Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 2863, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814535

RESUMO

Geminiviruses are plant ssDNA viruses that replicate through dsDNA intermediates and form minichromosomes which carry the same epigenetic marks as the host chromatin. During the infection, geminiviruses are targets of the post-transcriptional and transcriptional gene silencing machinery. To obtain insights into the connection between virus-derived small RNAs (vsRNAs), viral genome methylation and gene expression, we obtained the transcriptome, sRNAome and methylome from the geminivirus Tomato yellow leaf curl virus-infected tomato plants. The results showed accumulation of transcripts just at the viral ORFs, while vsRNAs spanned the entire genome, showing a prevalent accumulation at regions where the viral ORFs overlapped. The viral genome was not homogenously methylated showing two highly methylated regions located in the C1 ORF and around the intergenic region (IR). The compilation of those results showed a partial correlation between vsRNA accumulation, gene expression and DNA methylation. We could distinguish different epigenetic scenarios along the viral genome, suggesting that in addition to its function as a plant defence mechanism, DNA methylation could have a role in viral gene regulation. To our knowledge, this is the first report that shows integrative single-nucleotide maps of DNA methylation, vsRNA accumulation and gene expression from a plant virus.

2.
Fish Shellfish Immunol ; 86: 14-24, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30428392

RESUMO

Viral diseases are responsible for high rates of mortality and subsequent economic losses in modern aquaculture. The nervous necrosis virus (NNV) produces viral encephalopathy and retinopathy (VER), which affects the fish central nervous system. It is considered one of the most serious viral diseases in marine aquaculture, the European sea bass (Dicentrarchus labrax) being amongst the most susceptible. We have evaluated the European sea bass brain derived cell line (DLB-1) susceptibility to NNV genotypes and evaluated its transcriptomic profile. DLB-1 cells supported NNV gene transcription and replication since strains belonging to the four NNV genotypes produce cytopathic effects. Afterwards, DLB-1 cells were infected with an RGNNV strain, the one which showed the highest replication, for 12 and 72 h and an RNA-seq analysis was performed to identify potential genes involved in the host-NNV interactions. Differential expression analysis showed the up-regulation of many genes related to immunity, heat-shock proteins or apoptosis but not to proteasome or autophagy processes. These data suggest that the immune response, mainly the interferon (IFN) pathway, is not powerful enough to abrogate the infection, and cells finally suffer stress and die by apoptosis liberating infective particles. GO enrichment also revealed, for the first time, the down-regulation of terms related to brain/neuron biology indicating molecular mechanisms causing the pathogenic effect of NNV. This study opens the way to understand key elements in sea bass brain and NNV interactions.


Assuntos
Bass , Neurônios/virologia , Nodaviridae/fisiologia , Animais , Encéfalo/citologia , Linhagem Celular , Perfilação da Expressão Gênica , Genótipo , Nodaviridae/genética , Replicação Viral
3.
J Invest Dermatol ; 139(4): 900-908, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30359577

RESUMO

Large and giant congenital melanocytic nevi (CMN) are rare melanocytic lesions mostly caused by postzygotic NRAS alteration. Molecular characterization is usually focused on NRAS and BRAF genes in a unique biopsy sample of the CMN. However, large/giant CMN may exhibit phenotypic differences among distinct areas, and patients differ in features such as presence of multiple CMN or spilus-like lesions. Herein, we have characterized a series of 21 large/giant CMN including patients with spilus-type nevi (9/21 patients, 42.8%). Overall, 53 fresh frozen biopsy samples corresponding to 40 phenotypically characterized areas of large/giant CMNs and 13 satellite lesions were analyzed with a multigene panel and RNA sequencing. Mutational screening showed mutations in 76.2% (16/21) of large/giant CMNs. A NRAS mutation was found in 57.1% (12/21) of patients, and mutations in other genes such as BRAF, KRAS, APC, and MET were detected in 14.3% (3/21) of patients. RNA sequencing showed the fusion transcript ZEB2-ALK and SOX5-RAF1 in large/giant CMN from two patients without missense mutations. Both alterations were not detected in unaffected skin and were detected in different areas of affected skin. These findings suggest that large/giant CMN may result from distinct molecular events in addition to NRAS mutations, including point mutations and fusion transcripts.

4.
Biotechnol Bioeng ; 116(3): 677-692, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30512195

RESUMO

The existence of dynamic cellular phenotypes in changing environmental conditions is of major interest for cell biologists who aim to understand the mechanism and sequence of regulation of gene expression. In the context of therapeutic protein production by Chinese Hamster Ovary (CHO) cells, a detailed temporal understanding of cell-line behavior and control is necessary to achieve a more predictable and reliable process performance. Of particular interest are data on dynamic, temporally resolved transcriptional regulation of genes in response to altered substrate availability and culture conditions. In this study, the gene transcription dynamics throughout a 9-day batch culture of CHO cells was examined by analyzing histone modifications and gene expression profiles in regular 12- and 24-hr intervals, respectively. Three levels of regulation were observed: (a) the presence or absence of DNA methylation in the promoter region provides an ON/OFF switch; (b) a temporally resolved correlation is observed between the presence of active transcription- and promoter-specific histone marks and the expression level of the respective genes; and (c) a major mechanism of gene regulation is identified by interaction of coding genes with long non-coding RNA (lncRNA), as observed in the regulation of the expression level of both neighboring coding/lnc gene pairs and of gene pairs where the lncRNA is able to form RNA-DNA-DNA triplexes. Such triplex-forming regions were predominantly found in the promoter or enhancer region of the targeted coding gene. Significantly, the coding genes with the highest degree of variation in expression during the batch culture are characterized by a larger number of possible triplex-forming interactions with differentially expressed lncRNAs. This indicates a specific role of lncRNA-triplexes in enabling rapid and large changes in transcription. A more comprehensive understanding of these regulatory mechanisms will provide an opportunity for new tools to control cellular behavior and to engineer enhanced phenotypes.

5.
Br J Haematol ; 184(3): 373-383, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30565652

RESUMO

Long non-coding RNAs (lncRNAs) comprise a family of non-coding transcripts that are emerging as relevant gene expression regulators of different processes, including tumour development. To determine the possible contribution of lncRNA to the pathogenesis of follicular lymphoma (FL) we performed RNA-sequencing at high depth sequencing in primary FL samples ranging from grade 1-3A to aggressive grade 3B variants using unpurified (n = 16) and purified (n = 12) tumour cell suspensions from nodal samples. FL grade 3B had a significantly higher number of differentially expressed lncRNAs (dif-lncRNAs) with potential target coding genes related to cell cycle regulation. Nine out of the 18 selected dif-lncRNAs were validated by quantitative real time polymerase chain reaction in an independent series (n = 43) of FL. RP4-694A7.2 was identified as the top deregulated lncRNA potentially involved in cell proliferation. RP4-694A7.2 silencing in the WSU-FSCCL FL cell line reduced cell proliferation due to a block in the G1/S phase. The relationship between RP4-694A7.2 and proliferation was confirmed in primary samples as its expression levels positively related to the Ki-67 proliferation index. In summary, lncRNAs are differentially expressed across the clinico-biological spectrum of FL and a subset of them, related to cell cycle, may participate in cell proliferation regulation in these tumours.


Assuntos
Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Linfoma Folicular/metabolismo , RNA Longo não Codificante/biossíntese , RNA Neoplásico/biossíntese , Pontos de Checagem da Fase S do Ciclo Celular , Feminino , Humanos , Linfoma Folicular/genética , Linfoma Folicular/patologia , Masculino , RNA Longo não Codificante/genética , RNA Neoplásico/genética
6.
Oncotarget ; 9(59): 31549-31558, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30140389

RESUMO

The development of acquired resistance (AR) to tyrosine kinase inhibitors (TKIs) of FGFR1 activation is currently not well understood. To gain a deeper insight into this matter in lung cancer, we used the FGFR1-amplified DMS114 cell line and generated multiple clones with AR to an FGFR1-TKI. We molecularly scrutinized the resistant cells, using whole-exome sequencing, RNA sequencing and global DNA methylation analysis. Our results show a de novo activation of AKT and ERK, and a reactivation of mTOR. Furthermore, the resistant cells exhibited strong upregulation and activation of MET, indicating crosstalk between the FGFR1 and MET axes. The resistant cells also underwent a global decrease in promoter hypermethylation of the CpG islands. Finally, we observed clonal expansion of a pre-existing change in AKT1, leading to S266L substitution, within the kinase domain of AKT. Our results demonstrate that AR to FGFR1-TKI involves deep molecular changes that promote the activation of MET and AKT, coupled with common gene expression and DNA methylation profiles. The expansion of a substitution at AKT1 was the only shared genetic change, and this may have contributed to the AR.

7.
Sci Rep ; 7(1): 15396, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29133947

RESUMO

Nervous necrosis virus (NNV) causes high mortalities in several marine species. We aimed to evaluate the innate cell-mediated cytotoxic (CMC) activity of head-kidney leucocytes (HKLs) isolated from naïve European sea bass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata), a very susceptible and resistant fish species to NNV, respectively, against fish cell lines infected with NNV. Seabream HKLs showed significantly increased innate CMC activity against NNV-infected cells, compared to those uninfected, while sea bass HKLs failed to do so. Thus, we performed a RNA-seq study to identify genes related to the CMC activity of sea bass leucocytes. Thus, we found that sea bass HKLs incubated with DLB-1 cells alone (CMC_DLB1) or with NNV-infected DLB-1 cells (CMC_DLB1-NNV) showed very similar transcriptomic profiles and the GO analysis revealed that most of the up-regulated genes were related to immunity. Strikingly, when the CMC samples with and without NNV were compared, GO analysis revealed that most of the up-regulated genes in CMC_DLB1-NNV samples were related to metabolism and very few to immunity. This is also in agreement with the functional data. These data point to the escape of CMC activity by NNV infection as an important factor involved in the high susceptibility to nodavirus infections of European sea bass.


Assuntos
Bass , Doenças dos Peixes , Imunidade Inata , Leucócitos/imunologia , Nodaviridae/imunologia , Infecções por Vírus de RNA/imunologia , Animais , Bass/imunologia , Bass/virologia , Linhagem Celular , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Dourada/imunologia , Dourada/virologia
8.
Nucleic Acids Res ; 45(20): 11622-11642, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28977426

RESUMO

Histone H1 has seven variants in human somatic cells and contributes to chromatin compaction and transcriptional regulation. Knock-down (KD) of each H1 variant in breast cancer cells results in altered gene expression and proliferation differently in a variant specific manner with H1.2 and H1.4 KDs being most deleterious. Here we show combined depletion of H1.2 and H1.4 has a strong deleterious effect resulting in a strong interferon (IFN) response, as evidenced by an up-regulation of many IFN-stimulated genes (ISGs) not seen in individual nor in other combinations of H1 variant KDs. Although H1 participates to repress ISG promoters, IFN activation upon H1.2 and H1.4 KD is mainly generated through the activation of the IFN response by cytosolic nucleic acid receptors and IFN synthesis, and without changes in histone modifications at induced ISG promoters. H1.2 and H1.4 co-KD also promotes the appearance of accessibility sites genome wide and, particularly, at satellites and other repeats. The IFN response may be triggered by the expression of noncoding RNA generated from heterochromatic repeats or endogenous retroviruses upon H1 KD. In conclusion, redundant H1-mediated silencing of heterochromatin is important to maintain cell homeostasis and to avoid an unspecific IFN response.


Assuntos
Neoplasias da Mama/genética , Proliferação de Células/genética , Heterocromatina/metabolismo , Histonas/genética , Interferons/metabolismo , Ativação Transcricional/genética , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina/genética , Feminino , Regulação da Expressão Gênica/genética , Células HeLa , Humanos , Células MCF-7 , Interferência de RNA , RNA Interferente Pequeno/genética , Transcrição Genética
9.
Cell Rep ; 19(8): 1586-1601, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28538178

RESUMO

Immunodeficiency is one of the most important causes of mortality associated with Wolf-Hirschhorn syndrome (WHS), a severe rare disease originated by a deletion in chromosome 4p. The WHS candidate 1 (WHSC1) gene has been proposed as one of the main genes responsible for many of the alterations in WHS, but its mechanism of action is still unknown. Here, we present in vivo genetic evidence showing that Whsc1 plays an important role at several points of hematopoietic development. Particularly, our results demonstrate that both differentiation and function of Whsc1-deficient B cells are impaired at several key developmental stages due to profound molecular defects affecting B cell lineage specification, commitment, fitness, and proliferation, demonstrating a causal role for WHSC1 in the immunodeficiency of WHS patients.


Assuntos
Linfócitos B/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Síndrome de Wolf-Hirschhorn/metabolismo , Animais , Apoptose , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Replicação do DNA , Centro Germinativo/citologia , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Heterozigoto , Camundongos , Recombinação Genética/genética , Estresse Fisiológico
10.
Mol Cancer Ther ; 16(7): 1366-1376, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28396363

RESUMO

The development of resistance to tyrosine kinase inhibitors (TKI) limits the long-term efficacy of cancer treatments involving them. We aimed to understand the mechanisms that underlie acquired resistance (AR) to MET inhibitors in lung cancer. EBC1 cells, which have MET amplification and are sensitive to TKIs against MET, were used to generate multiple clones with AR to a MET-TKI. Whole-exome sequencing, RNA sequencing, and global DNA methylation analysis were used to scrutinize the genetic and molecular characteristics of the resistant cells. AR to the MET-TKI involved changes common to all resistant cells, that is, phenotypic modifications, specific changes in gene expression, and reactivation of AKT, ERK, and mTOR. The gene expression, global DNA methylation, and mutational profiles distinguished at least two groups of resistant cells. In one of these, the cells have acquired sensitivity to erlotinib, concomitantly with mutations of the KIRREL, HDAC11, HIATL1, and MAPK1IP1L genes, among others. In the other group, some cells have acquired inactivation of neurofibromatosis type 2 (NF2) concomitantly with strong overexpression of NRG1 and a mutational profile that includes changes in LMLN and TOMM34 Multiple independent and simultaneous strategies lead to AR to the MET-TKIs in lung cancer cells. The acquired sensitivity to erlotinib supports the known crosstalk between MET and the HER family of receptors. For the first time, we show inactivation of NF2 during acquisition of resistance to MET-TKI that may explain the refractoriness to erlotinib in these cells. Mol Cancer Ther; 16(7); 1366-76. ©2017 AACR.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Neurofibromina 2/genética , Proteínas Proto-Oncogênicas c-met/genética , Proliferação de Células/genética , Metilação de DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Cloridrato de Erlotinib/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genômica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores
11.
PLoS One ; 12(1): e0170632, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28122052

RESUMO

The molecular classification of glioblastoma (GBM) based on gene expression might better explain outcome and response to treatment than clinical factors. Whole transcriptome sequencing using next-generation sequencing platforms is rapidly becoming accepted as a tool for measuring gene expression for both research and clinical use. Fresh frozen (FF) tissue specimens of GBM are difficult to obtain since tumor tissue obtained at surgery is often scarce and necrotic and diagnosis is prioritized over freezing. After diagnosis, leftover tissue is usually stored as formalin-fixed paraffin-embedded (FFPE) tissue. However, RNA from FFPE tissues is usually degraded, which could hamper gene expression analysis. We compared RNA-Seq data obtained from matched pairs of FF and FFPE GBM specimens. Only three FFPE out of eleven FFPE-FF matched samples yielded informative results. Several quality-control measurements showed that RNA from FFPE samples was highly degraded but maintained transcriptomic similarities to RNA from FF samples. Certain issues regarding mutation analysis and subtype prediction were detected. Nevertheless, our results suggest that RNA-Seq of FFPE GBM specimens provides reliable gene expression data that can be used in molecular studies of GBM if the RNA is sufficiently preserved.


Assuntos
Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Biologia Computacional , Perfilação da Expressão Gênica/métodos , Glioblastoma/metabolismo , Glioblastoma/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
12.
Genome Biol Evol ; 8(6): 2020-30, 2016 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-27345955

RESUMO

The genus Pan is the closest genus to our own and it includes two species, Pan paniscus (bonobos) and Pan troglodytes (chimpanzees). The later is constituted by four subspecies, all highly endangered. The study of the Pan genera has been incessantly complicated by the intricate relationship among subspecies and the statistical limitations imposed by the reduced number of samples or genomic markers analyzed. Here, we present a new method to reconstruct complete mitochondrial genomes (mitogenomes) from whole genome shotgun (WGS) datasets, mtArchitect, showing that its reconstructions are highly accurate and consistent with long-range PCR mitogenomes. We used this approach to build the mitochondrial genomes of 20 newly sequenced samples which, together with available genomes, allowed us to analyze the hitherto most complete Pan mitochondrial genome dataset including 156 chimpanzee and 44 bonobo individuals, with a proportional contribution from all chimpanzee subspecies. We estimated the separation time between chimpanzees and bonobos around 1.15 million years ago (Mya) [0.81-1.49]. Further, we found that under the most probable genealogical model the two clades of chimpanzees, Western + Nigeria-Cameroon and Central + Eastern, separated at 0.59 Mya [0.41-0.78] with further internal separations at 0.32 Mya [0.22-0.43] and 0.16 Mya [0.17-0.34], respectively. Finally, for a subset of our samples, we compared nuclear versus mitochondrial genomes and we found that chimpanzee subspecies have different patterns of nuclear and mitochondrial diversity, which could be a result of either processes affecting the mitochondrial genome, such as hitchhiking or background selection, or a result of population dynamics.


Assuntos
Evolução Molecular , Genoma Mitocondrial/genética , Pan paniscus/genética , Pan troglodytes/genética , Animais , Variação Genética , Genética Populacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia
13.
Nat Commun ; 6: 10001, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26647970

RESUMO

As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼ 100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leucemia Linfoide/genética , Meduloblastoma/genética , Mutação , Genoma Humano , Humanos
14.
PLoS One ; 9(5): e97349, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24824426

RESUMO

We apply a known algorithm for computing exactly inequalities between Beta distributions to assess whether a given position in a genome is differentially methylated across samples. We discuss the advantages brought by the adoption of this solution with respect to two approximations (Fisher's test and Z score). The same formalism presented here can be applied in a similar way to variant calling.


Assuntos
Metilação de DNA/genética , Genoma/genética , Modelos Genéticos , Teorema de Bayes , Genômica/métodos , Probabilidade
15.
Nature ; 499(7459): 471-5, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23823723

RESUMO

Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria-Cameroon/western and central/eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost all species. We discover and assign 1,982 loss-of-function variants throughout the human and great ape lineages, determining that the rate of gene loss has not been different in the human branch compared to other internal branches in the great ape phylogeny. This comprehensive catalogue of great ape genome diversity provides a framework for understanding evolution and a resource for more effective management of wild and captive great ape populations.


Assuntos
Variação Genética , Hominidae/genética , África , Animais , Animais Selvagens/genética , Animais de Zoológico/genética , Ásia Sudeste , Evolução Molecular , Fluxo Gênico/genética , Genética Populacional , Genoma/genética , Gorilla gorilla/classificação , Gorilla gorilla/genética , Hominidae/classificação , Humanos , Endogamia , Pan paniscus/classificação , Pan paniscus/genética , Pan troglodytes/classificação , Pan troglodytes/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Densidade Demográfica
16.
BMC Genomics ; 14: 363, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23721540

RESUMO

BACKGROUND: The only known albino gorilla, named Snowflake, was a male wild born individual from Equatorial Guinea who lived at the Barcelona Zoo for almost 40 years. He was diagnosed with non-syndromic oculocutaneous albinism, i.e. white hair, light eyes, pink skin, photophobia and reduced visual acuity. Despite previous efforts to explain the genetic cause, this is still unknown. Here, we study the genetic cause of his albinism and making use of whole genome sequencing data we find a higher inbreeding coefficient compared to other gorillas. RESULTS: We successfully identified the causal genetic variant for Snowflake's albinism, a non-synonymous single nucleotide variant located in a transmembrane region of SLC45A2. This transporter is known to be involved in oculocutaneous albinism type 4 (OCA4) in humans. We provide experimental evidence that shows that this amino acid replacement alters the membrane spanning capability of this transmembrane region. Finally, we provide a comprehensive study of genome-wide patterns of autozygogosity revealing that Snowflake's parents were related, being this the first report of inbreeding in a wild born Western lowland gorilla. CONCLUSIONS: In this study we demonstrate how the use of whole genome sequencing can be extended to link genotype and phenotype in non-model organisms and it can be a powerful tool in conservation genetics (e.g., inbreeding and genetic diversity) with the expected decrease in sequencing cost.


Assuntos
Genômica , Gorilla gorilla/genética , Sequenciamento de Nucleotídeos em Larga Escala , Endogamia , Sequência de Aminoácidos , Animais , Feminino , Heterozigoto , Masculino , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Mutação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA