Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cancer Cell ; 40(5): 509-523.e6, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35537412

RESUMO

Immune checkpoint blockade (ICB) therapy frequently induces immune-related adverse events. To elucidate the underlying immunobiology, we performed a deep immune analysis of intestinal, colitis, and tumor tissue from ICB-treated patients with parallel studies in preclinical models. Expression of interleukin-6 (IL-6), neutrophil, and chemotactic markers was higher in colitis than in normal intestinal tissue; T helper 17 (Th17) cells were more prevalent in immune-related enterocolitis (irEC) than T helper 1 (Th1). Anti-cytotoxic T-lymphocyte-associated antigen 4 (anti-CTLA-4) induced stronger Th17 memory in colitis than anti-program death 1 (anti-PD-1). In murine models, IL-6 blockade associated with improved tumor control and a higher density of CD4+/CD8+ effector T cells, with reduced Th17, macrophages, and myeloid cells. In an experimental autoimmune encephalomyelitis (EAE) model with tumors, combined IL-6 blockade and ICB enhanced tumor rejection while simultaneously mitigating EAE symptoms versus ICB alone. IL-6 blockade with ICB could de-couple autoimmunity from antitumor immunity.

2.
Genome Biol ; 23(1): 112, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534898

RESUMO

Integration of single-cell multiomics profiles generated by different single-cell technologies from the same biological sample is still challenging. Previous approaches based on shared features have only provided approximate solutions. Here, we present a novel mathematical solution named bi-order canonical correlation analysis (bi-CCA), which extends the widely used CCA approach to iteratively align the rows and the columns between data matrices. Bi-CCA is generally applicable to combinations of any two single-cell modalities. Validations using co-assayed ground truth data and application to a CAR-NK study and a fetal muscle atlas demonstrate its capability in generating accurate multimodal co-embeddings and discovering cellular identity.

3.
Blood Adv ; 6(7): 2267-2274, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35008100

RESUMO

Secondary central nervous system large B-cell lymphoma (SCNSL) is rare, with a generally poor prognosis. There is limited data about the role of autologous stem cell transplantation (ASCT) in these high-risk patients. We explored in this study treatment outcomes and prognostic factors for patients with SCNSL who underwent ASCT. We included all consecutive patients who underwent ASCT at our institution. Primary endpoints were progression-free survival (PFS) and overall survival (OS). One-hundred two patients were identified. Median age at transplant was 56 (range, 21-71) years. With a median follow-up of 56 (range, 1-256) months, the median PFS and OS were 40 and 88 months, respectively. The 4-year PFS and OS were 48% and 57%, respectively. In univariate analysis, complete remission (CR) at transplant, prior lines of therapy (≤2), normal lactate dehydrogenase, and parenchymal involvement were significantly associated with improved PFS. For OS, only CR at transplant and ≤2 prior lines of therapy were associated with improved survival. On multivariable analysis for PFS, CR at transplant (hazard ratio [HR], 0.278; 95% CI, 0.153-0.506; P ≤ .0001) and ≤2 prior lines of therapy (HR, 0.485; 95% CI, 0.274-0.859; P = .0131) were significantly associated with superior PFS. Similarly, CR at transplant (HR, 0.352; 95% CI, 0.186-0.663; P = .0013) and ≤2 prior lines of therapy (HR, 0.476; 95% CI, 0.257-0.882; P = .0183) were associated with improved survival. In the largest single-center study, our findings indicate that ASCT is associated with durable responses and prolonged survival in patients with SCNSL. Patients in CR at transplant and those who received ≤2 lines of therapy have particularly excellent outcomes.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Linfoma Difuso de Grandes Células B , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sistema Nervoso Central , Humanos , Linfoma Difuso de Grandes Células B/terapia , Transplante Autólogo
4.
Blood ; 139(12): 1908-1919, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34914826

RESUMO

Patients with B-lineage acute lymphoblastic leukemia (ALL) are at high-risk for relapse after allogeneic hematopoietic cell transplantation (HCT). We conducted a single-center phase 2 study evaluating the feasibility of 4 cycles of blinatumomab administered every 3 months during the first year after HCT in an effort to mitigate relapse in high-risk ALL patients. Twenty-one of 23 enrolled patients received at least 1 cycle of blinatumomab and were included in the analysis. The median time from HCT to the first cycle of blinatumomab was 78 days (range, 44 to 105). Twelve patients (57%) completed all 4 treatment cycles. Neutropenia was the only grade 4 adverse event (19%). Rates of cytokine release (5% G1) and neurotoxicity (5% G2) were minimal. The cumulative incidence of acute graft-versus-host disease (GVHD) grades 2 to 4 and 3 to 4 were 33% and 5%, respectively; 2 cases of mild (10%) and 1 case of moderate (5%) chronic GVHD were noted. With a median follow-up of 14.3 months, the 1-year overall survival (OS), progression-free survival (PFS), and nonrelapse mortality (NRM) rates were 85%, 71%, and 0%, respectively. In a matched analysis with a contemporary cohort of 57 patients, we found no significant difference between groups regarding blinatumomab's efficacy. Correlative studies of baseline and posttreatment samples identified patients with specific T-cell profiles as "responders" or "nonresponders" to therapy. Responders had higher proportions of effector memory CD8 T-cell subsets. Nonresponders were T-cell deficient and expressed more inhibitory checkpoint molecules, including T-cell immunoglobulin and mucin domain 3 (TIM3). We found that blinatumomab postallogeneic HCT is feasible, and its benefit is dependent on the immune milieu at time of treatment. This paper is posted on ClinicalTrials.gov, study ID: NCT02807883.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Doença Aguda , Anticorpos Biespecíficos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Recidiva
6.
Clin Cancer Res ; 27(21): 5847-5856, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34380640

RESUMO

PURPOSE: To compare outcomes between patients with relapsed follicular lymphoma who received a nonmyeloablative allogeneic stem cell transplant (alloSCT) and those who received an autologous transplant (autoSCT). PATIENTS AND METHODS: We evaluated 194 patients with follicular lymphoma who received an alloSCT (n = 98) or autoSCT (n = 96) at MD Anderson Cancer Center (Houston, TX). The transplant type used was based on donor availability and by Medicare reimbursement guidelines. Patients who received an alloSCT were enrolled in four consecutive trials in which they received fludarabine, cyclophosphamide (or bendamustine), and rituximab conditioning. autoSCT patients received R-BEAM (rituximab, carmustine, etoposide, cytarabine, and melphalan). RESULTS: The median follow-up of survivors was 108 months for the alloSCT group and 102 months for the autoSCT group. Overall survival was significantly better for patients who received an alloSCT compared with those who received an autoSCT (62% vs. 46%; P = 0.048). Similarly, progression-free survival rates were 52% in patients who received an alloSCT and 31% in those who received an autoSCT (P < 0.001), and the 8-year relapse rates were 11% and 43%, respectively (P < 0.0001). Only three patients in the alloSCT group relapsed beyond 3.5 years. In the alloSCT group, the rates for grade 2 to 4 acute graft-versus-host disease (GVHD), grade 3 to 4 acute GVHD, and extensive chronic GVHD were 22%, 9%, and 38%, respectively. In the autoSCT group, the 8-year incidence of secondary myelodysplasia was 11%. Nonrelapse mortality was similar between the two groups (15% vs. 11% at 8 years; P = 0.27). CONCLUSIONS: This study shows that alloSCT is curative and confers superior survival compared with autoSCT in patients with follicular lymphoma.


Assuntos
Linfoma Folicular/cirurgia , Transplante de Células-Tronco , Adulto , Idoso , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva , Fatores de Tempo , Transplante Autólogo , Transplante Homólogo
8.
Cell Rep ; 36(3): 109432, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34270918

RESUMO

Adoptive cell therapy with virus-specific T cells has been used successfully to treat life-threatening viral infections, supporting application of this approach to coronavirus disease 2019 (COVID-19). We expand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T cells from the peripheral blood of COVID-19-recovered donors and non-exposed controls using different culture conditions. We observe that the choice of cytokines modulates the expansion, phenotype, and hierarchy of antigenic recognition by SARS-CoV-2 T cells. Culture with interleukin (IL)-2/4/7, but not under other cytokine-driven conditions, results in more than 1,000-fold expansion in SARS-CoV-2 T cells with a retained phenotype, function, and hierarchy of antigenic recognition compared with baseline (pre-expansion) samples. Expanded cytotoxic T lymphocytes (CTLs) are directed against structural SARS-CoV-2 proteins, including the receptor-binding domain of Spike. SARS-CoV-2 T cells cannot be expanded efficiently from the peripheral blood of non-exposed controls. Because corticosteroids are used for management of severe COVID-19, we propose an efficient strategy to inactivate the glucocorticoid receptor gene (NR3C1) in SARS-CoV-2 CTLs using CRISPR-Cas9 gene editing.

9.
J Clin Invest ; 131(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34138753

RESUMO

Glioblastoma multiforme (GBM), the most aggressive brain cancer, recurs because glioblastoma stem cells (GSCs) are resistant to all standard therapies. We showed that GSCs, but not normal astrocytes, are sensitive to lysis by healthy allogeneic natural killer (NK) cells in vitro. Mass cytometry and single-cell RNA sequencing of primary tumor samples revealed that GBM tumor-infiltrating NK cells acquired an altered phenotype associated with impaired lytic function relative to matched peripheral blood NK cells from patients with GBM or healthy donors. We attributed this immune evasion tactic to direct cell-to-cell contact between GSCs and NK cells via αv integrin-mediated TGF-ß activation. Treatment of GSC-engrafted mice with allogeneic NK cells in combination with inhibitors of integrin or TGF-ß signaling or with TGFBR2 gene-edited allogeneic NK cells prevented GSC-induced NK cell dysfunction and tumor growth. These findings reveal an important mechanism of NK cell immune evasion by GSCs and suggest the αv integrin/TGF-ß axis as a potentially useful therapeutic target in GBM.


Assuntos
Glioblastoma/imunologia , Integrinas/imunologia , Células Matadoras Naturais/imunologia , Proteínas de Neoplasias/imunologia , Células-Tronco Neoplásicas/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/terapia , Xenoenxertos , Humanos , Integrinas/genética , Células Matadoras Naturais/patologia , Masculino , Camundongos , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Células-Tronco Neoplásicas/patologia , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/imunologia , Fator de Crescimento Transformador beta/genética
10.
Front Immunol ; 12: 631353, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017325

RESUMO

Acute graft-vs.-host (GVHD) disease remains a common complication of allogeneic stem cell transplantation with very poor outcomes once the disease becomes steroid refractory. Mesenchymal stem cells (MSCs) represent a promising therapeutic approach for the treatment of GVHD, but so far this strategy has had equivocal clinical efficacy. Therapies using MSCs require optimization taking advantage of the plasticity of these cells in response to different microenvironments. In this study, we aimed to optimize cord blood tissue derived MSCs (CBti MSCs) by priming them using a regimen of inflammatory cytokines. This approach led to their metabolic reprogramming with enhancement of their glycolytic capacity. Metabolically reprogrammed CBti MSCs displayed a boosted immunosuppressive potential, with superior immunomodulatory and homing properties, even after cryopreservation and thawing. Mechanistically, primed CBti MSCs significantly interfered with glycolytic switching and mTOR signaling in T cells, suppressing T cell proliferation and ensuing polarizing toward T regulatory cells. Based on these data, we generated a Good Manufacturing Process (GMP) Laboratory protocol for the production and cryopreservation of primed CBti MSCs for clinical use. Following thawing, these cryopreserved GMP-compliant primed CBti MSCs significantly improved outcomes in a xenogenic mouse model of GVHD. Our data support the concept that metabolic profiling of MSCs can be used as a surrogate for their suppressive potential in conjunction with conventional functional methods to support their therapeutic use in GVHD or other autoimmune disorders.


