Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 21(1): 402, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470613

RESUMO

BACKGROUND: Plant-parasitic nematodes and herbivorous insects have a significant negative impact on global crop production. A successful approach to protect crops from these pests is the in planta expression of nematotoxic or entomotoxic proteins such as crystal proteins from Bacillus thuringiensis (Bt) or plant lectins. However, the efficacy of this approach is threatened by emergence of resistance in nematode and insect populations to these proteins. To solve this problem, novel nematotoxic and entomotoxic proteins are needed. During the last two decades, several cytoplasmic lectins from mushrooms with nematicidal and insecticidal activity have been characterized. In this study, we tested the potential of Marasmius oreades agglutinin (MOA) to furnish Arabidopsis plants with resistance towards three economically important crop pests: the two plant-parasitic nematodes Heterodera schachtii and Meloidogyne incognita and the herbivorous diamondback moth Plutella xylostella. RESULTS: The expression of MOA does not affect plant growth under axenic conditions which is an essential parameter in the engineering of genetically modified crops. The transgenic Arabidopsis lines showed nearly complete resistance to H. schachtii, in that the number of female and male nematodes per cm root was reduced by 86-91 % and 43-93 % compared to WT, respectively. M. incognita proved to be less susceptible to the MOA protein in that 18-25 % and 26-35 % less galls and nematode egg masses, respectively, were observed in the transgenic lines. Larvae of the herbivorous P. xylostella foraging on MOA-expression lines showed a lower relative mass gain (22-38 %) and survival rate (15-24 %) than those feeding on WT plants. CONCLUSIONS: The results of our in planta experiments reveal a robust nematicidal and insecticidal activity of the fungal lectin MOA against important agricultural pests which may be exploited for crop protection.


Assuntos
Aglutininas/farmacologia , Arabidopsis/parasitologia , Herbivoria , Marasmius/química , Nematoides/fisiologia , Aglutininas/química , Animais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mariposas/fisiologia , Doenças das Plantas/prevenção & controle , Plantas Geneticamente Modificadas
2.
Plants (Basel) ; 10(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670802

RESUMO

The devastating root-knot nematode Meloidogyne incognita can cause severe damage to field and greenhouse crops. Due to high economic losses, alternative products are essential to replace banned or strictly regulated nematicides that affect human health and/or the environment. Garlic based products have been previously investigated as environmentally friendly nematicides and their active substances, diallyl polysulfides exist as formulated nematicides on the market. We tested the garlic-based nematicide NEMguard® DE as protective of tomato roots. In vitro evaluation of the lethal concentration (LC) showed strong nematicidal activity with LC50 of 0.8 mg/mL after 96 h and LC90 of 1.5 mg/mL. NEMguard® DE showed protective effect against M. incognita as a single application in small pots and a second application further reduced root galling, significantly. Large greenhouse trials were carried out in two consecutive years to test single and monthly applications of NEMguard® DE. In both years, no controlling effect could be observed on M.incognita. We assume that the silt content of the loamy sandy soil used had an effect on the polysulfides, inhibiting their nematicidal effect. We conclude that further experiments are necessary to investigate the nematicidal potential of NEMguard® DE under different soil compositions or as a different formulation.

3.
Sci Rep ; 11(1): 3541, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574430

RESUMO

Backbone N-methylation and macrocyclization improve the pharmacological properties of peptides by enhancing their proteolytic stability, membrane permeability and target selectivity. Borosins are backbone N-methylated peptide macrocycles derived from a precursor protein which contains a peptide α-N-methyltransferase domain autocatalytically modifying the core peptide located at its C-terminus. Founding members of borosins are the omphalotins from the mushroom Omphalotus olearius (omphalotins A-I) with nine out of 12 L-amino acids being backbone N-methylated. The omphalotin biosynthetic gene cluster codes for the precursor protein OphMA, the protease prolyloligopeptidase OphP and other proteins that are likely to be involved in other post-translational modifications of the peptide. Mining of available fungal genome sequences revealed the existence of highly homologous gene clusters in the basidiomycetes Lentinula edodes and Dendrothele bispora. The respective borosins, referred to as lentinulins and dendrothelins are naturally produced by L. edodes and D. bispora as shown by analysis of respective mycelial extracts. We produced all three homologous peptide natural products by coexpression of OphMA hybrid proteins and OphP in the yeast Pichia pastoris. The recombinant peptides differ in their nematotoxic activity against the plant pathogen Meloidogyne incognita. Our findings pave the way for the production of borosin peptide natural products and their potential application as novel biopharmaceuticals and biopesticides.

4.
Plants (Basel) ; 9(5)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397380

RESUMO

Biofumigation, although a well-known method, is still controversially debated as a management strategy for plant-parasitic nematodes (PPN). Its controlling effect is attributed to the production of isothiocyanates (ITCs) following the action of myrosinase on glucosinolates (GSLs). Different ITCs are formed from different GSLs, depending on the plant species. To better understand the potential of ITCs, eight cultivars from three Brassicaceae species were investigated as biofumigation crops to control the root knot nematode Meloidogyne hapla. Since results were inconsistent, the nematicidal effect of selected ITCs were further evaluated in vitro. Based on its nematicidal potential, allyl ITC (AITC) was specifically investigated under different soil:sand compositions. A significantly lower nematicidal activity was observed in soil compared to sand. AITC was also evaluated as an additive to the biofumigation in a greenhouse trial. Its supplementation to the biofumigation process with Brassica juncea cv. Terrafit controlled M. hapla, while no control was observed using Raphanus sativus cv. Defender. Thus, the success of biofumigation seems to be strongly dependent on the soil characteristics and the ITC produced during the biofumigation process. Therefore, the supplementation of AITC in combination with the right cover crop can improve the biofumigation process to control M. hapla.

5.
Plant Dis ; 103(11): 2851-2856, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31486741

RESUMO

Foliar nematodes represent a minor feeding group within the genus Aphelenchoides Fischer, 1894. The facultative plant parasitic species A. blastophthorus can cause crinkling of leaves, reduced vigor, and stunting of agricultural and ornamental plants. Here we report the first finding of A. blastophthorus in leaves, crowns, and roots of strawberry plants collected in Switzerland in 2018. Species identification was confirmed by morphological and morphometric characterization supported by molecular barcoding of 18S ribosomal RNA (18S), 28S ribosomal RNA (28S), and cytochrome c oxidase I (COI) gene fragment analyses. Phylogenetic analysis of 18S indicated that A. blastophthorus was grouped within close distance to A. fragariae, a well-known foliar nematode affecting strawberry plants. Furthermore, the newly generated molecular barcodes of the partial 28S and COI of A. blastophthorus will support species identification in the future.


Assuntos
Fragaria , Tylenchida , Animais , Código de Barras de DNA Taxonômico , Fragaria/parasitologia , Genes de Helmintos/genética , Filogenia , Suíça , Tylenchida/anatomia & histologia , Tylenchida/classificação , Tylenchida/genética
6.
Dev Biol ; 430(2): 346-361, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28818668

RESUMO

Germ layer formation and axial patterning are biological processes that are tightly linked during embryonic development of most metazoans. In addition to canonical WNT, it has been proposed that ERK-MAPK signaling is involved in specifying oral as well as aboral territories in cnidarians. However, the effector and the molecular mechanism underlying latter phenomenon is unknown. By screening for potential effectors of ERK-MAPK signaling in both domains, we identified a member of the ETS family of transcription factors, Nverg that is bi-polarily expressed prior to gastrulation. We further describe the crucial role of NvERG for gastrulation, endomesoderm as well as apical domain formation. The molecular characterization of the obtained NvERG knock-down phenotype using previously described as well as novel potential downstream targets, provides evidence that a single transcription factor, NvERG, simultaneously controls expression of two different sets of downstream targets, leading to two different embryonic gene regulatory networks (GRNs) in opposite poles of the developing embryo. We also highlight the molecular interaction of cWNT and MEK/ERK/ERG signaling that provides novel insight into the embryonic axial organization of Nematostella, and show a cWNT repressive role of MEK/ERK/ERG signaling in segregating the endomesoderm in two sub-domains, while a common input of both pathways is required for proper apical domain formation. Taking together, we build the first blueprint for a global cnidarian embryonic GRN that is the foundation for additional gene specific studies addressing the evolution of embryonic and larval development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/crescimento & desenvolvimento , Anêmonas-do-Mar/genética , Fatores de Transcrição/fisiologia , Animais , Padronização Corporal , DNA Complementar/genética , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Fatores de Crescimento de Fibroblastos/fisiologia , Gastrulação/genética , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Camadas Germinativas/metabolismo , Sistema de Sinalização das MAP Quinases , Mesoderma/metabolismo , Anêmonas-do-Mar/embriologia , Anêmonas-do-Mar/ultraestrutura , Via de Sinalização Wnt
7.
Mol Plant Microbe Interact ; 30(7): 531-542, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28510502

RESUMO

Steroidal glycoalkaloids (SGAs) are plant secondary metabolites known to be toxic to animals and humans and that have putative roles in defense against pests. The proposed mechanisms of SGA toxicity are sterol-mediated disruption of membranes and inhibition of cholinesterase activity in neurons. It has been suggested that phytopathogenic microorganisms can overcome SGA toxicity by enzymatic deglycosylation of SGAs. Here, we have explored SGA-mediated toxicity toward the invasive oomycete Phytophthora infestans, the causative agent of the late blight disease in potato and tomato, as well as the potential for SGA deglycosylation by this species. Our growth studies indicate that solanidine, the nonglycosylated precursor of the potato SGAs α-chaconine and α-solanine, has a greater physiological impact than its glycosylated forms. All of these compounds were incorporated into the mycelium, but only solanidine could strongly inhibit the growth of P. infestans in liquid culture. Genes encoding several glycoside hydrolases with potential activity on SGAs were identified in the genome of P. infestans and were shown to be expressed. However, we found no indication that deglycosylation of SGAs takes place. We present additional evidence for apparent host-specific adaptation to potato SGAs and assess all results in terms of future pathogen management strategies.


Assuntos
Micélio/efeitos dos fármacos , Phytophthora infestans/efeitos dos fármacos , Alcaloides de Solanáceas/farmacologia , Esteroides/farmacologia , Sequência de Carboidratos , Diosgenina/química , Diosgenina/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosilação , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Lycopersicon esculentum/microbiologia , Estrutura Molecular , Micélio/genética , Micélio/fisiologia , Phytophthora infestans/genética , Phytophthora infestans/fisiologia , Doenças das Plantas/microbiologia , Alcaloides de Solanáceas/química , Solanina/análogos & derivados , Solanina/química , Solanina/farmacologia , Solanum tuberosum/microbiologia , Esteroides/química
8.
PLoS One ; 12(2): e0170873, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28152045

RESUMO

The oomycete class includes pathogens of animals and plants which are responsible for some of the most significant global losses in agriculture and aquaculture. There is a need to replace traditional chemical means of controlling oomycete growth with more targeted approaches, and the inhibition of sterol synthesis is one promising area. To better direct these efforts, we have studied sterol acquisition in two model organisms: the sterol-autotrophic Saprolegnia parasitica, and the sterol-heterotrophic Phytophthora infestans. We first present a comprehensive reconstruction of a likely sterol synthesis pathway for S. parasitica, causative agent of the disease saprolegniasis in fish. This pathway shows multiple potential routes of sterol synthesis, and draws on several avenues of new evidence: bioinformatic mining for genes with sterol-related functions, expression analysis of these genes, and analysis of the sterol profiles in mycelium grown in different media. Additionally, we explore the extent to which P. infestans, which causes the late blight in potato, can modify exogenously provided sterols. We consider whether the two very different approaches to sterol acquisition taken by these pathogens represent any specific survival advantages or potential drug targets.


Assuntos
Phytophthora infestans/metabolismo , Saprolegnia/metabolismo , Esteróis/metabolismo , Animais , Meios de Cultura , Doenças dos Peixes/etiologia , Peixes , Expressão Gênica , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/fisiologia , Infecções/etiologia , Infecções/veterinária , Redes e Vias Metabólicas , Phytophthora infestans/genética , Phytophthora infestans/patogenicidade , Saprolegnia/genética , Saprolegnia/patogenicidade , Especificidade da Espécie
9.
Front Microbiol ; 7: 1802, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27881978

RESUMO

The first committed step of sterol biosynthesis is the cyclisation of 2,3-oxidosqualene to form either lanosterol (LA) or cycloartenol (CA). This is catalyzed by an oxidosqualene cyclase (OSC). LA and CA are subsequently converted into various sterols by a series of enzyme reactions. The specificity of the OSC therefore determines the final composition of the end sterols of an organism. Despite the functional importance of OSCs, the determinants of their specificity are not well understood. In sterol-synthesizing oomycetes, recent bioinformatics, and metabolite analysis suggest that LA is produced. However, this catalytic activity has never been experimentally demonstrated. Here, we show that the OSC of the oomycete Saprolegnia parasitica, a severe pathogen of salmonid fish, has an uncommon sequence in a conserved motif important for specificity. We present phylogenetic analysis revealing that this sequence is common to sterol-synthesizing oomycetes, as well as some plants, and hypothesize as to the evolutionary origin of some microbial sequences. We also demonstrate for the first time that a recombinant form of the OSC from S. parasitica produces LA exclusively. Our data pave the way for a detailed structural characterization of the protein and the possible development of specific inhibitors of oomycete OSCs for disease control in aquaculture.

10.
PLoS One ; 8(12): e82955, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349406

RESUMO

Steroidal glycoalkaloids (SGA) are toxic secondary metabolites naturally occurring in the potato, as well as in certain other Solanaceous plant species, such as tomato, eggplant and pepper. To investigate the steroidal origin of SGA biosynthesis, cut potato shoots were fed cholesterol labelled with deuterium (D) in the sterol ring structure (D5- or D6-labelled), or side chain (D7-labelled), and analysed after three or five weeks. The labelled cholesterol and presence of D-labelled SGA were analysed by GC-MS and LC-MS/MS, respectively. When feeding D-labelled cholesterol solubilised in Tween-80, labelled cholesterol in free form became present in both leaves and stems, although the major part was recovered as steryl esters. Minor amounts of D-labelled SGA (α-solanine and α-chaconine) were identified in cholesterol-treated shoots, but not in blank controls, or in shoots fed D6-27-hydroxycholesterol. Solubilising the labelled cholesterol in methyl-ß-cyclodextrin instead of Tween-80 increased the levels of labelled SGA up to 100-fold, and about 1 mole% of the labelled cholesterol was recovered as labelled SGA in potato leaves. Both side chain and ring structure D labels were retained in SGA, showing that the entire cholesterol molecule is converted to SGA. However, feeding side chain D7-labelled cholesterol resulted in D5-labelled SGA, indicating that two hydrogen atoms were released during formation of the SGA nitrogen-containing ring system. Feeding with D7-sitosterol did not produce any labelled SGA, indicating that cholesterol is a specific SGA precursor. In conclusion, we have demonstrated a superior performance of methyl-ß-cyclodextrin for delivery of cholesterol in plant tissue feeding experiments, and given firm evidence for cholesterol as a specific sterol precursor of SGA in potato.


Assuntos
Alcaloides/biossíntese , Colesterol , Brotos de Planta/metabolismo , Solanum tuberosum/metabolismo , Colesterol/metabolismo , Colesterol/farmacologia , Deutério , Marcação por Isótopo/métodos , Tubérculos/metabolismo
11.
PLoS Genet ; 8(12): e1003164, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300467

RESUMO

Understanding the functional relationship between intracellular factors and extracellular signals is required for reconstructing gene regulatory networks (GRN) involved in complex biological processes. One of the best-studied bilaterian GRNs describes endomesoderm specification and predicts that both mesoderm and endoderm arose from a common GRN early in animal evolution. Compelling molecular, genomic, developmental, and evolutionary evidence supports the hypothesis that the bifunctional gastrodermis of the cnidarian-bilaterian ancestor is derived from the same evolutionary precursor of both endodermal and mesodermal germ layers in all other triploblastic bilaterian animals. We have begun to establish the framework of a provisional cnidarian "endomesodermal" gene regulatory network in the sea anemone, Nematostella vectensis, by using a genome-wide microarray analysis on embryos in which the canonical Wnt/ß-catenin pathway was ectopically targeted for activation by two distinct pharmaceutical agents (lithium chloride and 1-azakenpaullone) to identify potential targets of endomesoderm specification. We characterized 51 endomesodermally expressed transcription factors and signaling molecule genes (including 18 newly identified) with fine-scale temporal (qPCR) and spatial (in situ) analysis to define distinct co-expression domains within the animal plate of the embryo and clustered genes based on their earliest zygotic expression. Finally, we determined the input of the canonical Wnt/ß-catenin pathway into the cnidarian endomesodermal GRN using morpholino and mRNA overexpression experiments to show that NvTcf/canonical Wnt signaling is required to pattern both the future endomesodermal and ectodermal domains prior to gastrulation, and that both BMP and FGF (but not Notch) pathways play important roles in germ layer specification in this animal. We show both evolutionary conserved as well as profound differences in endomesodermal GRN structure compared to bilaterians that may provide fundamental insight into how GRN subcircuits have been adopted, rewired, or co-opted in various animal lineages that give rise to specialized endomesodermal cell types.


Assuntos
Endoderma , Evolução Molecular , Redes Reguladoras de Genes , Mesoderma , Via de Sinalização Wnt , beta Catenina , Sequência de Aminoácidos , Animais , Diferenciação Celular/genética , Linhagem da Célula , Cnidários/embriologia , Cnidários/genética , Cnidários/crescimento & desenvolvimento , Embrião não Mamífero/metabolismo , Endoderma/embriologia , Endoderma/crescimento & desenvolvimento , Endoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Cloreto de Lítio/farmacologia , Mesoderma/embriologia , Mesoderma/crescimento & desenvolvimento , Mesoderma/metabolismo , Anêmonas-do-Mar/embriologia , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...