Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 504(1): 334-339, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30190128

RESUMO

RNA helicases are almost ubiquitous important enzymes that take part in multiple aspects of RNA metabolism. Prokaryotes encode fewer RNA helicases than eukaryotes, suggesting that individual prokaryotic RNA helicases may take on multiple roles. The specific functions and molecular mechanisms of bacterial DEAH/RHA helicases are poorly understood, and no structures are available of these bacterial enzymes. Here, we report the first crystal structure of the DEAH/RHA helicase HrpB of Escherichia coli in a complex with ADP•AlF4. It showed an atypical globular structure, consisting of two RecA domains, an HA2 domain and an OB domain, similar to eukaryotic DEAH/RHA helicases. Notably, it showed a unique C-terminal extension that has never been reported before. Activity assays indicated that EcHrpB binds RNA but not DNA, and does not exhibit unwinding activity in vitro. Thus, within cells, the EcHrpB may function in helicase activity-independent RNA metabolic processes.

2.
Structure ; 26(3): 403-415.e4, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29429875

RESUMO

Helicase DHX36 plays essential roles in cell development and differentiation at least partially by resolving G-quadruplex (G4) structures. Here we report crystal structures of the Drosophila homolog of DHX36 (DmDHX36) in complex with RNA and a series of DNAs. By combining structural, small-angle X-ray scattering, molecular dynamics simulation, and single-molecule fluorescence studies, we revealed that positively charged amino acids in RecA2 and OB-like domains constitute an elaborate structural pocket at the nucleic acid entrance, in which negatively charged G4 DNA is tightly bound and partially destabilized. The G4 DNA is then completely unfolded through the 3'-5' translocation activity of the helicase. Furthermore, crystal structures and DNA binding assays show that G-rich DNA is preferentially recognized and in the presence of ATP, specifically bound by DmDHX36, which may cooperatively enhance the G-rich DNA translocation and G4 unfolding. On the basis of these results, a conceptual G4 DNA-resolving mechanism is proposed.

3.
Nucleic Acids Res ; 46(3): 1486-1500, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29202194

RESUMO

The Saccharomyces cerevisiae Pif1 protein (ScPif1p) is the prototypical member of the Pif1 family of DNA helicases. ScPif1p is involved in the maintenance of mitochondrial, ribosomal and telomeric DNA and suppresses genome instability at G-quadruplex motifs. Here, we report the crystal structures of a truncated ScPif1p (ScPif1p237-780) in complex with different ssDNAs. Our results have revealed that a yeast-specific insertion domain protruding from the 2B domain folds as a bundle bearing an α-helix, α16. The α16 helix regulates the helicase activities of ScPif1p through interactions with the previously identified loop3. Furthermore, a biologically relevant dimeric structure has been identified, which can be further specifically stabilized by G-quadruplex DNA. Basing on structural analyses and mutational studies with DNA binding and unwinding assays, a potential G-quadruplex DNA binding site in ScPif1p monomers is suggested. Our results also show that ScPif1p uses the Q-motif to preferentially hydrolyze ATP, and a G-rich tract is preferentially recognized by more residues, consistent with previous biochemical observations. These findings provide a structural and mechanistic basis for understanding the multifunctional ScPif1p.

4.
Nucleic Acids Res ; 44(6): 2949-61, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26809678

RESUMO

Pif1 helicases are ubiquitous members of the SF1B family and are essential for maintaining genome stability. It was speculated that Pif1-specific motifs may fold in specific structures, conferring distinct activities upon it. Here, we report the crystal structures of the Pif1 helicase from Bacteroides spp with and without adenosine triphosphate (ATP) analog/ssDNA. BsPif1 shares structural similarities with RecD2 and Dda helicases but has specific features in the 1B and 2B domains. The highly conserved Pif1 family specific sequence motif interacts with and constraints a putative pin-loop in domain 1B in a precise conformation. More importantly, we found that the 2B domain which contains a specific extended hairpin undergoes a significant rotation and/or movement upon ATP and DNA binding, which is absolutely required for DNA unwinding. We therefore propose a mechanism for DNA unwinding in which the 2B domain plays a predominant role. The fact that the conformational change regulates Pif1 activity may provide insight into the puzzling observation that Pif1 becomes highly processive during break-induced replication in association with Polδ, while the isolated Pif1 has low processivity.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Bacteroides/química , DNA Helicases/química , DNA de Cadeia Simples/química , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroides/enzimologia , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Polimerase III/química , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , DNA de Cadeia Simples/metabolismo , Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA