Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 11(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35159569

RESUMO

Cold atmospheric plasma (CAP) is a non-thermal technology that could be applied for food decontamination from both biological (microorganisms) and chemical (pesticides, food allergens, mycotoxins) contaminants, thanks to the production of reactive species (RS). However, RS could also promote the onset and the progress of food lipid oxidation, which may limit the quality and acceptability of the final products. The aim of this work was to assess the oxidation degree of pistachio kernels after treatment in a surface dielectric barrier discharge (SDBD). Two different operative conditions for CAP generation were investigated, resulting in the production of high (800 ppm) or low (300 ppm) concentrations of ozone. Limited amounts of hydroperoxides (3.00-4.22 mEq O2/kg), thiobarbituric acid reactive substances (TBARS, 0.072-0.600 mg TEP/g oil), and phytosterol oxidation products (POPs, 14.43-17.20 µg/g) were observed in lipids of both control and plasma processed pistachios. Plasma treatments did not significantly affect the total fatty acid composition and the amounts of identified unsaponifiable matter constituents (4-desmethylsterols, 4,4-dimethylsterols, 4-methylsterols), except for an unexpected significant increase of γ-tocopherol content in extracted oils. These findings contribute to gaining further knowledge for the scale-up of CAP technology to industrial processing.

2.
J Sci Food Agric ; 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35092615

RESUMO

BACKGROUND: Fresh-cut products are ready-to-use goods which retain the fresh characteristics of raw produce. However, numerous factors restrict the quality and shelf-life of fresh-cut products. One of the most promising, convenient and safe technologies to preserve the quality and to prolong the shelf-life of fresh fruits and vegetables is the application of edible coatings. RESULTS: The aim of this study was to investigate the effects of different coatings (alginate-based, cocoa-based and a combination of them) on physicochemical, microbiological and sensory characteristics of fresh-cut oranges during storage. Preliminary rheological analyses were performed on coatings in order to characterize them. The three different coated orange samples were packaged in polyethylene terephthalate trays under atmospheric conditions and stored for 9 days at 6 °C. During storage, all samples were analysed for water activity, moisture, colour, texture, microbiological analyses and sensory quality. Orange samples coated with sodium alginate maintained the highest quality characteristics in terms of texture and microbiological properties, but not from a sensory point of view. Samples coated only with cocoa presented very high sensory attributes, but the lowest microbiological and textural quality. Samples covered in both alginate and cocoa demonstrated the best quality parameters throughout the whole storage period, including high sensory characteristics and the lowest microbiological cell loads (yeast and mesophilic aerobic bacteria under the threshold limit of 6.0 log cfu g-1 ). CONCLUSION: The bilayer coating represented the best solution in order to develop new ready to-eat-fresh oranges with both high textural and sensory attributes and prolonged shelf-life. © 2022 Society of Chemical Industry.

3.
Heliyon ; 7(1): e05947, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33490691

RESUMO

A combined effect of pulsed electric field application and salting in a brine with 5 and 10% w/w NaCl on oxidative stability of lipids and proteins, as well as color characteristics of sea bass samples, was assessed in the study. The applied intensity of the current was set at 10 and 20 A corresponding to 300 and 600 V cm-1, respectively. Pulsed electric field (PEF) treatment led to a significant (p < 0.05) increase in primary and secondary lipid oxidation products expressed as peroxide value, conjugated dienes and 2-thiobarbituric acid reactive substances in PEF-treated samples compared to untreated ones. Conjugated dienes, as unstable primary oxidation products, correlated with b∗-value (p < 0.05, R = 0.789), suggesting their contribution to the yellowness of the fish flesh due to fast decomposition and conversion into secondary oxidation products yielding yellow pigmentation. However, none of the fish samples treated at the higher current intensity of 20 A exceeded the acceptable level of 5 meq active oxygen/kg lipid according to the requirements of the Standard for fish oils CODEX STAN 329-2017, suggesting acceptable oxidative status quality of sea bass samples after the treatment. PEF-treated fish samples also showed a significant increase in Schiff bases and total carbonyls on day 5 and day 8 of brine salting compared to non-treated samples, revealing a strong effect of electroporation on protein oxidation.

4.
Molecules ; 25(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708245

RESUMO

Kiwifruit is an excellent source of vitamin C and other bioactive compounds, which contribute to its high antioxidant activity. However, the fruits with small size and low weight are considered waste and are unprofitable; therefore, the production of healthy kiwifruit-based dried snacks, which contain a lot of health-beneficial ingredients, could be a viable alternative for their use. The aim of this study was to develop formulations and methods to produce attractive and nutritionally valuable dried snacks based on yellow kiwifruit. Three different puree formulations (kiwifruit; fennel; and strawberry, lemon, or spinach) with or without addition of sugar were subjected to two drying methods: freeze-drying (fruit bars) and conventional hot air drying (fruit leathers). The obtained products were analysed for their content of total polyphenols (TPs), flavonoids, and vitamin C, as well as their antioxidant activity. The results showed that snacks prepared by freeze-drying (fruit bars) presented higher TP, vitamin C, and flavonoids content than those prepared by convective drying; however, the antioxidant activity did not always follow this trend. The amount of bioactive compounds depended on the formulation used for the preparation of snacks. The effect of the sugar addition seems to be strictly related to the mix used and specific bioactive compound investigated.


Assuntos
Actinidia/química , Antioxidantes/química , Frutas/química , Extratos Vegetais/química , Lanches , Ácido Ascórbico/química , Flavonoides/química , Foeniculum/química , Tecnologia de Alimentos , Fragaria/química , Liofilização , Humanos , Valor Nutritivo , Polifenóis/química , Spinacia oleracea/química
5.
J Sci Food Agric ; 100(12): 4558-4564, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32418223

RESUMO

BACKGROUND: Although phenolic compounds have a role in the health benefits of fruit juice consumption, little is known about the effect of processing on their bioaccessibility. The release of phenolic compounds from the food matrix during digestion is an important pre-requisite for their effectiveness within the human body, and so it is fundamental to identify technological treatments able to preserve not only the concentration of phytochemicals, but also their bioaccessibility. In the present study, we investigated the impact of high-pressure homogenization (HPH), alone and in the presence of 100 g kg-1 trehalose or Lactobacillus salivarius, on the bioaccessibility of flavonoids in mandarin juice. In addition, digested mandarin juices were supplemented to liver cultured cells in basal and stressed conditions to evaluate their protective effect in a biological system. RESULTS: HPH reduced the concentration of total phenolics and main flavonoids but increased their bioaccessibility after in vitro digestion (P < 0.001). In the basal condition, supplementation with all digested juices significantly reduced intracellular reactive oxygen species (ROS) concentration (P < 0.001). Thiobarbituric acid reactive substances concentration in the medium was also reduced by supplementation with HPH-treated juices. Although pre-treatment with juices did not completely counteract the applied oxidative stress, it preserved cell viability, and cells pre-treated with juices submitted to HPH in the presence of probiotics showed the lowest ROS concentration. CONCLUSION: The present study represents an important step ahead in the evaluation of the impact of processing on the nutritional and functional value of food, which cannot simply be assessed based on chemical composition. © 2020 Society of Chemical Industry.


Assuntos
Citrus/química , Manipulação de Alimentos/métodos , Sucos de Frutas e Vegetais/análise , Antioxidantes/análise , Ácido Ascórbico/análise , Flavonoides/análise , Frutas/química , Valor Nutritivo , Compostos Fitoquímicos/análise , Polifenóis/análise
6.
Microorganisms ; 8(5)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365887

RESUMO

In a new probiotic food, besides adequate physicochemical properties, it is necessary to ensure a minimum probiotic content after processing, storage, and throughout gastrointestinal (GI) digestion. The aim of this work was to study the effect of hot air drying/freeze drying processes, encapsulation, and storage on the probiotic survival and in vitro digestion resistance of Lactobacillus salivarius spp. salivarius included into an apple matrix. The physicochemical properties of the food products developed were also evaluated. Although freeze drying processing provided samples with better texture and color, the probiotic content and its resistance to gastrointestinal digestion and storage were higher in hot air dried samples. Non-encapsulated microorganisms in hot air dried apples showed a 79.7% of survival rate versus 40% of the other samples after 28 days of storage. The resistance of encapsulated microorganisms to in vitro digestion was significantly higher (p ≤ 0.05) in hot air dried samples, showing survival rates of 50-89% at the last stage of digestion depending on storage time. In freeze dried samples, encapsulated microorganisms showed a survival rate of 16-47% at the end of digestion. The different characteristics of the food matrix after both processes had a significant effect on the probiotic survival after the GI digestion. Documented physiological and molecular mechanisms involved in the stress response of probiotic cells would explain these results.

7.
J Food Sci Technol ; 56(10): 4714-4721, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31686703

RESUMO

Various innovative materials are already present on the market, but there is scarce knowledge on their performances when used in real food system. In this study, two innovative packaging materials were investigated for the evaluation during storage of biscuits formulated with sunflower oil and compared to a traditional one. To this aim, three different flexible and composite film containing a metalized plastic layer and a paper layer were used. The control included orientated polypropylene (OPP), while the innovative materials contained poly-lactic acid or OPP with a pro-oxidant additive, ethylene vinyl acetate. The physical (moisture, water activity, hardness/crispness) and chemical (peroxide value, conjugated dienes and trienes, and hexanal and nonanal formation) changes of biscuits were monitored during accelerated storage (35 °C and 50% of relative humidity for 105 days). Packaging materials did not have significant impact on textural quality of biscuits. Instead remarkable differences were observed during storage in the evolution of different lipid oxidation compounds, moisture content and water activity among differently packed biscuits. A new ecofriendly packaging showed the best performances in terms of physico-chemical quality of biscuits. The obtained results provide useful information for industrial application.

8.
Foods ; 8(10)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627273

RESUMO

Berry fruits, such as strawberries and blueberries, are rich sources of anthocyanins. Several studies have been made on the impact of non-thermal treatments on safety, shelf-life and nutritional characteristics of such products, but the effects of these processes on anthocyanin stability during digestion in the gastrointestinal tract are still not completely clear. The aim of this study was to assess the recovery of anthocyanins after simulated gastrointestinal digestion of (1) strawberry samples, pre-treated with pulsed electric field (PEF) at 100 or 200 V·cm-1, prior to osmotic dehydration (OD), and (2) blueberry samples coated with chitosan and procyanidin. After digestion, a significantly higher content of cyanidin-3-O-glucoside and malvidin-3-O-glucoside was quantified by LC-MS/MS in processed strawberry and blueberry samples, compared with the controls. The highest recovery of cyanidin-3-O-glucoside was detected in digested strawberry samples osmotically dehydrated with trehalose. The recovery of malvidin-3-O-glucoside was highest in digested blueberries coated with chitosan and stored for 14 days, compared with untreated samples or samples coated with chitosan and procyanidin. Our study shows the potential of mild PEF treatments combined with OD, or the use of edible coating, to obtain shelf-stable products without substantially affecting the composition or the stability of anthocyanins during digestion in the upper gastrointestinal tract.

9.
Materials (Basel) ; 12(15)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374873

RESUMO

Edible films and coatings gained renewed interest in the food packaging sector with polysaccharide and protein blending being explored as a promising strategy to improve properties of edible films. The present work studies composite edible films in different proportions of pectin (P), alginate (A) and whey Protein concentrate (WP) formulated with a simplex centroid mixture design and evaluated for physico-chemical characteristics to understand the effects of individual components on the final film performance. The studied matrices exhibited good film forming capacity, except for whey protein at a certain concentration, with thickness, elastic and optical properties correlated to the initial solution viscosity. A whey protein component in general lowered the viscosity of the initial solutions compared to that of alginate or pectin solutions. Subsequently, a whey protein component lowered the mechanical strength, as well as the affinity for water, as evidenced from an increasing contact angle. The effect of pectin was reflected in the yellowness index, whereas alginate and whey protein affected the opacity of film. Whey protein favored higher opacity, lower gas barrier values and dense structures, resulting from the polysaccharide-protein aggregates. All films displayed however good thermal stability, with degradation onset temperatures higher than 170 °C.

10.
Food Chem ; 301: 125187, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31387041

RESUMO

Solid and liquid components coexist into glassy and amorphous structures of food complex matrixes. Both states admit movements, promoting physical modifications to a more thermodynamically stable system. Green and roasted coffee beans are principally characterized by a glassy structure that slowly evolves during storage. The aim of this study was to assess calorimetric and dielectric properties in combination, as a useful multi-analytical technique to improve the understanding of the motion mechanism of localized molecules. After equilibration at different water activities (aw) for the determination of sorption isotherms of green and roasted coffee, the glass transition temperature (Tg) of the samples has been measured by using differential scanning calorimetry (DSC). Increasing the aw from 0.155 to 0.512, the Tg shifted from 48.76 (±0.04) to 34.89 (±0.02) °C for green coffee and from 45.73 (±0.05) to 40.15 (±0.10) °C for the roasted one. The spectroscopic fingerprint of the matrix has been determined by dielectric measurements in terms of "gain" spectra (related to the imaginary part of permittivity). The maximum values of the determination coefficient (R2), obtained by linear correlation between spectral data and water activity or glass transition values for a specific frequency of the whole range (1.6 GHz-2.7 GHz), were 0.999 and 0.943 for green, and 0.997 R2 and 0.925 R2 for roasted coffee respectively.


Assuntos
Coffea/química , Café/química , Varredura Diferencial de Calorimetria , Temperatura de Transição , Vitrificação , Água/química
11.
Food Chem ; 299: 125122, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31288165

RESUMO

To ease the mass exchange in fruit tissues, cutting and blanching are traditionally performed. However, recently, unconventional methods such as sonication are becoming more popular, which cause several alterations of physical and chemical properties as well as microstructure changes. The aim of this work was to evaluate the distribution of water inside the cranberry fruits, microstructural changes and sugars content, following traditional and sonication pre-treatments in osmotic solutions. TD-NMR spectroscopy was used to measure the transverse relaxation time (T2) and intensity of proton pools in different cellular compartments. The microstructure of the samples was evaluated by SEM microscopy, sugars content by HPLC and sucrose melting temperature and enthalpy by DSC. Different pre-treatments appeared to promote microstructure alterations and loss of water from vacuole and cytoplasm/extracellular space, more pronounced in cut and blanched samples. Cutting and blanching followed by osmotic dehydration with assisted sonication eased sucrose penetration into the tissue.


Assuntos
Conservação de Alimentos/métodos , Frutas/química , Açúcares/análise , Vaccinium macrocarpon/química , Água/metabolismo , Varredura Diferencial de Calorimetria , Dessecação , Frutas/ultraestrutura , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Osmose , Sonicação , Sacarose/análise , Temperatura , Vaccinium macrocarpon/ultraestrutura
12.
Foods ; 8(7)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288407

RESUMO

The objective of this work was to optimize pulsed electric field (PEF) or ohmic heating (OH) application for carrot and apple mashes treatment at different preheating temperatures (40, 60 or 80 °C). The effect of tissue disintegration on the properties of recovered juices was quantified, taking into account the colour change, the antioxidant activity and the enzyme activity of peroxidase (POD) in both carrot and apple juice and polyphenol oxidase (PPO) in apple juice. Lower ΔE and an increase of the antioxidant activity were obtained for juice samples treated with temperature at 80 °C with or without PEF and OH pretreatment compared with those of untreated samples. The inactivation by 90% for POD and PPO was achieved when a temperature of 80 °C was applied for both carrot and apple mash. A better retention of plant secondary metabolites from carrot and apple mashes could be achieved by additional PEF or OH application. Obtained results are the basis for the development of targeted processing concepts considering the release, inactivation and retention of ingredients.

13.
Front Microbiol ; 10: 246, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837971

RESUMO

The increasing competition within the food industry sector makes the requisite of innovation in processes and products essential, leading to focus the interest on the application of new processing technologies including high pressure homogenization (HPH) and ultra high pressure homogenization (UHPH). In this context, the present research aimed at evaluating the effects of two UHPH treatments performed at 200 MPa for 2 and 3 cycles on quality and functionality of organic kiwifruit juice stored at three different temperatures, i.e., 5, 15, and 25°C. The results showed that only the treatment performed at 200 MPa for 3 cycles was able to significantly increase the shelf-life of organic kiwifruit juices when stored at refrigeration temperature, avoiding also phase separation that occurred in the sample treated at 0.1 MPa (control) after 20 days of refrigerated storage. The obtained data showed also that the highest applied pressure was able to increase some quality parameters of the juice such as viscosity and luminosity (L∗) and increased the availability of total phenol content consequently enhancing the juice total antioxidant activity. The application of a treatment at 200 MPa for 3 cycles allowed to obtain a stable kiwifruit juice for more than 40 days under refrigerated storage. A challenge to implement this technology in food process as full alternative to thermal treatment could be represented by the adoption of pressure level up to 400 MPa followed by the packaging in aseptic conditions.

14.
Ultrasonics ; 83: 33-41, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28778552

RESUMO

The aim of the study was to investigate the effect of ultrasound treatment in two osmotic solutions, carried out at different time, on some physical properties, antioxidant activity and cell survival of cranberries. Ultrasound treatment was conducted at 21kHz for 30 and 60min in liquid medium: 61.5% sucrose solution and 30% sucrose solution with 0.1% steviol glycosides addition. Some samples before the ultrasound treatment were subjected to cutting or blanching. The results showed that dry matter content and concentration of the dissolved substances increased during ultrasound treatment in osmotic solution, however higher value was observed for treatment in 61.5% sucrose solution and for longer time. Water activity and volume of cranberries did not change after the ultrasonic treatment. Combined treatment led to colour and antioxidant activity alterations as well. A cell viability of whole and cut samples decreased after 60min of osmotic treatment and completely lost in the blanched samples.


Assuntos
Sobrevivência Celular/efeitos da radiação , Dessecação/métodos , Conservação de Alimentos/métodos , Qualidade dos Alimentos , Ondas de Choque de Alta Energia , Osmose/efeitos da radiação , Vaccinium macrocarpon/efeitos da radiação , Sobrevivência Celular/fisiologia , Diterpenos do Tipo Caurano/química , Relação Dose-Resposta à Radiação , Análise de Alimentos , Glucosídeos/química , Doses de Radiação , Sacarose/química
15.
J Texture Stud ; 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29148052

RESUMO

The effect of partial replacement of wheat flour with soy paste and wheat fiber on rheological, textural, physicochemical, and organoleptic characteristics of an enriched pizza base (E) was investigated in comparison with those of a control pizza base (C). New ingredients (e.g., enriched cooked ham, whey cheese, and tomato sauce realized using food industry by-products) were also used in E pizza topping to further increase its nutritional properties. Enriched dough was developed first at a laboratory level. Large and small deformation, moisture, leavening activity, and metabolic heat were tested. On the final product, produced at the industrial level, textural, color, sensory, and nutritional analyses were performed. Preliminary rheological analysis was essential to evaluate the suitability of the new pizza to be processed at industrial level. Both pizza dough samples showed a solid elastic-like behavior; however, the addition of soy and fiber increased moisture content of E pizza, due to the water binding ability of soy protein and to the effect of fibers that also decreased E dough elasticity. No differences in extensibility between the two samples were observed, whereas significantly lower values of resistance to extension and dough force were shown in sample E. These differences were likely due to the presence of soy that interfere with gluten formation and to the dietary fibers that interact with water. Ingredients used in E pizza improved its nutritional quality increasing dietary fibers and protein, and decreasing saturated fatty acids and cholesterol content, which contributed to decrease energy value, in terms of kilocalorie reduction. PRACTICAL APPLICATIONS: In this work, the effects of using new ingredients (e.g., soy paste, wheat fiber) on the rheological, textural, physicochemical, nutritional, and organoleptic characteristics of an enriched pizza type were investigated both at laboratory and industrial levels. The new pizza provides a product that combines solid technological performances, in terms of rheological properties and dough elasticity, with improved and balanced nutritional quality, thanks also to the ingredients used in the topping. Results demonstrate the possibility of obtaining new pizza products characterized by nutritional and sensorial properties tailored for different group of consumers.

16.
Materials (Basel) ; 10(8)2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28773210

RESUMO

Five Poly(lactic acid) (PLA) film samples were analyzed to study the gas barrier behavior, thermal stability and mechanical performance for food packaging application. O2, CO2, N2, N2O, and C2H4 pure gases; Air; and Modified Atmosphere (MA, 79% N2O/21% O2) were used to analyze the influence of the chemical structure, storage temperature and crystalline phase on the gas barrier behavior. The kinetic of the permeation process was investigated at different temperatures, ranging from 5 °C to 40 °C. Annealing thermal treatment on the samples led to the crystalline percentage, influencing especially the gas solubility process. Thermal properties such as Tg and χc, and mechanical properties such as tensile strength and modulus were remarkably improved with surface PLA modification. A more pronounced reinforcing effect was noted in the case of metallization, as well as improved gas barrier performance. Tensile testing and tensile cycling tests confirmed the rigidity of the films, with about a 20% loss of elasticity after 25 cycles loading.

17.
Food Chem ; 236: 134-141, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28624082

RESUMO

This study investigates the effect of carrier type on the physical and structural properties of microcapsules of pure carrot juice. Low-crystallised maltodextrin (MD), gum arabic (GA), mixtures of MD and GA (1:1; 2:1; 3:1) and whey protein isolate (WPI) were used as carriers. Microencapsulation was carried out in a spray-drier at inlet air temperature of 160°C. Powders were investigated for dry matter, water activity, diameter, carotene content and hygroscopicity. In addition, differential scanning calorimetry (DSC) and time domain nuclear magnetic resonance (TD-NMR) were applied to analyse microcapsules glass transition temperature (Tg). Carrot powders with GA used as a carrier material resulted in better carotenoids retention and higher stability of powders in terms of higher Tg, lower aw and good hygroscopic properties. However, all powders showed a low aw (below 0.26) and high dry matter content (98-99%) indicating a good potential for protection of microencapsulated carotenoids during the storage.


Assuntos
Daucus carota/química , Composição de Medicamentos , Cápsulas , Goma Arábica , Pós
18.
Food Chem ; 236: 87-93, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28624093

RESUMO

Osmotic dehydration (OD) is a widely used preservation technique that consists in the reduction in food water activity by the immersion of the biological tissue in hypertonic solutions. The aim of this work was to analyze the effect of pulsed electric fields (PEF) in mass transfer as a pre-treatment of the OD using NMR. In this sense, PEF pre-treatments were done using three different voltages (100, 250 and 400V/cm) and 60 number of pulse. The OD of kiwifruit was carried out in 61.5% of sucrose solution at 25°C, for a contact period from 0 to 120min. The water distribution into the cellular tissue was studied by NMR relaxometry. In conclusion, NMR is an excellent technique for quantifying water molecules according to their interactions in the fruit tissue, obtaining the adsorbed water and opening the possibility to apply the BET model to fit the adsorbed isotherm over the whole range of water activity.


Assuntos
Actinidia/química , Conservação de Alimentos/métodos , Desidratação , Frutas/química , Osmose
19.
Food Chem ; 236: 94-100, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28624094

RESUMO

Pulsed electric fields (PEF) and ultrasound (US) are promising innovative technologies with the potential to increase mass transfer when combined with further processes which in turn can provide potential benefits in the recovery of valuable compounds from food by-products. To provide evidence of the mechanism of mass transfer enhancement, the present study assessed the impact of PEF and US treatments, applied individually and in combination, at low and high temperatures, on the tissue microstructure of mushroom stalks. Different indices such as quantitative water redistribution, water loss and qualitative release of compounds were evaluated. The combination of these physical methods demonstrated that PEF redistributed a greater proportion of intracellular water into extracellular spaces than US. However, the application of high temperature treatments alone showed an even greater proportion of intracellular water migration compared to PEF. When PEF was combined with US at low temperatures the difference was not significant.


Assuntos
Agaricales/química , Conservação de Alimentos/métodos , Água/análise , Agaricales/metabolismo , Eletricidade , Ultrassom , Verduras , Água/metabolismo
20.
J Food Sci ; 81(11): E2734-E2742, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27706813

RESUMO

Vacuum impregnation (VI) is a processing operation that permits the impregnation of fruit and vegetable porous tissues with a fast and more homogeneous penetration of active compounds compared to the classical diffusion processes. The objective of this research was to investigate the impact on VI treatment with the addition of calcium lactate on qualitative parameters of minimally processed melon during storage. For this aim, this work was divided in 2 parts. Initially, the optimization of process parameters was carried out in order to choose the optimal VI conditions for improving texture characteristics of minimally processed melon that were then used to impregnate melons for a shelf-life study in real storage conditions. On the basis of a 23 factorial design, the effect of Calcium lactate (CaLac) concentration between 0% and 5% and of minimum pressure (P) between 20 and 60 MPa were evaluated on color and texture. Processing parameters corresponding to 5% CaLac concentration and 60 MPa of minimum pressure were chosen for the storage study, during which the modifications of main qualitative parameters were evaluated. Despite of the high variability of the raw material, results showed that VI allowed a better maintenance of texture during storage. Nevertheless, other quality traits were negatively affected by the application of vacuum. Impregnated products showed a darker and more translucent appearance on the account of the alteration of the structural properties. Moreover microbial shelf-life was reduced to 4 d compared to the 7 obtained for control and dipped samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...