Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33592188

RESUMO

Compounds that exhibit assay interference or undesirable mechanisms of bioactivity ("nuisance compounds") are routinely encountered in cellular assays, including phenotypic and high-content screening assays. Much is known regarding compound-dependent assay interferences in cell-free assays. However, despite the essential role of cellular assays in chemical biology and drug discovery, there is considerably less known about nuisance compounds in more complex cell-based assays. In our view, a major obstacle to realizing the full potential of chemical biology will not just be difficult-to-drug targets or even the sheer number of targets, but rather nuisance compounds, due to their ability to waste significant resources and erode scientific trust. In this review, we summarize our collective academic, government, and industry experiences regarding cellular nuisance compounds. We describe assay design strategies to mitigate the impact of nuisance compounds and suggest best practices to efficiently address these compounds in complex biological settings.

2.
J Med Chem ; 63(21): 12137-12155, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32804502

RESUMO

This Perspective of the published essential medicinal chemistry of cannabidiol (CBD) provides evidence that the popularization of CBD-fortified or CBD-labeled health products and CBD-associated health claims lacks a rigorous scientific foundation. CBD's reputation as a cure-all puts it in the same class as other "natural" panaceas, where valid ethnobotanicals are reduced to single, purportedly active ingredients. Such reductionist approaches oversimplify useful, chemically complex mixtures in an attempt to rationalize the commercial utility of natural compounds and exploit the "natural" label. Literature evidence associates CBD with certain semiubiquitous, broadly screened, primarily plant-based substances of undocumented purity that interfere with bioassays and have a low likelihood of becoming therapeutic agents. Widespread health challenges and pandemic crises such as SARS-CoV-2 create circumstances under which scientists must be particularly vigilant about healing claims that lack solid foundational data. Herein, we offer a critical review of the published medicinal chemistry properties of CBD, as well as precise definitions of CBD-containing substances and products, distilled to reveal the essential factors that impact its development as a therapeutic agent.

3.
J Biol Chem ; 295(39): 13516-13531, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32723867

RESUMO

Prion disease is a rapidly progressive neurodegenerative disorder caused by misfolding and aggregation of the prion protein (PrP), and there are currently no therapeutic options. PrP ligands could theoretically antagonize prion formation by protecting the native protein from misfolding or by targeting it for degradation, but no validated small-molecule binders have been discovered to date. We deployed a variety of screening methods in an effort to discover binders of PrP, including 19F-observed and saturation transfer difference (STD) NMR spectroscopy, differential scanning fluorimetry (DSF), DNA-encoded library selection, and in silico screening. A single benzimidazole compound was confirmed in concentration-response, but affinity was very weak (K d > 1 mm), and it could not be advanced further. The exceptionally low hit rate observed here suggests that PrP is a difficult target for small-molecule binders. Whereas orthogonal binder discovery methods could yield high-affinity compounds, non-small-molecule modalities may offer independent paths forward against prion disease.

4.
J Med Chem ; 63(9): 4655-4684, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32118427

RESUMO

A high-throughput screen designed to discover new inhibitors of histone acetyltransferase KAT6A uncovered CTX-0124143 (1), a unique aryl acylsulfonohydrazide with an IC50 of 1.0 µM. Using this acylsulfonohydrazide as a template, we herein disclose the results of our extensive structure-activity relationship investigations, which resulted in the discovery of advanced compounds such as 55 and 80. These two compounds represent significant improvements on our recently reported prototypical lead WM-8014 (3) as they are not only equivalently potent as inhibitors of KAT6A but are less lipophilic and significantly more stable to microsomal degradation. Furthermore, during this process, we discovered a distinct structural subclass that contains key 2-fluorobenzenesulfonyl and phenylpyridine motifs, culminating in the discovery of WM-1119 (4). This compound is a highly potent KAT6A inhibitor (IC50 = 6.3 nM; KD = 0.002 µM), competes with Ac-CoA by binding to the Ac-CoA binding site, and has an oral bioavailability of 56% in rats.


Assuntos
Antineoplásicos/farmacologia , Histona Acetiltransferases/antagonistas & inibidores , Hidrazinas/farmacologia , Sulfonamidas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Descoberta de Drogas , Estabilidade de Medicamentos , Humanos , Hidrazinas/síntese química , Hidrazinas/metabolismo , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/metabolismo
5.
Clin Chem ; 66(3): 474-482, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32057077

RESUMO

BACKGROUND: Clinical LC-MS/MS assays traditionally require that samples be run in batches with calibration curves in each batch. This approach is inefficient and presents a barrier to random access analysis. We developed an alternative approach called multipoint internal calibration (MPIC) that eliminated the need for batch-mode analysis. METHODS: The new approach used 4 variants of 13C-labeled methotrexate (0.026-10.3 µM) as an internal calibration curve within each sample. One site carried out a comprehensive validation, which included an evaluation of interferences and matrix effects, lower limit of quantification (LLOQ), and 20-day precision. Three sites evaluated assay precision and linearity. MPIC was also compared with traditional LC-MS/MS and an immunoassay. RESULTS: Recovery of spiked analyte was 93%-102%. The LLOQ was validated to be 0.017 µM. Total variability, determined in a 20-day experiment, was 11.5%CV. In a 5-day variability study performed at each site, total imprecision was 3.4 to 16.8%CV. Linearity was validated throughout the calibrator range (r2 > 0.995, slopes = 0.996-1.01). In comparing 40 samples run in each laboratory, the median interlaboratory imprecision was 6.55%CV. MPIC quantification was comparable to both traditional LC-MS/MS and immunoassay (r2 = 0.96-0.98, slopes = 1.04-1.06). Bland-Altman analysis of all comparisons showed biases rarely exceeding 20% when MTX concentrations were >0.4 µM. CONCLUSION: The MPIC method for serum methotrexate quantification was validated in a multisite proof-of-concept study and represents a big step toward random-access LC-MS/MS analysis, which could change the paradigm of mass spectrometry in the clinical laboratory.


Assuntos
Metotrexato/sangue , Espectrometria de Massas em Tandem/métodos , Calibragem , Isótopos de Carbono/química , Cromatografia Líquida de Alta Pressão , Humanos , Imunoensaio , Marcação por Isótopo , Limite de Detecção , Metotrexato/química , Metotrexato/normas
6.
J Med Chem ; 63(6): 2894-2914, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32105470

RESUMO

Glutathione transferase omega-1 (GSTO1-1) is an enzyme whose function supports the activation of interleukin (IL)-1ß and IL-18 that are implicated in a variety of inflammatory disease states for which small-molecule inhibitors are sought. The potent reactivity of the active-site cysteine has resulted in reported inhibitors that act by covalent labeling. In this study, structure-activity relationship (SAR) elaboration of the reported GSTO1-1 inhibitor C1-27 was undertaken. Compounds were evaluated for inhibitory activity toward purified recombinant GSTO1-1 and for indicators of target engagement in cell-based assays. As covalent inhibitors, the kinact/KI values of selected compounds were determined, as well as in vivo pharmacokinetics analysis. Cocrystal structures of key novel compounds in complex with GSTO1-1 were also solved. This study represents the first application of a biochemical assay for GSTO1-1 to determine kinact/KI values for tested inhibitors and the most extensive set of cell-based data for a GSTO1-1 inhibitor SAR series reported to date. Our research culminated in the discovery of 25, which we propose as the preferred biochemical tool to interrogate cellular responses to GSTO1-1 inhibition.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glutationa Transferase/antagonistas & inibidores , Sulfonamidas/química , Sulfonamidas/farmacologia , Animais , Desenvolvimento de Medicamentos , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Humanos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
7.
J Appl Lab Med ; 3(6): 974-992, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31639689

RESUMO

BACKGROUND: Monitoring of medication compliance and drug abuse is used by clinicians to increase patient prescription drug compliance and reduce illicit drug abuse and diversion. Despite available immunoassays, chromatography-mass spectrometry-based methods are considered the gold standard for urine drug monitoring owing to higher sensitivities and specificities. Herein, we report a fast, convenient ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) assay to detect or quantify 37 clinically relevant prescription drugs, drugs of abuse, and related glucuronides and other metabolites in human urine by single diluted sample injection. METHODS: Analytes consisted of prescription and illicit opioids, benzodiazepines, and drugs of abuse, including parent compounds and glucuronidated and nonglucuronidated metabolites. Urine samples were diluted with water and supplemented with deuterated internal standards without enzymatic hydrolysis, analyte extraction, or sample purification. Analytes were separated by reversed-phase UPLC and quantified by positive-mode electrospray ionization and collision-induced dissociation MS. Assay validation followed Food and Drug Administration bioanalytical guidelines. RESULTS: Total analytical run time was 5.5 min. All analytes demonstrated acceptable inter- and intraassay accuracy, imprecision, and linearity throughout clinically relevant analytical ranges (1-2000 ng/mL, depending on analyte). All analytes demonstrated acceptable selectivity, stability, matrix effects, carryover, and performance compared to national reference laboratory or previously validated in-house methods. A total of 23 and 14 analytes were validated for quantitative and qualitative testing, respectively. CONCLUSIONS: A convenient UPLC-MS/MS assay for simultaneously monitoring 37 analytes in human urine was validated for use in pain management testing. Advantages of this multiplex assay include facile sample preparation and higher-throughput definitive detection including glucuronide metabolite quantification.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Monitoramento de Medicamentos/métodos , Glucuronídeos , Medicamentos sob Prescrição , Espectrometria de Massas em Tandem/métodos , Glucuronídeos/análise , Glucuronídeos/urina , Humanos , Limite de Detecção , Manejo da Dor/métodos , Medicamentos sob Prescrição/análise , Medicamentos sob Prescrição/farmacocinética , Reprodutibilidade dos Testes , Fatores de Tempo , Urinálise/métodos
8.
J Med Chem ; 62(15): 7146-7159, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31256587

RESUMO

A high-throughput screen for inhibitors of the histone acetyltransferase, KAT6A, led to identification of an aryl sulfonohydrazide derivative (CTX-0124143) that inhibited KAT6A with an IC50 of 1.0 µM. Elaboration of the structure-activity relationship and medicinal chemistry optimization led to the discovery of WM-8014 (97), a highly potent inhibitor of KAT6A (IC50 = 0.008 µM). WM-8014 competes with acetyl-CoA (Ac-CoA), and X-ray crystallographic analysis demonstrated binding to the Ac-CoA binding site. Through inhibition of KAT6A activity, WM-8014 induces cellular senescence and represents a unique pharmacological tool.


Assuntos
Benzenossulfonatos/química , Descoberta de Drogas/métodos , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Hidrazinas/química , Animais , Benzenossulfonatos/farmacologia , Células CACO-2 , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Hidrazinas/farmacologia , Camundongos , Estrutura Secundária de Proteína
9.
J Med Chem ; 62(5): 2485-2498, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30715882

RESUMO

A series of 3,3'-disubstituted 5,5'-bi(1,2,4-triazine) derivatives was synthesized and screened against the erythrocytic stage of Plasmodium falciparum 3D7 line. The most potent dimer, 6k, with an IC50 (50% inhibitory concentration) of 0.008 µM, had high in vitro potency against P. falciparum lines resistant to chloroquine (W2, IC50 = 0.0047 ± 0.0011 µM) and artemisinin (MRA1240, IC50 = 0.0086 ± 0.0010 µM). Excellent ex vivo potency of 6k was shown against clinical field isolates of both P. falciparum (IC50 = 0.022-0.034 µM) and Plasmodium vivax (IC50 = 0.0093-0.031 µM) from the blood of outpatients with uncomplicated malaria. Despite 6k being cleared relatively rapidly in mice, it suppressed parasitemia in the Peters 4-day test, with a mean ED50 value (50% effective dose) of 1.47 mg kg-1 day-1 following oral administration. The disubstituted triazine dimer 6k represents a new class of orally available antimalarial compounds of considerable interest for further development.