Assuntos
Técnicas de Reprogramação Celular/métodos , Reprogramação Celular/fisiologia , Sangue Fetal/citologia , Doença Enxerto-Hospedeiro/prevenção & controle , Células-Tronco Mesenquimais/metabolismo , Animais , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/imunologia , Citocinas/farmacologia , Feminino , Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Endogâmicos NOD , Controle de Qualidade
11.
Clin Cancer Res ; 27(13): 3744-3756, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33986022

RESUMO

PURPOSE: Natural killer (NK)-cell recognition and function against NK-resistant cancers remain substantial barriers to the broad application of NK-cell immunotherapy. Potential solutions include bispecific engagers that target NK-cell activity via an NK-activating receptor when simultaneously targeting a tumor-specific antigen, as well as enhancing functionality using IL12/15/18 cytokine pre-activation. EXPERIMENTAL DESIGN: We assessed single-cell NK-cell responses stimulated by the tetravalent bispecific antibody AFM13 that binds CD30 on leukemia/lymphoma targets and CD16A on various types of NK cells using mass cytometry and cytotoxicity assays. The combination of AFM13 and IL12/15/18 pre-activation of blood and cord blood-derived NK cells was investigated in vitro and in vivo. RESULTS: We found heterogeneity within AFM13-directed conventional blood NK cell (cNK) responses, as well as consistent AFM13-directed polyfunctional activation of mature NK cells across donors. NK-cell source also impacted the AFM13 response, with cNK cells from healthy donors exhibiting superior responses to those from patients with Hodgkin lymphoma. IL12/15/18-induced memory-like NK cells from peripheral blood exhibited enhanced killing of CD30+ lymphoma targets directed by AFM13, compared with cNK cells. Cord-blood NK cells preactivated with IL12/15/18 and ex vivo expanded with K562-based feeders also exhibited enhanced killing with AFM13 stimulation via upregulation of signaling pathways related to NK-cell effector function. AFM13-NK complex cells exhibited enhanced responses to CD30+ lymphomas in vitro and in vivo. CONCLUSIONS: We identify AFM13 as a promising combination with cytokine-activated adult blood or cord-blood NK cells to treat CD30+ hematologic malignancies, warranting clinical trials with these novel combinations.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Leucemia/terapia , Linfoma/terapia , Sangue/efeitos dos fármacos , Sangue/imunologia , Células Cultivadas , Terapia Combinada , Citocinas/farmacologia , Sangue Fetal/efeitos dos fármacos , Sangue Fetal/imunologia , Humanos , Antígeno Ki-1/imunologia , Receptores de IgG/imunologia
12.
Clin Transl Immunology ; 10(4): e1274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959279

RESUMO

T cells engineered to express chimeric antigen receptors (CARs) have revolutionised the field of cellular therapy for cancer. Despite its success, this strategy has some recognised limitations and toxicities. Hence, there is growing interest in developing novel cellular therapies based on non-αß T-cell immune effector cells, including NK cells that offer clear advantages in cancer immunotherapy. As a result, NK cells are being explored as an alternative platform for CAR engineering and are becoming recognised as important players in the next generation of cellular therapies targeting cancer. In this review, we highlight preclinical and clinical studies of CAR-NK cells derived from different sources and discuss strategies under investigation to enhance the antitumor activity of these engineered innate immune cells.

13.
Am Soc Clin Oncol Educ Book ; 41: 1-5, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33989022

RESUMO

Adoptive cell therapy has significantly impacted the immuno-oncology landscape. The number of strategies currently in preclinical and clinical development is increasing at a rapid rate. Indeed, we are experiencing a transformative movement in cancer care as we shift toward highly personalized treatments designed to confront the specific challenges of each cancer. Advancements in genetic engineering methods and single-cell profiling technologies provide a level of understanding of the interactions between the immune system and cancer never before achieved. This knowledge, in turn, can be applied to the design and engineering of effective cancer-fighting treatments. As these promising new therapies progress toward clinical application, it becomes evident that we must develop robust methods for production and validation of cellular products to ensure consistency, safety, and efficacy, irrespective of cell type or indication. Herein, we provide an overview of the innovative approaches guiding the new generation of cell therapies and describe the benefits and challenges associated with emerging autologous and allogeneic platforms. Moreover, we discuss important considerations pertaining to process development, cost of goods, and manufacturing, and highlight their impact on the transfer of therapies from bench to bedside.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Neoplasias , Engenharia Genética , Humanos , Imunoterapia Adotiva , Neoplasias/terapia
14.
J Clin Oncol ; 39(24): 2710-2719, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-33929874

RESUMO

PURPOSE: BK virus-associated hemorrhagic cystitis (BKV-HC) is a common complication of allogenic hematopoietic stem cell transplantation (AHSCT), particularly in recipients of alternative donor transplants, which are being performed in increasing numbers. BKV-HC typically results in painful hematuria, urinary obstruction, and renal dysfunction, without a definitive therapeutic option. METHODS: We performed a clinical trial (ClinicalTrials.gov identifier: NCT02479698) to assess the feasibility, safety, and efficacy of administering most closely HLA-matched third-party BKV-specific cytotoxic T lymphocytes (CTLs), generated from 26 healthy donors and banked for off-the-shelf use. The cells were infused into 59 patients who developed BKV-HC following AHSCT. Comprehensive clinical assessments and correlative studies were performed. RESULTS: Response to BKV-CTL infusion was rapid; the day 14 overall response rate was 67.7% (40 of 59 evaluable patients), which increased to 81.6% among evaluable patients at day 45 (40 of 49 evaluable patients). No patient lost a previously achieved response. There were no cases of de novo grade 3 or 4 graft-versus-host disease, graft failure, or infusion-related toxicities. BKV-CTLs were identified in patient blood samples up to 3 months postinfusion and their in vivo expansion predicted for clinical response. A matched-pair analysis revealed that, compared with standard of care, after accounting for prognostic covariate effects, treatment with BKV-CTLs resulted in higher probabilities of response at all follow-up timepoints as well as significantly lower transfusion requirement. CONCLUSION: Off-the-shelf BKV-CTLs are a safe and effective therapy for the management of patients with BKV-HC after AHSCT.


Assuntos
Cistite/tratamento farmacológico , Transtornos Hemorrágicos/tratamento farmacológico , Linfócitos T Citotóxicos/metabolismo , Alotransplante de Tecidos Compostos Vascularizados/efeitos adversos , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
15.
Front Immunol ; 12: 626098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717142

RESUMO

Natural killer (NK) cells are innate lymphocytes recognized for their important role against tumor cells. NK cells expressing chimeric antigen receptors (CARs) have enhanced effector function against various type of cancer and are attractive contenders for the next generation of cancer immunotherapies. However, a number of factors have hindered the application of NK cells for cellular therapy, including their poor in vitro growth kinetics and relatively low starting percentages within the mononuclear cell fraction of peripheral blood or cord blood (CB). To overcome these limitations, we genetically-engineered human leukocyte antigen (HLA)-A- and HLA-B- K562 cells to enforce the expression of CD48, 4-1BBL, and membrane-bound IL-21 (mbIL21), creating a universal antigen presenting cell (uAPC) capable of stimulating their cognate receptors on NK cells. We have shown that uAPC can drive the expansion of both non-transduced (NT) and CAR-transduced CB derived NK cells by >900-fold in 2 weeks of co-culture with excellent purity (>99.9%) and without indications of senescence/exhaustion. We confirmed that uAPC-expanded research- and clinical-grade NT and CAR-transduced NK cells have higher metabolic fitness and display enhanced effector function against tumor targets compared to the corresponding cell fractions cultured without uAPCs. This novel approach allowed the expansion of highly pure GMP-grade CAR NK cells at optimal cell numbers to be used for adoptive CAR NK cell-based cancer immunotherapy.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Receptores de Antígenos Quiméricos/genética , Animais , Engenharia Celular , Linhagem Celular Tumoral , Proliferação de Células , Citotoxicidade Imunológica , Sangue Fetal , Antígenos HLA/genética , Humanos , Células K562 , Camundongos , Camundongos Knockout , Receptores de Células Matadoras Naturais/metabolismo , Transcriptoma , Transdução Genética , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Immunother Cancer ; 9(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33637601

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) are being used after allogeneic hematopoietic stem cell transplantation (alloHCT) to reverse immune dysfunction. However, a major concern for the use of ICIs after alloHCT is the increased risk of graft-versus-host disease (GVHD). We analyzed the association between GVHD prophylaxis and frequency of GVHD in patients who had received ICI therapy after alloHCT. METHODS: A retrospective study was performed in 21 patients with acute myeloid leukemia (n=16) or myelodysplastic syndromes (n=5) who were treated with antiprogrammed cell death protein 1 (16 patients) or anticytotoxic T lymphocyte-associated antigen 4 (5 patients) therapy for disease relapse after alloHCT. Associations between the type of GVHD prophylaxis and incidence of GVHD were analyzed. RESULTS: Four patients (19%) developed acute GVHD. The incidence of acute GVHD was associated only with the type of post-transplantation GVHD prophylaxis; none of the other variables included (stem cell source, donor type, age at alloHCT, conditioning regimen and prior history of GVHD) were associated with the frequency of acute GVHD. Twelve patients received post-transplantation cyclophosphamide (PTCy) for GVHD prophylaxis. Patients who received PTCy had a significantly shorter median time to initiation of ICI therapy after alloHCT compared with patients who did not receive PTCy (median 5.1 months compared with 26.6 months). Despite early ICI therapy initiation, patients who received PTCy had a lower observed cumulative incidence of grades 2-4 acute GVHD compared with patients who did not receive PTCy (16% compared with 22%; p=0.7). After controlling for comorbidities and time from alloHCT to ICI therapy initiation, the analysis showed that PTCy was associated with a 90% reduced risk of acute GVHD (HR 0.1, 95% CI 0.02 to 0.6, p=0.01). CONCLUSIONS: ICI therapy for relapsed acute myeloid leukemia/myelodysplastic syndromes after alloHCT may be a safe and feasible option. PTCy appears to decrease the incidence of acute GVHD in this cohort of patients.


Assuntos
Ciclofosfamida/administração & dosagem , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Inibidores de Checkpoint Imunológico/administração & dosagem , Imunossupressores/administração & dosagem , Leucemia Mieloide Aguda/terapia , Síndromes Mielodisplásicas/terapia , Adulto , Idoso , Ciclofosfamida/efeitos adversos , Bases de Dados Factuais , Esquema de Medicação , Feminino , Doença Enxerto-Hospedeiro/epidemiologia , Doença Enxerto-Hospedeiro/imunologia , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Imunossupressores/efeitos adversos , Incidência , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/imunologia , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/imunologia , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Texas/epidemiologia , Transplante Homólogo/efeitos adversos , Resultado do Tratamento
17.
Blood ; 137(5): 624-636, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32902645

RESUMO

Immune checkpoint therapy has resulted in remarkable improvements in the outcome for certain cancers. To broaden the clinical impact of checkpoint targeting, we devised a strategy that couples targeting of the cytokine-inducible Src homology 2-containing (CIS) protein, a key negative regulator of interleukin 15 (IL-15) signaling, with fourth-generation "armored" chimeric antigen receptor (CAR) engineering of cord blood-derived natural killer (NK) cells. This combined strategy boosted NK cell effector function through enhancing the Akt/mTORC1 axis and c-MYC signaling, resulting in increased aerobic glycolysis. When tested in a lymphoma mouse model, this combined approach improved NK cell antitumor activity more than either alteration alone, eradicating lymphoma xenografts without signs of any measurable toxicity. We conclude that targeting a cytokine checkpoint further enhances the antitumor activity of IL-15-secreting armored CAR-NK cells by promoting their metabolic fitness and antitumor activity. This combined approach represents a promising milestone in the development of the next generation of NK cells for cancer immunotherapy.


Assuntos
Sangue Fetal/citologia , Imunoterapia Adotiva , Interleucina-15/genética , Células Matadoras Naturais/efeitos dos fármacos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas Supressoras da Sinalização de Citocina/antagonistas & inibidores , Aerobiose , Animais , Antígenos CD19/imunologia , Linfoma de Burkitt/patologia , Linfoma de Burkitt/terapia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Glicólise , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Interleucina-15/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/transplante , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Receptores de Antígenos Quiméricos , Transdução de Sinais/fisiologia , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cancer Discov ; 11(1): 45-58, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33277313

RESUMO

Chimeric antigen receptor (CAR) engineering of T cells has revolutionized the field of cellular therapy for the treatment of cancer. Despite this success, autologous CAR-T cells have recognized limitations that have led to the investigation of other immune effector cells as candidates for CAR modification. Recently, natural killer (NK) cells have emerged as safe and effective platforms for CAR engineering. In this article, we review the advantages, challenges, and preclinical and clinical research advances in CAR NK cell engineering for cancer immunotherapy. We also briefly consider the feasibility and potential benefits of applying other immune effector cells as vehicles for CAR expression. SIGNIFICANCE: CAR engineering can redirect the specificity of immune effector cells, converting them to a much more potent weapon to combat cancer cells. Expanding this strategy to immune effectors beyond conventional T lymphocytes could overcome some of the limitations of CAR T cells, paving the way for safer and more effective off-the-shelf cellular therapy products.


Assuntos
Engenharia Genética/métodos , Imunoterapia Adotiva/métodos , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Humanos
19.
Br J Haematol ; 193(2): 216-230, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33216984

RESUMO

Chimeric antigen receptor (CAR) T cells are a rapidly emerging form of cancer treatment, and have resulted in remarkable responses in refractory lymphoid malignancies. However, their widespread clinical use is limited by toxicity related to cytokine release syndrome and neurotoxicity, the logistic complexity of their manufacturing, cost and time-to-treatment for autologous CAR-T cells, and the risk of graft-versus-host disease (GvHD) associated with allogeneic CAR-T cells. Natural killer (NK) cells have emerged as a promising source of cells for CAR-based therapies due to their ready availability and safety profile. NK cells are part of the innate immune system, providing the first line of defence against pathogens and cancer cells. They produce cytokines and mediate cytotoxicity without the need for prior sensitisation and have the ability to interact with, and activate other immune cells. NK cells for immunotherapy can be generated from multiple sources, such as expanded autologous or allogeneic peripheral blood, umbilical cord blood, haematopoietic stem cells, induced pluripotent stem cells, as well as cell lines. Genetic engineering of NK cells to express a CAR has shown impressive preclinical results and is currently being explored in multiple clinical trials. In the present review, we discuss both the preclinical and clinical trial progress made in the field of CAR NK-cell therapy, and the strategies to overcome the challenges encountered.


Assuntos
Imunidade Inata/efeitos dos fármacos , Imunoterapia Adotiva/efeitos adversos , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/uso terapêutico , Aloenxertos , Ensaios Clínicos como Assunto , Síndrome da Liberação de Citocina/induzido quimicamente , Engenharia Genética/métodos , Doença Enxerto-Hospedeiro/induzido quimicamente , Humanos , Imunoterapia/métodos , Imunoterapia Adotiva/economia , Imunoterapia Adotiva/métodos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/transplante , Síndromes Neurotóxicas/etiologia , Receptores de Antígenos Quiméricos/administração & dosagem , Segurança , Tempo para o Tratamento/estatística & dados numéricos
20.
Front Oncol ; 11: 800110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35083154

RESUMO

Despite advances in the understanding of the genetic landscape of acute myeloid leukemia (AML) and the addition of targeted biological and epigenetic therapies to the available armamentarium, achieving long-term disease-free survival remains an unmet need. Building on growing knowledge of the interactions between leukemic cells and their bone marrow microenvironment, strategies to battle AML by immunotherapy are under investigation. In the current review we describe the advances in immunotherapy for AML, with a focus on chimeric antigen receptor (CAR) T cell therapy. CARs constitute powerful immunologic modalities, with proven clinical success in B-Cell malignancies. We discuss the challenges and possible solutions for CAR T cell therapy development in AML, and examine the path currently being paved by preclinical and clinical efforts, from autologous to allogeneic products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...