Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
1.
ACS Cent Sci ; 8(4): 493-500, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35505868

RESUMO

Liquid-liquid phase separation (LLPS) is an emerging and universal mechanism for intracellular organization, particularly, by forming membraneless organelles (MLOs) hosting intrinsically disordered proteins (IDPs) as scaffolds. Genetic engineering is generally applied to reconstruct IDPs harboring over 100 amino acid residues. Here, we report the first design of synthetic hybrids consisting of short oligopeptides of fewer than 10 residues as "stickers" and dextran as a "spacer" to recapitulate the characteristics of IDPs, as exemplified by the multivalent FUS protein. Hybrids undergo LLPS into micron-sized liquid droplets resembling LLPS in vitro and in living cells. Moreover, the droplets formed are capable of recruiting proteins and RNAs and providing a favorable environment for a biochemical reaction with highly enriched components, thereby mimicking the function of natural MLOs. This simple yet versatile model system can help elucidate the molecular interactions implicated in MLOs and pave ways to a new type of biomimetic materials.

2.
Int J Low Extrem Wounds ; : 15347346221100887, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35548944

RESUMO

Chronic wound is one of the most common complications that are associated with diabetes. The cutaneous microbiome is known to play essential roles in the regulation of barrier function and protecting against potential assault. Thus, it is necessary to gain a better understanding of the relationship between microbial community and skin structures in unwounded diabetic skin to explore possible preventive strategies. To achieve the same, a pig diabetic model was built in the present study. Further,16S rDNA sequencing was used to characterize the skin bacteriome. It was observed that the pigs showed skin bacteriome similar to humans in the non-diabetes group, while it varied in the case of diabetes. Further, the ß-diversity analysis showed that the bacterial community was significantly different under the diabetes group. More species differences were identified between the two groups at genus level. The predictive function analysis also showed the involvement of significantly different pathways of microbial gene function in diabetes. In agreement with this, skin histology analysis also showed signs of reduced epidermal thickness and rete ridges in diabetic skin. Less proliferation of keratinocytes and impaired TJ barrier was also detected. This evidence suggested that pigs might serve as the best surrogate for cutaneous microbiome studies. Altogether, the present study reported that the skin bacteriome and histology changed significantly in unwounded diabetic skin, which provided a theoretical basis for the regulation of disordered skin bacteriome. The findings of the study would assist in the improvement of the skin environment and prevention of skin infection and chronic wounds.

3.
J Exp Clin Cancer Res ; 41(1): 168, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35524313

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is highly malignant and has a worse prognosis, compared with other subtypes of breast cancer due to the absence of therapeutic targets. KIF23 plays a crucial role in the tumorigenesis and cancer progression. However, the role of KIF23 in development of TNBC and the underlying mechanism remain unknown. The study aimed to elucidate the biological function and regulatory mechanism of KIF23 in TNBC. METHODS: Quantitative real-time PCR and Western blot were used to determine the KIF23 expression in breast cancer tissues and cell lines. Then, functional experiments in vitro and in vivo were performed to investigate the effects of KIF23 on tumor growth and metastasis in TNBC. Chromatin immunoprecipitation assay was conducted to illustrate the potential regulatory mechanisms of KIF23 in TNBC. RESULTS: We found that KIF23 was significantly up-regulated and associated with poor prognosis in TNBC. KIF23 could promote TNBC proliferation, migration and invasion in vitro and in vivo. KIF23 could activate Wnt/ß-catenin pathway and promote EMT progression in TNBC. In addition, FOXM1, upregulated by WDR5 via H3K4me3 modification, directly bound to the promoter of KIF23 gene to promote its transcription and accelerated TNBC progression via Wnt/ß-catenin pathway. Both of small inhibitor of FOXM1 and WDR5 could inhibit TNBC progression. CONCLUSIONS: Our findings elucidate WDR5/FOXM1/KIF23/Wnt/ß-catenin axis is associated with TNBC progression and may provide a novel and promising therapeutic target for TNBC treatment.


Assuntos
Proteína Forkhead Box M1 , Proteínas Associadas aos Microtúbulos , Neoplasias de Mama Triplo Negativas , Via de Sinalização Wnt , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , beta Catenina/metabolismo
4.
Comput Math Methods Med ; 2022: 5728991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509854

RESUMO

Objective: To explore the risk factors of recurrent stroke in young and middle-aged stroke patients after interventional therapy. Methods: Retrospective analysis was conducted on the data of 300 young and middle-aged stroke patients treated in our hospital (February 2015-February 2017). All patients received interventional therapy. They were followed up continuously after the interventional therapy, with recurrent stroke as the only endpoint event, and those who did not have the endpoint events were followed up for 5 years. Then, the patients were divided into the occurrence group and the nonoccurrence group according to whether there was a stroke. The social demographic data and clinical examination data of all patients were collected to analyze the differences between the groups. Logistic regression analysis was performed on the factors with statistically significant differences to verify the factors affecting recurrent stroke in young and middle-aged stroke patients after interventional therapy. Results: Among the 300 patients, 69 (23.0%) had recurrent stroke and 231 (77.0%) had no recurrent stroke. The occurrence group (n = 69) had 12 cases (17.4%) of massive cerebral infarction, 18 cases (26.1%) of cerebral watershed infarction, 5 cases (7.2%) of multiple cerebral infarction, 25 cases (36.2%) of lacunar infarction, and 9 cases (13.0%) of TIA. Notable differences were observed in age, drinking history, marital status, body weight, diastolic pressure, systolic pressure, fasting blood glucose, glycosylated hemoglobin, cholesterol, and fibrinogen between the occurrence group and the nonoccurrence group (P < 0.05). The binary logistic regression analysis showed that age, drinking history, diastolic pressure, fasting blood glucose, glycosylated hemoglobin, cholesterol, and fibrinogen were the influencing factors of recurrent stroke in young and middle-aged stroke patients after interventional therapy. Conclusion: Blood glucose, blood lipid, blood pressure, age, and living habits have an impact on recurrent stroke in young and middle-aged patients after interventional therapy. Therefore, while strictly controlling blood glucose, blood lipid, and blood pressure, patients should improve their living habits and enhance the awareness of prevention after interventional therapy.


Assuntos
Glicemia , Acidente Vascular Cerebral , Infarto Cerebral/complicações , Colesterol , Fibrinogênio , Hemoglobina A Glicada , Humanos , Lipídeos , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/terapia
5.
Circ Res ; 130(10): 1565-1582, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35410483

RESUMO

BACKGROUND: S-adenosylhomocysteine (SAH) is a risk factor of cardiovascular disease; inhibition of SAH hydrolase (SAHH) results in SAH accumulation and induces endothelial dysfunction and atherosclerosis. However, the effect and mechanism of SAHH in atherosclerotic calcification is still unclear. We aimed to explore the role and mechanism of SAHH in atherosclerotic calcification. METHODS: The relationship between SAHH and atherosclerotic calcification was investigated in patients with coronary atherosclerotic calcification. Different in vivo genetic models were used to examine the effect of SAHH deficiency on atherosclerotic calcification. Human aortic and murine vascular smooth muscle cells (VSMCs) were cultured to explore the underlying mechanism of SAHH on osteoblastic differentiation of VSMCs. RESULTS: The expression and activity of SAHH were decreased in calcified human coronary arteries and inversely associated with coronary atherosclerotic calcification severity, whereas plasma SAH and total homocysteine levels were positively associated with coronary atherosclerotic calcification severity. Heterozygote knockout of SAHH promoted atherosclerotic calcification. Specifically, VSMC-deficient but not endothelial cell-deficient or macrophage-deficient SAHH promoted atherosclerotic calcification. Mechanistically, SAHH deficiency accumulated SAH levels and induced H19-mediated Runx2 (runt-related transcription factor 2)-dependent osteoblastic differentiation of VSMCs by inhibiting DNMT3b (DNA methyltransferase 3b) and leading to hypomethylation of the H19 promoter. On the contrary, SAHH deficiency resulted in lower intracellular levels of adenosine and reduced AMPK (AMP-activated protein kinase) activation. Adenosine supplementation activated AMPK and abolished SAHH deficiency-induced expression of H19 and Runx2 and osteoblastic differentiation of VSMCs. Finally, AMPK activation by adenosine inhibited H19 expression by inducing Sirt1 (sirtuin-1)-mediated histone H3 hypoacetylation and DNMT3b-mediated hypermethylation of the H19 promoter in SAHH deficiency VSMCs. CONCLUSIONS: We have confirmed a novel correlation between SAHH deficiency and atherosclerotic calcification and clarified a new mechanism that epigenetic upregulation of H19 and AMPK inhibition concurrently contribute to SAHH deficiency-promoted Runx2-dependent atherosclerotic calcification.

6.
Cell Death Differ ; 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449211

RESUMO

T helper 2 (Th2) cytokine production by invariant natural killer T (iNKT) cells is involved in the development of asthma, but the regulation of Th2 cytokines in iNKT cells remains unknown. Although it is known that progranulin (PGRN) induces the production of Th2 cytokines in iNKT cells in vivo, the underlying mechanism is not clear. This study aims to investigate the role of PGRN in iNKT cells. The effects of PGRN on the differentiation of iNKT cells was detected by flow cytometry. Then stimulation of iNKT cells and airway resistance were carried out to evaluate the function of PGRN on iNKT cells. Furthermore, the mechanisms of PGRN in regulating iNKT cells was investigated by RT-PCR, WB, confocal and luciferase reporter assays. The absolute number of iNKT cells decreased in PGRN KO mice despite an increase in the percentage of iNKT cells. Furthermore, analyzing the subsets of iNKT cells, we found that NKT2 cells and their IL-4 production were reduced. Mechanistically, the decrease in NKT2 cells in the PGRN KO mice was caused by increased expression of enhancer of zeste homolog 2 (EZH2), that in turn caused increased degradation and altered nuclear localization of PLZF. Interestingly, PGRN signaling decreased expression of EZH2 and treatment of the PGRN KO mice with the EZH2 specific inhibitor GSK343 rescued the defect in NKT2 differentiation, IL-4 generation, and PLZF expression. Altogether, We have revealed a new pathway (PGRN-EZH2-PLZF), which regulates the Th2 responses of iNKT cells and provides a potentially new target for asthma treatment.

7.
Animals (Basel) ; 12(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35454263

RESUMO

Fall- or spring-born steers grazed monoculture irrigated birdsfoot trefoil (BFT; Lotus corniculatus L.) or cicer milkvetch (CMV; Astragalus cicer L.) pastures for approximately 12 weeks for 3 years and were compared with steers on concentrate diets. In the 3rd year, an irrigated meadow bromegrass (MBG; Bromus biebersteinii Roem. and Schult.) pasture treatment was added for further comparison. Steer average daily gain (ADG) was 1.31, 0.94, 0.83 and 0.69 kg d-1 on concentrate, 'Norcen' BFT, 'Oberhaunstadter' BFT, and 'Monarch' CMV diets, respectively; ADG on grass pastures was 0.43 kg d-1. The ADG on the concentrate diet was greater than ADG on legume or grass pastures, ADG was greater on BFT than CMV in every year (p < 0.03), and ADG on BFT was greater than ADG on grass (p < 0.03). The rate constant of gas production of an in vitro rumen fermentation demonstrated a slower rate of microbial digestion for CMV than for BFT. The elevated ADG on BFT pastures may be due to greater non-fiber carbohydrate (NFC) concentration and reduced neutral detergent fiber (NDF) concentration combined with condensed tannins that protect proteins in the rumen but do not impede protein digestion in the abomasum and intestines.

8.
Front Surg ; 9: 836080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392063

RESUMO

Background: Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors with poor prognosis. Increasing evidence has revealed that immune cells and checkpoints in the tumor microenvironment (TME) and aging are associated with the prognosis of HCC. However, the association between aging and the tumor immune microenvironment (TIME) in HCC is still unclear. Methods: RNA expression profiles and clinical data concerning HCC were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Based on differentially expressed aging-related genes (DEAGs), unsupervised clustering was used to identify a novel molecular subtype in HCC. The features of immune cell infiltration and checkpoints were further explored through CIBERSORTx. Enrichment analysis and both univariate and multivariate Cox analyses were conducted to construct a 3-gene model for predicting prognosis and chemosensitivity. Finally, the mRNA and protein expression levels of the 3 genes were verified in HCC and other cancers through database searches and experiments. Results: Eleven differentially expressed AGs (GHR, APOC3, FOXM1, PON1, TOP2A, FEN1, HELLS, BUB1B, PPARGC1A, PRKDC, and H2AFX) correlated with the prognosis of HCC were used to divide HCC into two subtypes in which the prognosis was different. In cluster 2, which had a poorer prognosis, the infiltration of naive B cells and monocytes was lower in the TCGA and GEO cohorts, while the infiltration of M0 macrophages was higher. In addition, the TCGA cohort indicated that the microenvironment of cluster 2 had more immunosuppression through immune checkpoints. Enrichment analysis suggested that the MYC and E2F targets were positively associated with cluster 2 in the TCGA and GEO cohorts. Additionally, 3 genes (HMGCS2, SLC22A1, and G6PD) were screened to construct the prognostic model through univariate/multivariate Cox analysis. Then, the model was validated through the TCGA validation set and GEO dataset (GSE54236). Cox analysis indicated that the risk score was an independent prognostic factor and that patients in the high-risk group were sensitive to multiple targeted drugs (sorafenib, gemcitabine, rapamycin, etc.). Finally, significantly differential expression of the 3 genes was detected across cancers. Conclusion: We systematically described the immune differences in the TME between the molecular subtypes based on AGs and constructed a novel three-gene signature to predict prognosis and chemosensitivity in patients with HCC.

9.
Front Microbiol ; 13: 847073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422782

RESUMO

The anti-microbial effects of plant secondary metabolite (PSM) 6-methoxybenzoxazolinone (6-MBOA) have been overlooked. This study investigated the effect of 6-MBOA on the cecal microbiota of adult male Brandt's voles (Lasiopodomys brandtii), to evaluate its effect on the physiology of mammalian herbivores. The growth of voles was inhibited by 6-MBOA. A low dose of 6-MBOA enhanced the observed species, as well as the Chao1 and abundance-based coverage estimator (ACE) indices and introduced changes in the structure of cecal microbiota. The abundance of the phylum Tenericutes, classes Mollicutes and Negativicutes, order Selenomonadales, families Ruminococcaceae and Veillonellaceae, genera Quinella, Caproiciproducens, Anaerofilum, Harryflintia, and unidentified Spirochaetaceae in the cecal microbiota was enhanced upon administration of a low dose of 6-MBOA, which also inhibited glucose metabolism and protein digestion and absorption in the cecal microbiota. 6-MBOA treatment also stimulated butyrate production and dose-dependently enhanced the metabolism of xenobiotics in the cecal microbiome. Our findings indicate that 6-MBOA can affect Brandt's voles by inducing changes in the abundance of cecal bacteria, thereby, altering the contents of short-chain fatty acids (SCFAs) and pathway intermediates, ultimately inhibiting the growth of voles. Our research suggests that 6-MBOA could potentially act as a digestion-inhibiting PSM in the interaction between mammalian herbivores and plants.

10.
Front Immunol ; 13: 764643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450068

RESUMO

Background: Immune checkpoint inhibitors (ICIs) have significantly improved survival for advanced wild-type non-small cell lung cancer, but there is no direct comparison to confirm which first-line treatment may lead to the longest overall survival. What qualifies as long-term survival (LS) is even unclear. Methods: By searching PubMed, Embase, and the Cochrane Central Register of Controlled Trials from January 2005 to December 2020, we included randomized controlled trials (RCTs) of first-line ICI-containing treatments to perform an integrated analysis (IA) to determine the criterion of LS and then screened regimens with LS for network meta-analysis (NMA). The main outcomes for NMA were median overall survival (mOS), 1-year survival rate (1ySR), and 2-year survival rate (2ySR); those for IA were the pooled mOS (POS), 1ySR (P1SR), and 2ySR (P2SR). Results: By IA of 16 first-line ICIs from 20 RCTs, the POS was 16.20 (95% CI 14.79-17.60) months, with P1SR of 63% (95% CI 59-66%) and P2SR of 37% (33-41%). Thus, we defined LS as mOS ≥ POS (16.20 m) for regimens and screened for RCTs with outcomes meeting this criterion. Eleven ICI-based regimens can bring LS for the overall population, among which ICI with bevacizumab and chemotherapy achieved the longest POS of 19.50 m (16.90-22.10 m) and the highest P1SR (74%, 61%-87%) and P2SR (49%, 38%-61%). Pembrolizumab with chemotherapy ranked first in mOS and 1ySR, while atezolizumab plus bevacizumab and chemotherapy ranked first in 2ySR. Conclusions: Through the IA of first-line treatment regimens, a POS of 16.20 m can be determined as the LS standard. Further considering 1ySR and 2ySR, atezolizumab combined with bevacizumab and chemotherapy or pembrolizumab plus chemotherapy are likely to bring the longest LS in the overall population, while single ICI may be adequate for patients with a high PD-L1 expression. ICIs with bevacizumab and chemotherapy may be the best combination for LS for its further advantage over time.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bevacizumab/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Metanálise em Rede
11.
Reproduction ; 163(5): 293-307, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35275843

RESUMO

Uterine receptivity to the embryo is crucial for successful implantation. The establishment of uterine receptivity requires a large amount of energy, and abnormal energy regulation causes implantation failure. Glucose metabolism in the endometrium is tissue specific. Glucose is largely stored in the form of glycogen, which is the main energy source for the endometrium. AMP-activated protein kinase (AMPK), an important energy-sensing molecule, is a key player in the regulation of glucose metabolism and its regulation is also tissue specific. However, the mechanism of energy regulation in the endometrium for the establishment of uterine receptivity remains to be elucidated. In this study, we aimed to investigate the energy regulation mechanism of mouse uterine receptivity and its significance in embryo implantation. The results showed that the AMPK, p-AMPK, glycogen synthase 1, and glycogen phosphorylase M levels and the glycogen content in mouse endometrial epithelium varied in a periodic manner under regulation by the ovarian hormone. Specifically, progesterone significantly activated AMPK, promoted glycogenolysis, and upregulated glycogen phosphorylase M expression. AMPK regulated glycogen phosphorylase M expression and promoted glycogenolysis. AMPK was also found to be activated by changes in the energy or glycogen of the endometrial epithelial cells. The inhibition of AMPK activity or glycogenolysis altered the uterine receptivity markers during the window of implantation and ultimately interfered with implantation. In summary, consistency and synchronization of AMPK and glycogen metabolism constitute the core regulatory mechanism in mouse endometrial epithelial cells involved in the establishment of uterine receptivity.


Assuntos
Proteínas Quinases Ativadas por AMP , Glicogênio , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Células Epiteliais/metabolismo , Feminino , Glicogênio/metabolismo , Camundongos
12.
Small ; 18(17): e2107380, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35332689

RESUMO

High energy density and long cycle life of lithium-sulfur (Li-S) batteries suffer from the shuttle/expansion effect. Sufficient sulfur storage space, local fixation of polysulfides, and outstanding electrical conductivity are crucial for a robust cathode host. Herein, a modified template method is proposed to synthesize a highly regular and uniform nitrogen/oxygen dual-doped honeycomb-like carbon as sulfur host (N/O-HC-S). The unique structure not only offers physical entrapment for polysulfides (LiPSs) but also provides chemical adsorption and catalytic conversion sites of polysulfides. In addition, this structure offers enough space for loading sulfur, and a regular space of nanometer size can effectively prevent sulfur particles from accumulating. As expected, the as-prepared N/O-HC900-S with high areal sulfur loading (7.4 mg cm-2 ) shows a high areal specific capacity of 7.35 mAh cm-2 at 0.2 C. Theoretical calculations also reveal that the strong chemical immobilization and catalytic conversion of LiPSs attributed to the spin density and charge distribution of carbon atoms will be influenced by the neighbor nitrogen/oxygen dopants. This structure that provides cooperative chemical adsorption, high lithium ions flux, and catalytic conversion for LiPSs can offer a new strategy for constructing a polysulfide confinement structure to achieve robust Li-S batteries.

13.
Nutrients ; 14(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35277077

RESUMO

S-adenosylhomocysteine (SAH) is a risk factor of cardiovascular diseases and atherosclerosis. However, the causal association between SAH and atherosclerosis is still uncertain. In the present study, heterozygous SAH hydrolase (SAHH+/-) knockout mice were bred with apolipoprotein E-deficient mice to produce ApoE-/-/SAHH+/- mice. At 8 weeks of age, these mice were fed on AIN-93G diets added with or without betaine (4 g betaine/100 g diet) for 8 weeks. Compared with ApoE-/-/SAHHWT mice, SAHH deficiency caused an accumulation of plasma SAH concentration and a decrease in S-adenosylmethionine (SAM)/SAH ratio as well as plasma homocysteine levels. Betaine supplementation lowered SAH levels and increased SAM/SAH ratio and homocysteine levels in ApoE-/-/SAHH+/- mice. Furthermore, SAHH deficiency promoted the development of atherosclerosis, which was reduced by betaine supplementation. The atheroprotective effects of betaine on SAHH-deficiency-promoted atherosclerosis were associated with inhibition of NFκB inflammation signaling pathway and inhibition of proliferation and migration of smooth muscle cells. In conclusion, our results suggest that betaine supplementation lowered plasma SAH levels and protected against SAHH-deficiency-promoted atherosclerosis through repressing inflammation and proliferation and migration of smooth muscle cells.


Assuntos
Aterosclerose , Betaína , Adenosil-Homocisteinase/genética , Adenosil-Homocisteinase/metabolismo , Animais , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/prevenção & controle , Betaína/farmacologia , Suplementos Nutricionais , Camundongos , Camundongos Knockout
14.
Zhongguo Zhong Yao Za Zhi ; 47(4): 862-871, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35285184

RESUMO

As a unique medical resource in China, Chinese herbal medicine plays a key role in the prevention and treatment of human diseases. With the gradual expansion of applications, the quality of Chinese herbal medicine has become the focus of attention. The quality of Chinese herbal medicines depends largely on their source authenticity. Tracing the origin of Chinese herbal medicines plays an important role in ensuring their quality and efficacy and reducing the mixing and adulteration of Chinese herbal medicines from different regions. Stable isotope technology, as a key technology for origin tracing of agricultural products and food, has been used in the research of Chinese herbal medicines from multiple sources and origins in recent years. This new technological means contributes to standardizing the origin of Chinese herbal medicines and controlling their quality from the source. Apart from introducing the basic principles of stable isotope technology and the characteristics of common stable isotopes, this study reviewed the application status of light and heavy stable isotopes in the origin tracing of Chinese herbal medicines and their correlation with ecological factors, and forecasted the application prospect of this technology in the authentication of Chinese herbal medicines, aiming to provide reference for the geographical origin tracing of Chinese herbal medicines and promote the sustainable development of traditional Chinese medicine.


Assuntos
Medicamentos de Ervas Chinesas , Contaminação de Medicamentos , Medicamentos de Ervas Chinesas/análise , Humanos , Isótopos , Medicina Tradicional Chinesa , Controle de Qualidade
15.
BMC Gastroenterol ; 22(1): 55, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35144542

RESUMO

BACKGROUND: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a highly heterogeneous disease and its heterogeneity might be associated with ferroptosis because ferroptosis plays an important role in the development of MAFLD. We aimed to perform integrative analysis of ferroptosis related genes and MAFLD subtypes using bioinformatics. METHODS: A differential expression analysis was performed to identify key ferroptosis-related genes associated with the clinical characteristics of MAFLD. Furthermore, consensus k clustering was utilized to distinguish ferroptosis-related clinical subtypes of MAFLD and assess the association of ferroptosis-related gene expression and clinical features between patients with different subtypes of MAFLD. Moreover, the variation in the immune status and regulatory relationship of ferroptosis-related genes in individuals with MAFLD was also explored using single sample gene set enrichment analysis, weighted gene coexpression network analysis and enrichment analyses. RESULTS: Eight ferroptosis-related genes were identified as closely associated with both the hepatic steatosis grade and non-alcoholic fatty liver disease activity score. Two subtypes of MAFLD based on ferroptosis-related genes were identified by consensus clustering. They exhibited significantly different clinical features, immune statuses, biological processes and outcomes. The progression of the two subtypes was associated with immunity. CONCLUSIONS: Two highly heterogeneous subtypes of MAFLD with significantly distinct clinical features, biological processes and immune statuses were identified based on ferroptosis-associated genes, which strongly supports the hypothesis that ferroptosis plays an important role in the development of MAFLD.


Assuntos
Ferroptose , Hepatopatia Gordurosa não Alcoólica , Humanos
16.
Front Immunol ; 13: 833424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222423

RESUMO

The modern Gastroenterology have witnessed an essential stride since Helicobacter pylori was first found in the stomach and then its pathogenic effect was discovered. According to the researches conducted during the nearly 40 years, it has been found that this bacterium is associated with a natural history of many upper gastrointestinal diseases. Epidemiological data show an increased incidence of autoimmune disorders with or after infection with specific microorganisms. The researches have revealed that H. pylori is a potential trigger of gastric autoimmunity, and it may be associated with other autoimmune diseases, both innate and acquired. This paper reviews the current support or opposition about H. pylori as the role of potential triggers of autoimmune diseases, including inflammatory bowel disease, autoimmune thyroiditis, type 1 diabetes mellitus, autoimmune liver diseases, rheumatoid arthritis, idiopathic thrombocytopenic purpura, systemic lupus erythematosus, as well as Sjogren's syndrome, chronic urticaria and psoriasis, and tried to explain the possible mechanisms.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Púrpura Trombocitopênica Idiopática , Síndrome de Sjogren , Autoimunidade , Infecções por Helicobacter/microbiologia , Humanos , Púrpura Trombocitopênica Idiopática/complicações , Púrpura Trombocitopênica Idiopática/epidemiologia , Síndrome de Sjogren/complicações
17.
Animal Model Exp Med ; 5(1): 81-88, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35213788

RESUMO

BACKGROUND: Currently, increasing attention is being paid to the important role of intestinal microbiome in diabetes. However, few studies have evaluated the characteristics of gut microbiome in diabetic miniature pigs, despite it being a good model animal for assessing diabetes. METHODS: In this study, a mini-pig diabetes model (DM) was established by 9-month high-fat diet (HFD) combined with low-dose streptozotocin, while the animals fed standard chow diet constituted the control group. 16S ribosomal RNA (rRNA) gene sequencing was performed to assess the characteristics of the intestinal microbiome in diabetic mini-pigs. RESULTS: The results showed that microbial structure in diabetic mini-pigs was altered, reflected by increases in levels of Coprococcus_3 and Clostridium_sensu_stricto_1, which were positively correlated with diabetes, and decreases in levels of the bacteria Rikenellaceae, Clostridiales_vadinBB60_group, and Bacteroidales_RF16_group, which were inversely correlated with blood glucose and insulin resistance. Moreover, PICRUSt-predicted pathways related to the glycolysis and Entner-Doudoroff superpathway, enterobactin biosynthesis, and the l-tryptophan biosynthesis were significantly elevated in the DM group. CONCLUSION: These results reveal the composition and predictive functions of the intestinal microbiome in the mini-pig diabetes model, further verifying the relationship between HFD, gut microbiome, and diabetes, and providing novel insights into the application of the mini-pig diabetes model in gut microbiome research.


Assuntos
Diabetes Mellitus , Microbioma Gastrointestinal , Porco Miniatura , Animais , Diabetes Mellitus/genética , Microbioma Gastrointestinal/genética , Genes de RNAr , RNA Ribossômico 16S/genética , Suínos/microbiologia , Porco Miniatura/microbiologia
18.
Zhongguo Zhong Yao Za Zhi ; 47(2): 444-452, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35178988

RESUMO

In order to evaluate the composition and distribution characteristics of inorganic elements in Laminaria japonica, this study employed inductively coupled plasma mass spectrometry(ICP-MS) to detect the inorganic elements and used high performance liquid chromatography tandem ICP-MS(HPLC-ICP-MS) to determine the content of different arsenic species in L. japonica from diffe-rent origins. Micro X-ray fluorescence(Micro-XRF) was used to determine micro-area distribution of inorganic elements in L. japonica. The results showed that the average content of Mn, Fe, Sr, and Al was high, and that of As and Cr exceeded the limits of the national food safety standard. According to the results of HPLC-ICP-MS, arsenobetaine(AsB) was the main species of As contained in L. japonica. The more toxic inorganic arsenic accounts for a small proportion, whereas its content was 1-4 times of the limit in the national food safety standard. The results of Micro-XRF showed that As, Pb, Fe, Cu, Mn, and Ni were mainly distributed on the surface of L. japonica. Among them, As and Pb had a clear tendency to diffuse from the surface to the inside. The results of the study can provide a basis for the processing as well as the medicinal and edible safety evaluation of L. japonica.


Assuntos
Arsênio , Laminaria , Oligoelementos , Arsênio/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Análise Espectral , Oligoelementos/análise
19.
Org Biomol Chem ; 20(7): 1510-1517, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35107480

RESUMO

A Brønsted acid catalyzed method for the construction of guaiazulenyl C3-functionalized indole derivatives is reported for the first time. The reactions proceeded smoothly at ambient temperature by using (±)-10-camphorsulfonic acid (CSA) as a catalyst, 2-indolylmethanols and guaiazulene as substrates, and the desired products were obtained in high yields with excellent regioselectivities.

20.
Viruses ; 14(1)2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-35062312

RESUMO

Viruses are far more abundant than cellular microorganisms in the marine ecosystem. However, very few viruses have so far been isolated from marine sediments, especially hydrothermal vent sediments, hindering the understanding of the biology and ecological functions of these tiny organisms. Here, we report the isolation and characterization of a temperate bacteriophage, named PVJ1, which infects Psychrobacillus from a hydrothermal vent field in Okinawa Trough. PVJ1 belongs to the Myoviridae family of the order Caudovirales. The tailed phage possesses a 53,187 bp linear dsDNA genome, with 84 ORFs encoding structural proteins, genome replication, host lysis, etc. in a modular pattern. The phage genome is integrated into the host chromosome near the 3'-end of deoD, a gene encoding purine nucleoside phosphorylase (PNP). The phage integration does not appear to disrupt the function of PNP. The phage DNA is packaged by the headful mechanism. Release of PVJ1 from the host cell was drastically enhanced by treatment with mitomycin C. Phages encoding an MCP sharing significant similarity (≥70% identical amino acids) with that of PVJ1 are widespread in diverse environments, including marine and freshwater sediments, soils, artificial ecosystems, and animal intestines, and primarily infect Firmicutes. These results are valuable to the understanding of the lifestyle and host interactions of bacterial viruses at the bottom of the ocean.


Assuntos
Bacillaceae/virologia , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Sedimentos Geológicos/virologia , Filogenia , Animais , Bacteriófagos/genética , Caudovirales/genética , Caudovirales/isolamento & purificação , DNA Viral/isolamento & purificação , Ecossistema , Genoma Viral , Myoviridae/genética , Myoviridae/isolamento & purificação , Fases de Leitura Aberta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...