Assuntos
Antimaláricos/farmacologia , Triazinas/farmacologia , Animais , Antimaláricos/química , Antimaláricos/farmacocinética , Cloroquina/farmacologia , Resistência a Medicamentos , Humanos , Técnicas In Vitro , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Estrutura Molecular , Plasmodium/classificação , Plasmodium/efeitos dos fármacos , Especificidade da Espécie , Relação Estrutura-Atividade , Triazinas/química , Triazinas/farmacocinética
10.
Pain Physician ; 21(6): E583-E592, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30508989

RESUMO

BACKGROUND: The technical advantages of direct-to-definitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) urine testing for monitoring patient compliance in pain management are well known. However, the design and implementation of LC-MS/MS methods are more controversial, including factors such as determining appropriate cutoffs, specimen processing (e.g., specimen hydrolysis), reporting of qualitative and/or quantitative results, and test menu. OBJECTIVES: The objective of the research was to compare the clinical performance of our previous urine pain toxicology panel, a combination of immunoassay (IA) screens and LC-MS/MS, to our current pain toxicology panel, which features direct-to-definitive LC-MS/MS for 34 drugs and metabolites. STUDY DESIGN: Six months of results from our previous pain toxicology panel were compared to 5.5 months of results from our current pain toxicology panel, enabling us to make conclusions regarding clinical performance. SETTING: The research took place at Brigham and Women's Hospital in Boston, MA. METHODS: The percentage of false positive IA results was evaluated for our previous pain toxicology panel. The positivity rates for each drug and/or metabolite were calculated for both the previous and current panels, including rates of detection of both prescribed and illicit drugs. The turnaround time (TAT), direct and send-out costs associated with each approach, as well as projected cost savings were also determined. RESULTS: False positive rates with IA ranged from 0% to 29%; the highest false positive rate was seen for 6-acetylmorphine (6-AM). The elimination of IA, addition of metabolites, and/or lowering of cutoffs increased the detection rate of 6-AM, benzoylecgonine (cocaine metabolite), fentanyl, morphine, and oxycodone. The ability to differentiate compliance from simulated compliance improved after eliminating specimen hydrolysis. The TAT improved significantly and projected yearly cost savings with the current panel was $95,003 (USD). In our opinion, qualitative results appeared sufficient to assess compliance in the majority of cases. LIMITATIONS: Our study was performed in a single academic center in a specific geographic region; therefore, our results may not be generalizable to other types of centers or regions. CONCLUSION: Direct-to-definitive LC-MS/MS testing has several clinical benefits, including reduction of false positive results, improved assessment of patient compliance, decreased TAT, and increased detection of drug use and abuse. Cost savings were also realized using this approach. KEY WORDS: Direct-to-definitive, LC-MS/MS, immunoassay, sensitivity, cost, pain management, turnaround time, patient compliance.


Assuntos
Cromatografia Líquida/métodos , Imunoensaio/métodos , Detecção do Abuso de Substâncias/métodos , Espectrometria de Massas em Tandem/métodos , Urinálise/métodos , Cromatografia Líquida/economia , Reações Falso-Positivas , Feminino , Humanos , Drogas Ilícitas/urina , Imunoensaio/economia , Manejo da Dor , Detecção do Abuso de Substâncias/economia , Transtornos Relacionados ao Uso de Substâncias/diagnóstico , Transtornos Relacionados ao Uso de Substâncias/urina , Espectrometria de Massas em Tandem/economia , Urinálise/economia
11.
Methods Enzymol ; 610: 1-25, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30390795

RESUMO

Drug discovery is inherently very risky. The management of these risks can enable the effective use of limited human and monetary resources. A careful attention to risk management in early discovery is especially important given that what happens in the early phases of a project may dictate the course of a research program for months or years. Risk management in early discovery starts with high-level managerial concerns: careful project selection, sufficient staffing and funding, and access to the appropriate instrumentation and tools. Herein we describe the operational elements of risk management that range from the very broad to the extremely specific. These elements have as their base an embedded culture of risk management that extends down to the experiment level, and project ownership in which all researchers anticipate risk, but are not paralyzed by it. In our model, on this base of culture stand the four pillars of early discovery risk management: right libraries, right assays, right series, and right structure-activity relationships. Appropriate attention to these considerations can decrease the risks inherent in early discovery medicinal chemistry, thereby potentially increasing the return on the investment of necessarily finite resources.


Assuntos
Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Animais , Química Farmacêutica/métodos , Humanos , Projetos de Pesquisa , Gestão de Riscos , Relação Estrutura-Atividade
12.
J Chem Inf Model ; 58(8): 1483-1500, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-29990427

RESUMO

Scientists rely on high-throughput screening tools to identify promising small-molecule compounds for the development of biochemical probes and drugs. This study focuses on the identification of promiscuous bioactive compounds, which are compounds that appear active in many high-throughput screening experiments against diverse targets but are often false-positives which may not be easily developed into successful probes. These compounds can exhibit bioactivity due to nonspecific, intractable mechanisms of action and/or by interference with specific assay technology readouts. Such "frequent hitters" are now commonly identified using substructure filters, including pan assay interference compounds (PAINS). Herein, we show that mechanistic modeling of small-molecule reactivity using deep learning can improve upon PAINS filters when modeling promiscuous bioactivity in PubChem assays. Without training on high-throughput screening data, a deep learning model of small-molecule reactivity achieves a sensitivity and specificity of 18.5% and 95.5%, respectively, in identifying promiscuous bioactive compounds. This performance is similar to PAINS filters, which achieve a sensitivity of 20.3% at the same specificity. Importantly, such reactivity modeling is complementary to PAINS filters. When PAINS filters and reactivity models are combined, the resulting model outperforms either method alone, achieving a sensitivity of 24% at the same specificity. However, as a probabilistic model, the sensitivity and specificity of the deep learning model can be tuned by adjusting the threshold. Moreover, for a subset of PAINS filters, this reactivity model can help discriminate between promiscuous and nonpromiscuous bioactive compounds even among compounds matching those filters. Critically, the reactivity model provides mechanistic hypotheses for assay interference by predicting the precise atoms involved in compound reactivity. Overall, our analysis suggests that deep learning approaches to modeling promiscuous compound bioactivity may provide a complementary approach to current methods for identifying promiscuous compounds.


Assuntos
Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Simulação por Computador , Bases de Dados Factuais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Humanos , Modelos Biológicos , Redes Neurais de Computação
13.
Curr Protoc Chem Biol ; 10(1): 91-117, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-30034947

RESUMO

Nonspecific target engagement by test compounds and purported chemical probes is a significant source of assay interference and promiscuous bioactivity in high-throughput screening (HTS) and chemical biology. Most counter-screens for thiol-reactive compounds utilize mass spectrometry or fluorescence detection, and non-proteinaceous reporters like glutathione that may not always approximate the reactivity of protein side-chains. By contrast, a La assay to detect reactive molecules by nuclear magnetic resonance (ALARM NMR) is an industry-developed protein-based [1H-13C]-heteronuclear multiple quantum coherence (HMQC) NMR counter-screen to identify nonspecific protein interactions by test compounds by reporting their tendencies to modulate the human La antigen conformation. This Current Protocol is a users-guide to the production of the 13C-labeled La antigen reporter protein, the reaction of test compounds with this reporter protein, as well as the collection and analysis of characteristic NMR spectra. Combined with other assay interference counter-screens, this assay will enhance chemical biology by helping researchers better prioritize chemical matter and which will increase the number of tractable HTS screening actives and aid in the development of better chemical probes.


Assuntos
Ensaios de Triagem em Larga Escala , Sondas Moleculares/química , Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Humanos , Antígenos Comuns de Leucócito , Proteínas/síntese química , Reprodutibilidade dos Testes
14.
Clin Transl Sci ; 11(5): 461-470, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29877628

RESUMO

The Assay Guidance Manual (AGM) is an eBook of best practices for the design, development, and implementation of robust assays for early drug discovery. Initiated by pharmaceutical company scientists, the manual provides guidance for designing a "testing funnel" of assays to identify genuine hits using high-throughput screening (HTS) and advancing them through preclinical development. Combined with a workshop/tutorial component, the overall goal of the AGM is to provide a valuable resource for training translational scientists.


