthanized and brain samples were collected. Macroscopically, pericarditis and hepatic congestion were observed in the birds, but without histopathological lesions in the encephalon although the bacterium was present in the cerebral cortex of all animals in the infected group (i.e., they were PCR-positive). The activity of AChE, NTPDase, 5'-NT and ADA were evaluated in the cerebral homogenates of the birds after 10 days of infection. AChE activity in the cerebral cortex was lower in the infected group than in the control; there was an increase in the activity of NTPDase, 5'-nucleotidase and ADA, possibly indicating greater hydrolysis of ATP (P < 0.001), ADP (P < 0.01) and AMP (P < 0.01), followed by increased adenosine deamination (P < 0.001). Despite these changes, no apparently diseased animals were observed throughout the experimental period. Therefore, such changes in enzymatic activity may affect the functioning of the central nervous system because these enzymes are responsible for extracellular regulation of molecules that act on neurotransmission and immunomodulation such as acetylcholine, ATP and adenosine.

11.
Microb Pathog ; 138: 103786, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31604154

RESUMO

Energy metabolism is a sensitive indicator of cellular disorders. Therefore, the objective of this study was to investigate changes in cardiac and hepatic energy metabolism during listeriosis using an experimental model. We divided gerbils into two groups: Control (n = 11) and orally Infected (n = 12) with 5 × 109 CFU/mL of Listeria monocytogenes. Euthanasia and sampling were performed on days 6 and 12 post-infection (PI). Histopathological lesions were not found in the heart; however, the liver showed pyogranuloma. In the hearts of infected animals, cytosolic creatine kinase activity was lower on day 6 and 12 PI; mitochondrial creatine kinase/pyruvate kinase (PK), and sodium potassium pump (Na+/K+-ATPase) activities were lower on day 12 PI. Hepatic PK and Na+/K+-ATPase activities were lower in the infected group on day 12 PI. Lipoperoxidation was higher in the livers and hearts of infected animals on day 12 PI, and antioxidant capacity against peroxyl radicals (ACAP) was also higher in this group. These data suggest that subclinical listeriosis alters hepatic and cardiac energy metabolism, possibly related to decreased activity of phosphotransferases and ATPase. Subsequent antioxidant responses are not sufficient to correct alterations in lipid peroxidation and bioenergetics, possibly leading to important cellular pathological mechanisms.

12.
Microb Pathog ; 139: 103915, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31809794

RESUMO

We determined whether thymol supplementation of would minimize the negative effects of Aeromonas hydrophila infection on branchial energy metabolism, weight loss and mortality in grass carp (Ctenopharyngodon idella). We found that the infected fish all died, while 62.5% of those supplemented with 100 mg/kg thymol survived. Cytosolic and mitochondrial creatine kinase (CK) activities, as well as adenylate kinase (AK) and pyruvate kinase (PK) activities were significant lower in gills of A. hydrophila-infected fish than those of the control group, and adenosine triphosphate (ATP) levels were significant lower in the infected group. Finally, branchial reactive oxygen species (ROS) were significant higher in A. hydrophila-infected fish than in the control group. Supplementation with 100 and 300 mg thymol/kg diet prevented inhibition of branchial cytosolic and mitochondrial CK activities caused by infection, and also inhibited the reduction of branchial ATP levels. Supplementation with 100, 200 and 300 mg thymol/kg prevented the inhibition of branchial AK and PK activities induced by aeromonosis. Supplementation of 100 mg thymol/kg prevented weight loss after A. hydrophila infection. These data suggest that supplementation with 100 mg thymol/kg exerts potent bactericidal properties and augments longevity. Supplementation at all concentrations of thymol prevented A. hydrophila-induced branchial bioenergetics; nevertheless, higher concentrations were associated with side-effects.

13.
Microb Pathog ; 139: 103916, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31812772

RESUMO

The objective of this study was to determine whether curcumin and a commercial microencapsulated phytogenic supplement containing thymol, cinnamaldehyde and carvacrol in broiler chicken feed would improve health and meat quality (fatty acid profile), as well as to determine the coccidiostatic and bactericidal potential of the additives. The broiler chickens were divided into five groups: NC - negative control feed; PC - positive control; CU - with 50 mg/kg of curcumin, PHY - 100 mg/kg phytogenic; and PHY + CU, a combination of both additives at 50 mg/kg (curcumin) and 100 mg/kg (phytogenic). We observed significantly higher levels of total proteins associated with increased circulating globulins, as well as lower levels of uric acid, cholesterol and triglycerides in the PHY + CU group than in the NC. There were significantly fewer oocysts in birds supplemented with additives in the NC group on day 21; on day 35, the NC, PHY and PHY + CU groups had significantly lower counts than the PC and CU groups; however, at 44 days, the lowest counts were in PC group. The bacterial counts were significantly lower on day 21 in all groups that received additives than those of the control group; however, at 44 days, the bacterial and Escherichia coli counts in these groups were significantly higher than those of the control. Curcumin with or without phytogenic agent improved meat quality, with increased antioxidant levels and reduction of lipid peroxidation. There were significantly lower total saturated fatty acid levels and significantly greater monounsaturated/polyunsaturated fatty acid levels in broilers that consumed additives individually and in combination. The combination of additives significantly increased the crypt/villus ratio, a marker of improved intestinal health and performance. Additives potentiated their individual effects, suggesting they can replace conventional growth promoters without compromising health, intestinal mucosa or meat quality.

14.
Artigo em Inglês | MEDLINE | ID: mdl-31760078

RESUMO

Mercury (Hg) induces neurobehavioral disorders through reactive oxygen species (ROS) elevation and impairment of brain key enzyme activities. Nevertheless, the therapeutic and toxic selenium concentrations for fish are very close; diphenyl diselenide (Ph2Se2), an organoselenium compound with neuroprotective effects, may be an alternative to elemental Se. Therefore, the aim of this study was to determine whether dietary supplementation with Ph2Se2 prevented or reduced the neurobehavioral alterations and oxidative damage elicited by CH3HgCl in grass carp Ctenopharyngodon idella. Fish exposed to CH3HgCl exhibited significantly reduced distance travelled and swimming speed compared to the control group, as well as augmented cortisol and ROS levels and xanthine oxidase (XO) activities. CH3HgCl exposure significantly increased lipid peroxidation (LOOH) and protein carbonylation (PC) levels compared to those of the control group, while acetylcholinesterase (AChE) and sodium-potassium pump (Na+, K+-ATPase) activities were inhibited. Dietary supplementation with 3 mg/kg Ph2Se2 ameliorated locomotor activity impairment and prevented the augmented brain cortisol and ROS levels as well as XO activity. The supplement reduced lipid and protein damage elicited by CH3HgCl and exerted protective effects on brain AChE and Na+, K+-ATPase activities. Exposure to an environmental concentration of CH3HgCl elicited neurobehavioral alterations linked to reduced locomotor activity, a finding that can be explained by oxidative damage and reduced activity of AChE and Na+, K+-ATPase in telencephalon and mesencephalon structures. Dietary supplementation with Ph2Se2 prevented CH3HgCl-induced locomotor impairment. This effect appeared to be mediated by antioxidant action. Ph2Se2 may be a viable approach to prevention or reduction CH3HgCl-mediated neurotoxic effects.

15.
Microb Pathog ; 138: 103817, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31672529

RESUMO

Flavobacterium columnare, the causative agent of columnaris disease, is a serious bacterial disease responsible for causing devastating mortality rates in several species of freshwater fish, leading to severe economic losses in the aquaculture industry. Notwithstanding the enormous impacts this disease can have, very little is known regarding the interaction between the host and bacterium in terms of the mortality rate of silver catfish (Rhamdia quelen), as well its linkage to gill energetic homeostasis. Therefore, we conducted independent experiments to evaluate the mortality rates caused by F. columnare in silver catfish, as well as whether columnaris disease impairs the enzymes of the phosphoryl transfer network in gills of silver catfish and the pathways involved in this inhibition. Experiment I revealed that clinical signs started to appear 72 h post-infection (hpi), manifesting as lethargy, skin necrosis, fin erosion and gill discoloration. Silver catfish began to die at 96 hpi, and 100% mortality was observed at 120 hpi. Experiment II revealed that creatine kinase (CK, cytosolic and mitochondrial) and pyruvate kinase (PK) activities were inhibited in silver catfish experimentally infected with F. columnare, while no significant difference was observed between experimental and control groups with respect to adenylate kinase activity. Activity of the branchial sodium-potassium pump (Na+, K+-ATPase) was inhibited while reactive oxygen species (ROS) and lipid peroxidation levels were higher in silver catfish experimentally infected with F. columnare than in the control group at 72 hpi. Based on these data, the impairment of CK activity elicited by F. columnare caused a disruption in branchial energetic balance, possibly reducing ATP availability in the gills and provoking impairment of Na+, K +ATPase activity. The inhibition of CK and PK activities appears to be mediated by ROS overproduction and lipid peroxidation, both of which contribute to disease pathogenesis associated with branchial tissue.

16.
Fish Physiol Biochem ; 46(1): 305-314, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31673997

RESUMO

Thymol is an herbal food additive used to improve animal performance. Thymol acts via its potential to enhance productive and reproductive performance, and by improving bioavailability of nutrients in fish. Nevertheless, the exact mechanisms associated with these phenomena remain poorly understood, although recent evidence has suggested the involvement of the phosphotransfer network and antioxidant status. Therefore, the aim of this study was to determine whether the improvement of the antioxidant/oxidant status and the phosphoryl transfer network may be involved in enhanced growth performance in grass carp (Ctenopharyngodon idella) fed with various levels of thymol (100, 200, and 300 mg/kg feed). Thymol-supplementation (100 mg/kg feed) produced higher body weight and weight gain for 60-day post-feeding compared to the control group. Specific growth rate was higher; while feed conversion ratio was lower in fish that consumed 100 mg of thymol/kg compared to other groups. Hepatic lactate dehydrogenase activity and lipid peroxidation levels were lower in the thymol-supplemented group (100 mg/kg feed) than in the control group, while reactive oxygen species were lower in all supplemented groups than in the control group. Hepatic superoxide dismutase (300 mg/kg feed) and glutathione peroxidase (100, 200, and 300 mg/kg feed) activities, as well as antioxidant capacity against peroxyl radicals (100 mg/kg feed) were higher in these groups than in the control group. Based on these data, we conclude that 100 mg thymol/kg dietary supplementation increased growth performance of fingerling grass carp. Finally, hepatic adenylate kinase activity was lower in the thymol supplemented group (100 mg/kg feed) than in the control group. Thymol supplementation (100 mg/kg feed) improved hepatic energy metabolism, while practically all tested concentrations of thymol enhanced hepatic antioxidant status, all of which may be pathways involved in increased growth performance in fingerling grass carp.

17.
Exp Parasitol ; 208: 107790, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31697939

RESUMO

Neospora caninum is a protozoan that has tropism for the central nervous system. The aim of this study was to determine whether experimental infection of gerbils would interfere with activity of enzymes associated with energy metabolism. We randomized 20 gerbils into two groups (ten animals per group): the control group (healthy animals; uninfected) and the infected group (experimentally infected with dose 7.8 × 102 tachyzoites of N. caninum per gerbil). On day six and twelve post-infection (PI), brain and spleen tissues were collected for biochemical and histopathological analyses. No histopathological lesions were observed in the brains of infected animals; however, inflammatory infiltrates were found in the spleen. Significantly greater levels of reactive oxygen species (ROS) were observed in the brain and spleen of infected gerbils than in the control group at 12 days PI. Cytosolic creatine kinase (CK-CYT), mitochondrial creatine kinase (CK-MIT), and pyruvate kinase (PK) activities were lower in the brains of infected gerbils than in those of the control group on day 12 PI. There was significantly less CK-CYT activity in the spleens of infected gerbils on day 6 and 12 PI. Finally, there was significantly less sodium-potassium ion pump (Na+/K+ ATPase) activity in the brains and spleens of infected gerbils on day 12 PI. These data suggest that experimental infection with N. caninum interfered with energy metabolism associated with ATP homeostasis in the brain and spleen, directly or indirectly, apparently mediated by ROS overproduction, contributing to inhibition of Na+/K+ ATPase activity.


Assuntos
Encéfalo/enzimologia , Coccidiose/enzimologia , Metabolismo Energético , Neospora , Baço/enzimologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Coccidiose/metabolismo , Creatina Quinase/metabolismo , Citosol/enzimologia , Gerbillinae , Masculino , Mitocôndrias/enzimologia , Piruvato Quinase/metabolismo , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Baço/química , Baço/patologia
18.
Microb Pathog ; 139: 103861, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31715322

RESUMO

The aim of this study was to determine whether oxidative stress occurs in Escherichia coli-infected broiler breeder chicks, as well as the impact of this infection on bird growth. Twenty birds, 25-day-old female birds were divided into two groups (n = 10 per group): an intraperitoneally-infected group (1 mL containing 1.5 × 108 CFU of E. coli) and a control group that received 1 mL of culture medium (uninfected birds). Birds were weighed individually at the beginning and at the end of the experiment, and samples were collected on days 0, 5 and 10 post-infection (PI). No clinical signs were observed throughout the experimental period; nevertheless, on day 10 PI, there was lower growth and weight gain in infected birds than in the control group. The infected birds showed pericarditis and liver congestion, as well as moderate periportal inflammatory infiltrates with predominance of neutrophils. Significantly higher numbers of total leukocytes, lymphocytes, heterophils and monocytes were observed in the infected group on days 5 and 10 PI, as well as significantly higher total protein and globulin levels; albumin values significantly decreased over the same period. Levels of serum oxidative biomarkers (lipid peroxidation (TBARS) and free radicals (ROS)) were significantly higher at 10 PI, as was glutathione S-transferase (GST) activity during the same period. Hepatic ROS and protein thiol levels were significantly higher in E. coli-infected birds, as well as activities of the antioxidant enzymes catalase, superoxide dismutase. In the spleen, only GST activity was significantly higher for the infected group, unlike the brain, where SOD activity, ROS and non-protein thiol levels were significantly higher in infected birds than in the control group. These data suggested that colibacillosis causes oxidative stress in broiler breeder chicks, negatively affecting their weight gain.

19.
Vet Microbiol ; 241: 108528, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31882365

RESUMO

The cholinergic, purinergic and oxidative stress systems were related to nervous system damage in some pathologies, as well as being involved in pro-inflammatory and anti-inflammatory pathways. The objective was to investigate changes in purinergic, cholinergic systems and oxidative stress related to the neuropathology of listeriosis. Gerbils were used as experimental models. The animals were divided in two groups: control and infected. The animals were orally infected with 5 × 108 CFU/animal of the pathogenic strain of Listeria monocytogenes. Collected of material was 6 and 12th days post-infection (PI). Infected animals showed moderate mixed inflammatory infiltrates in the liver. The spleen and brain was used for PCR analyses, confirming infection by L. monocytogenes. Increase in number of total leukocytes because of an increase in lymphocytes in infected (P < 0.001). ATP and ADP hydrolysis by NTPDase was lower at 6 and 12th days PI in infected animals than in the control group. ADA (adenosine deaminase) activity was higher on the 6th day PI (P < 0.05) and decreased on the 12th day PI (P < 0.05) in infected animals. AChE (acetylcholinesterase) activity did not differ between groups on the 6th day PI; however, activity decreased in infected group on the 12th day PI (P < 0.05). On the 12th day PI, an increase of oxygen-reactive species levels and lower catalase and superoxide dismutase activities in the infected group was observed, characterizing a situation of cerebral oxidative stress. The inflammatory and oxidative mechanisms are present in listeriosis in asymptomatic animals, and that ectonucleotidases and cholinesterase's are involved in immunomodulation.

20.
Artigo em Inglês | MEDLINE | ID: mdl-31493584

RESUMO

Aflatoxin B1 (AFB1) is one of the most important mycotoxins due to its hepatotoxic and carcinogenic effects on animals. The effect of dietary supplementation with vegetable choline (VC) at 400, 800, and 1200 mg/kg against the deleterious effects of AFB1 (2 ppm/kg diet) in the liver of Nile tilapia (Oreochromis niloticus) was studied. The experimental period was 81 days, and the diet with VC was offered to the fish for 60 days prior to challenge with AFB1. Diets with AFB1 were tested in three replications and animals were analyzed at days 14 and 21 of dietary intake. The addition of VC to tilapia diet increased body weight (days 30 and 60 pre-challenge and day 21 post-challenge). The group fed aflatoxin-contaminated diet presented significantly reduced antioxidant enzymes and increased reactive oxygen species (ROS) levels, thiobarbituric acid reactive species (TBARS) levels, and protein carbonyl (PC) content in the liver. Dietary supplementation with VC at 800 and 1200 mg/kg demonstrated a significant protective effect, avoiding the increase of ROS, TBARS, and PC levels in the liver of tilapia from the aflatoxin contaminated groups. Thus, dietary VC supplementation may be used in tilapia to increase antioxidant status and reduce the negative effects caused by AFB1 toxicity. Based on the findings, it is recommended to use VC as a food supplement for Nile tilapia in order to avoid AFB1 toxication. In addition, decreased aflatoxin toxicity can be attributed to the VC antioxidant property.


Assuntos
Aflatoxina B1/toxicidade , Ração Animal/análise , Colina/farmacologia , Ciclídeos , Doenças dos Peixes/induzido quimicamente , Contaminação de Alimentos , Aflatoxina B1/administração & dosagem , Animais , Catalase/genética , Catalase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/veterinária , Colina/administração & dosagem , Dieta/veterinária , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Doenças dos Peixes/tratamento farmacológico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA