Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
ACS Appl Mater Interfaces ; 11(12): 11749-11754, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30807098


A differentiator is an electronic component used to accomplish mathematical operations of calculus functions of differentiation for shaping different waveforms. Differentiators are used in numerous areas of electronics, including electronic analog computers, wave-shaping circuits, and frequency modulators. Conventional differentiators are fabricated using active operational amplifiers or using passive resistor-capacitor combinations. Here, we report that a single Cu2S-CdS heterostructure acts as a differentiator for performing numerical functions of input waveform conversion into different shapes. When a rectangular wave signal is applied through the tip of a conductive atomic force microscope, a spikelike wave signal is obtained from the Cu2S-CdS heterostructure. The Cu2S-CdS differentiator is able to convert a sine wave signal into a cosine wave signal and a triangular wave signal into a square wave signal similar to the classical differentiators. The finding of a nanoscale differentiator at extremely small length scales may have profound applications in different domains of electronics.

Angew Chem Int Ed Engl ; 57(31): 9679-9683, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29917300


Two-dimensional (2D) carbon nanomaterials possessing promising physical and chemical properties find applications in high-performance energy storage devices and catalysts. However, large-scale fabrication of 2D carbon nanostructures is based on a few specific carbon templates or precursors and poses a formidable challenge. Now a new bottom-up method for carbon nanosheet fabrication using a newly designed anisotropic carbon nanoring molecule, CPPhen, is presented. CPPhen was self-assembled at a dynamic air-water interface with a vortex motion to afford molecular nanosheets, which were then carbonized under inert gas flow. Their nanosheet morphologies were retained after carbonization, which has never been seen for low-molecular weight compounds. Furthermore, adding pyridine as a nitrogen dopant in the self-assembly step successfully afforded nitrogen-doped carbon nanosheets containing mainly pyridinic nitrogen species.

Nanoscale ; 7(19): 9062-74, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25921601


Artificial enzyme mimetics have attracted immense interest recently because natural enzymes undergo easy denaturation under environmental conditions restricting practical usefulness. We report for the first time chalcopyrite CuZnFeS (CZIS) alloyed nanocrystals (NCs) as novel biomimetic catalysts with efficient intrinsic peroxidase-like activity. Novel peroxidase activities of CZIS NCs have been evaluated by catalytic oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). CZIS NCs demonstrate the synergistic effect of elemental composition and photoactivity towards peroxidase-like activity. The quaternary CZIS NCs show enhanced intrinsic peroxidase-like activity compared to the binary NCs with the same constituent elements. Intrinsic peroxidase-like activity has been correlated with the energy band position of CZIS NCs extracted using scanning tunneling spectroscopy and ultraviolet photoelectron spectroscopy. Kinetic analyses indicate Michaelis-Menten enzyme kinetic model catalytic behavior describing the rate of the enzymatic reaction by correlating the reaction rate with substrate concentration. Typical color reactions arising from the catalytic oxidation of TMB over CZIS NCs with H2O2 have been utilized to establish a simple and sensitive colorimetric assay for detection of H2O2 and glucose. CZIS NCs are recyclable catalysts showing high efficiency in multiple uses. Our study may open up the possibility of designing new photoactive multi-component alloyed NCs as enzyme mimetics in biotechnology applications.

Materiais Biomiméticos/química , Técnicas Biossensoriais , Cobre/química , Glucose/análise , Peróxido de Hidrogênio/análise , Nanopartículas/química , Benzidinas/química , Materiais Biomiméticos/metabolismo , Catálise , Colorimetria , Cinética , Nanopartículas/metabolismo , Nanopartículas/ultraestrutura , Oxirredução , Peroxidase/química , Peroxidase/metabolismo
Angew Chem Int Ed Engl ; 54(9): 2643-8, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25598442


Semiconductor nanocrystals (NCs) possess high photoluminescence (PL) typically in the solution phase. In contrary, PL rapidly quenches in the solid state. Efficient solid state luminescence can be achieved by inducing a large Stokes shift. Here we report on a novel synthesis of compositionally controlled CuCdS NCs in air avoiding the usual complexity of using inert atmosphere. These NCs show long-range color tunability over the entire visible range with a remarkable Stokes shift up to about 1.25 eV. Overcoating the NCs leads to a high solid-state PL quantum yield (QY) of ca. 55% measured by using an integrating sphere. Unique charge carrier recombination mechanisms have been recognized from the NCs, which are correlated to the internal NC structure probed by using extended X-ray absorption fine structure (EXAFS) spectroscopy. EXAFS measurements show a Cu-rich surface and Cd-rich interior with 46% Cu(I) being randomly distributed within 84% of the NC volume creating additional transition states for PL. Color-tunable solid-state luminescence remains stable in air enabling fabrication of light-emitting diodes (LEDs).

Small ; 11(15): 1829-39, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25504671


Quaternary alloyed nanocrystals (NCs) composed of earth abundant, environment friendly elements are of interest for energy-harvesting applications. These complex NCs are useful as catalysts for the degradation of multiple refractory organic pollutants as well as nitro-organic reduction at a rapid rate. Here, a remarkably fast (∼30 s) and facile synthesis of crystalline quaternary chalcopyrite copper-zinc-iron-sulfide (CZIS) NCs is reported. These NCs show excellent catalytic properties by degrading a number of refractory organic dyes and converting nitro-compounds at a rapid rate. The valence and conduction band information of the newly designed NCs are extracted using scanning tunneling spectroscopy and ultraviolet photoelectron spectroscopy, which reveal energy levels suitable for performing redox chemistry by generating reactive radicals establishing NCs as efficient catalyst with multiple uses. Rapid synthesis of high quality phase-controlled CZIS NCs with robust catalytic activities could be useful for organic waste treatment.

ACS Appl Mater Interfaces ; 6(10): 7856-63, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24779471


We report on the synthesis of shape controlled ZnS nanocrystals designed into nanodots, nanorods, and nanowires retaining the same diameter and crystallographic phase. We used UHV scanning tunneling microscopy and spectroscopy to study rectification behavior from single nanocrystals. The nanorod and nanowire show large tunneling current at the negative bias in comparison to the positive bias demonstrating current rectification, while the nanodot shows symmetric current-voltage behavior. We proposed a tunneling mechanism where direct tunneling is followed by resonant tunneling mechanism through ZnS nanocrystal at lower applied bias voltages. Stimulation of field emission in Fowler-Nordheim tunneling regime at higher negative bias voltages enables the rectification behavior from the ZnS nanorod or nanowire. Absence of rectification from the ZnS nanodot is associated with spherical shape where the field emission becomes less significant. Realizing functional electronic component from such shape dependent single ZnS nanocrystal may provide a means in realizing nanocrystal based miniaturized devices.