Assuntos
Bioensaio/métodos , Descoberta de Drogas , Geografia , Ensaios de Triagem em Larga Escala , Humanos , Pesquisa Médica Translacional
15.
J Med Chem ; 61(17): 7448-7470, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-29652143

RESUMO

Early stage drug discovery reporting on relatively new or difficult targets is often associated with insufficient hit triage. Literature reviews of such targets seldom delve into the detail required to critically analyze the associated screening hits reported. Here we take the enzyme glutathione transferase omega-1 (GSTO1-1) as an example of a relatively difficult target and review the associated literature involving small-molecule inhibitors. As part of this process we deliberately pay closer-than-usual attention to assay interference and hit quality aspects. We believe this Perspective will be a useful guide for future development of GSTO1-1 inhibitors, as well serving as a template for future review formats of new or difficult targets.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glutationa Transferase/antagonistas & inibidores , Glutationa Transferase/química , Desenho de Fármacos , Descoberta de Drogas , Polarização de Fluorescência/métodos , Glutationa Transferase/metabolismo , Humanos
18.
Sci Rep ; 7(1): 17832, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259211

RESUMO

Glutathione transferase Omega 1 (GSTO1-1) is an atypical GST reported to play a pro-inflammatory role in response to LPS. Here we show that genetic knockout of Gsto1 alters the response of mice to three distinct inflammatory disease models. GSTO1-1 deficiency ameliorates the inflammatory response stimulated by LPS and attenuates the inflammatory impact of a high fat diet on glucose tolerance and insulin resistance. In contrast, GSTO1-1 deficient mice show a more severe inflammatory response and increased escape of bacteria from the colon into the lymphatic system in a dextran sodium sulfate mediated model of inflammatory bowel disease. These responses are similar to those of TLR4 and MyD88 deficient mice in these models and confirm that GSTO1-1 is critical for a TLR4-like pro-inflammatory response in vivo. In wild-type mice, we show that a small molecule inhibitor that covalently binds in the active site of GSTO1-1 can be used to ameliorate the inflammatory response to LPS. Our findings demonstrate the potential therapeutic utility of GSTO1-1 inhibitors in the modulation of inflammation and suggest their possible application in the treatment of a range of inflammatory conditions.


Assuntos
Proteínas de Transporte/metabolismo , Colite/metabolismo , Glutationa Transferase/metabolismo , Inflamação/metabolismo , Obesidade/metabolismo , Animais , Proteínas de Transporte/genética , Colite/tratamento farmacológico , Colite/genética , Glutationa Transferase/genética , Inflamação/tratamento farmacológico , Inflamação/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Obesidade/tratamento farmacológico , Obesidade/genética , Bibliotecas de Moléculas Pequenas/uso terapêutico , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
19.
Nat Commun ; 8(1): 1527, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142305

RESUMO

Many compounds with potentially reactive chemical motifs and poor physicochemical properties are published as selective modulators of biomolecules without sufficient validation and then propagated in the scientific literature as useful chemical probes. Several histone acetyltransferase (HAT) inhibitors with these liabilities are now routinely used to probe epigenetic pathways. We profile the most commonly used HAT inhibitors and confirm that the majority of them are nonselective interference compounds. Most (15 out of 23, 65%) of the inhibitors are flagged by ALARM NMR, an industry-developed counter-screen for promiscuous compounds. Biochemical counter-screens confirm that most of these compounds are either thiol-reactive or aggregators. Selectivity panels show many of these compounds modulate unrelated targets in vitro, while several also demonstrate nonspecific effects in cell assays. These data demonstrate the usefulness of performing counter-screens for bioassay promiscuity and assay interference, and raise caution about the utility of many widely used, but insufficiently validated, compounds employed in chemical biology.


Assuntos
Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala/métodos , Histona Acetiltransferases/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Células HEK293 , Histona Acetiltransferases/antagonistas & inibidores , Humanos , Células MCF-7 , Estrutura Molecular , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA