Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Autism ; 11(1): 36, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32423424

RESUMO

BACKGROUND: Autism spectrum condition (ASC) is accompanied by developmental differences in brain anatomy and connectivity. White matter differences in ASC have been widely studied with diffusion imaging but results are heterogeneous and vary across the age range of study participants and varying methodological approaches. To characterize the neurodevelopmental trajectory of white matter maturation, it is necessary to examine a broad age range of individuals on the autism spectrum and typically developing controls, and investigate age × group interactions. METHODS: Here, we employed a spatially unbiased tract-based spatial statistics (TBSS) approach to examine age-related differences in white matter connectivity in a sample of 41 individuals with ASC, and 41 matched controls between 7-17 years of age. RESULTS: We found significant age-related differences between the ASC and control group in widespread brain regions. This included age-related differences in the uncinate fasciculus, corticospinal tract, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, anterior thalamic radiation, superior longitudinal fasciculus and forceps major. Measures of fractional anisotropy (FA) were significantly positively associated with age in both groups. However, this relationship was significantly stronger in the ASC group relative to controls. Measures of radial diffusivity (RD) were significantly negatively associated with age in both groups, but this relationship was significantly stronger in the ASC group relative to controls. LIMITATIONS: The generalisability of our findings is limited by the restriction of the sample to right-handed males with an IQ > 70. Furthermore, a longitudinal design would be required to fully investigate maturational processes across this age group. CONCLUSIONS: Taken together, our findings suggest that autistic males have an altered trajectory of white matter maturation relative to controls. Future longitudinal analyses are required to further characterize the extent and time course of these differences.

2.
Cereb Cortex ; 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32420595

RESUMO

22q11.2 deletion syndrome (22q11.2DS) is a genetic condition accompanied by a range of psychiatric manifestations, including autism spectrum disorder (ASD). It remains unknown, however, whether these symptoms are mediated by the same or distinct neural mechanisms as in idiopathic ASD. Here, we examined differences in lGI associated with ASD in 50 individuals with 22q11.2DS (n = 25 with ASD, n = 25 without ASD) and 81 individuals without 22q11.2DS (n = 40 with ASD, n = 41 typically developing controls). We initially utilized a factorial design to identify the set of brain regions where lGI is associated with the main effect of 22q11.2DS, ASD, and with the 22q11.2DS-by-ASD interaction term. Subsequently, we employed canonical correlation analysis (CCA) to compare the multivariate association between variability in lGI and the complex clinical phenotype of ASD between 22q11.2DS carriers and noncarriers. Across approaches, we established that even though there is a high degree of clinical similarity across groups, the associated patterns of lGI significantly differed between carriers and noncarriers of the 22q11.2 microdeletion. Our results suggest that ASD symptomatology recruits different neuroanatomical underpinnings across disorders and that 22q11.2DS individuals with ASD represent a neuroanatomically distinct subgroup that differs from 22q11.2DS individuals without ASD and from individuals with idiopathic ASD.

3.
Hum Brain Mapp ; 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32420680

RESUMO

Neuroimaging has been extensively used to study brain structure and function in individuals with attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) over the past decades. Two of the main shortcomings of the neuroimaging literature of these disorders are the small sample sizes employed and the heterogeneity of methods used. In 2013 and 2014, the ENIGMA-ADHD and ENIGMA-ASD working groups were respectively, founded with a common goal to address these limitations. Here, we provide a narrative review of the thus far completed and still ongoing projects of these working groups. Due to an implicitly hierarchical psychiatric diagnostic classification system, the fields of ADHD and ASD have developed largely in isolation, despite the considerable overlap in the occurrence of the disorders. The collaboration between the ENIGMA-ADHD and -ASD working groups seeks to bring the neuroimaging efforts of the two disorders closer together. The outcomes of case-control studies of subcortical and cortical structures showed that subcortical volumes are similarly affected in ASD and ADHD, albeit with small effect sizes. Cortical analyses identified unique differences in each disorder, but also considerable overlap between the two, specifically in cortical thickness. Ongoing work is examining alternative research questions, such as brain laterality, prediction of case-control status, and anatomical heterogeneity. In brief, great strides have been made toward fulfilling the aims of the ENIGMA collaborations, while new ideas and follow-up analyses continue that include more imaging modalities (diffusion MRI and resting-state functional MRI), collaborations with other large databases, and samples with dual diagnoses.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32388538

RESUMO

Emotion processing-including signals from facial expressions-is often altered in individuals with autism spectrum disorder (ASD). The biological basis of this is poorly understood but may include neurochemically mediated differences in the responsivity of key 'limbic' regions (including amygdala, ventromedial prefrontal cortex (vmPFC) and nucleus accumbens (NAc)). Emerging evidence also suggests that ASD may be a disorder of brain temporal dynamics. Moreover, serotonin (5-HT) has been shown to be a key regulator of both facial-emotion processing and brain dynamics, and 5-HT abnormalities have been consistently implicated in ASD. To date, however, no one has examined how 5-HT influences the dynamics of facial-emotion processing in ASD. Therefore, we compared the influence of 5-HT on the responsivity of brain dynamics during facial-emotion processing in individuals with and without ASD. Participants completed a facial-emotion processing fMRI task at least 8 days apart using a randomised double-blind crossover design. At each visit they received either a single 20-mg oral dose of the selective serotonin reuptake inhibitor (SSRI) citalopram or placebo. We found that citalopram (which increases levels of 5-HT) caused sustained activation in key limbic regions during processing of negative facial emotions in adults with ASD-but not in neurotypical adults. The neurotypical adults' limbic response reverted more rapidly to baseline following a 5-HT-challenge. Our results suggest that serotonergic homoeostatic control of the temporal dynamics in limbic regions is altered in adults with ASD, and provide a fresh perspective on the biology of ASD.

5.
Am J Psychiatry ; : appiajp201919060583, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32046535

RESUMO

OBJECTIVE: 22q11.2 deletion syndrome (22q11DS) is among the strongest known genetic risk factors for schizophrenia. Previous studies have reported variable alterations in subcortical brain structures in 22q11DS. To better characterize subcortical alterations in 22q11DS, including modulating effects of clinical and genetic heterogeneity, the authors studied a large multicenter neuroimaging cohort from the ENIGMA 22q11.2 Deletion Syndrome Working Group. METHODS: Subcortical structures were measured using harmonized protocols for gross volume and subcortical shape morphometry in 533 individuals with 22q11DS and 330 matched healthy control subjects (age range, 6-56 years; 49% female). RESULTS: Compared with the control group, the 22q11DS group showed lower intracranial volume (ICV) and thalamus, putamen, hippocampus, and amygdala volumes and greater lateral ventricle, caudate, and accumbens volumes (Cohen's d values, -0.90 to 0.93). Shape analysis revealed complex differences in the 22q11DS group across all structures. The larger A-D deletion was associated with more extensive shape alterations compared with the smaller A-B deletion. Participants with 22q11DS with psychosis showed lower ICV and hippocampus, amygdala, and thalamus volumes (Cohen's d values, -0.91 to 0.53) compared with participants with 22q11DS without psychosis. Shape analysis revealed lower thickness and surface area across subregions of these structures. Compared with subcortical findings from other neuropsychiatric disorders studied by the ENIGMA consortium, significant convergence was observed between participants with 22q11DS with psychosis and participants with schizophrenia, bipolar disorder, major depressive disorder, and obsessive-compulsive disorder. CONCLUSIONS: In the largest neuroimaging study of 22q11DS to date, the authors found widespread alterations to subcortical brain structures, which were affected by deletion size and psychotic illness. Findings indicate significant overlap between 22q11DS-associated psychosis, idiopathic schizophrenia, and other severe neuropsychiatric illnesses.

6.
Mol Psychiatry ; 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31925327

RESUMO

The 22q11.2 deletion syndrome (22q11.2DS) is a neurodevelopmental disorder associated with a number of volumetric brain abnormalities. The syndrome is also associated with an increased risk for neuropsychiatric disorders including schizophrenia and autism spectrum disorder. An earlier meta-analysis showed reduced grey and white matter volumes in individuals with 22q11.2DS. Since this analysis was conducted, the number of studies has increased markedly, permitting more precise estimates of effects and more regions to be examined. Although 22q11.2DS is clinically heterogeneous, it is not known to what extent this heterogeneity is mirrored in neuroanatomy. The aim of this study was thus to investigate differences in mean brain volume and structural variability within regions, between 22q11.2DS and typically developing controls. We examined studies that reported measures of brain volume using MRI in PubMed, Web of Science, Scopus and PsycINFO from inception to 1 May 2019. Data were extracted from studies in order to calculate effect sizes representing case-control difference in mean volume, and in the variability of volume (as measured using the log variability ratio (lnVR) and coefficient of variation ratio (CVR)). We found significant overall decreases in mean volume in 22q11.2DS compared with control for: total brain (g = -0.96; p < 0.001); total grey matter (g = -0.81, p < 0.001); and total white matter (g = -0.81; p < 0.001). There was also a significant overall reduction of mean volume in 22q11.2DS subjects compared with controls in frontal lobe (g = -0.47; p < 0.001), temporal lobe (g = -0.84; p < 0.001), parietal lobe (g = -0.73; p = 0.053), cerebellum (g = -1.25; p < 0.001) and hippocampus (g = -0.90; p < 0.001). Significantly increased variability in 22q11.2DS individuals compared with controls was found only for the hippocampus (VR, 1.14; p = 0.036; CVR, 1.30; p < 0.001), and lateral ventricles (VR, 1.56; p = 0.004). The results support the notion that structural abnormalities in 22q11.2DS and schizophrenia are convergent, and also to some degree with findings in autism spectrum disorder. Finally, the increased variability seen in the hippocampus in 22q11.2DS may underlie some of the heterogeneity observed in the neuropsychiatric phenotype.

7.
Transl Psychiatry ; 9(1): 313, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748505

RESUMO

Autism spectrum disorder (ASD) is a high cost neurodevelopmental condition; and there are currently no effective pharmacological treatments for its core symptoms. This has led some families and researchers to trial alternative remedies - including the non-intoxicating Cannabis sativa-derived compound cannabidivarin (CBDV). However, how CBDV affects the human brain is unknown. Previous (pre)clinical evidence suggests that CBDV may modulate brain excitatory-inhibitory systems, which are implicated in ASD. Hence, our main aim was to test, for the first time, if CBDV shifts glutamate and/or GABA metabolites - markers of the brain's primary excitatory and inhibitory system - in both the 'typical' and autistic brain. Our subsidiary aim was to determine whether, within ASD, brain responsivity to CBDV challenge is related to baseline biological phenotype. We tested this using a repeated-measures, double-blind, randomized-order, cross-over design. We used magnetic resonance spectroscopy (MRS) to compare glutamate (Glx = glutamate + glutamine) and GABA + (GABA + macromolecules) levels following placebo (baseline) and 600 mg CBDV in 34 healthy men with (n = 17) and without (n = 17) ASD. Data acquisition from regions previously reliably linked to ASD (dorsomedial prefrontal cortex, DMPFC; left basal ganglia, BG) commenced 2 h (peak plasma levels) after placebo/CBDV administration. Where CBDV significantly shifted metabolite levels, we examined the relationship of this change with baseline metabolite levels. Test sessions were at least 13 days apart to ensure CBDV wash-out. CBDV significantly increased Glx in the BG of both groups. However, this impact was not uniform across individuals. In the ASD group, and not in the typically developing controls, the 'shift' in Glx correlated negatively with baseline Glx concentration. In contrast, CBDV had no significant impact on Glx in the DMPFC, or on GABA+ in either voxel in either group. Our findings suggest that, as measured by MRS, CBDV modulates the glutamate-GABA system in the BG but not in frontal regions. Moreover, there is individual variation in response depending on baseline biochemistry. Future studies should examine the effect of CBDV on behaviour and if the response to an acute dose of CBDV could predict a potential clinical treatment response in ASD.

8.
Nat Commun ; 10(1): 4958, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673008

RESUMO

Altered structural brain asymmetry in autism spectrum disorder (ASD) has been reported. However, findings have been inconsistent, likely due to limited sample sizes. Here we investigated 1,774 individuals with ASD and 1,809 controls, from 54 independent data sets of the ENIGMA consortium. ASD was significantly associated with alterations of cortical thickness asymmetry in mostly medial frontal, orbitofrontal, cingulate and inferior temporal areas, and also with asymmetry of orbitofrontal surface area. These differences generally involved reduced asymmetry in individuals with ASD compared to controls. Furthermore, putamen volume asymmetry was significantly increased in ASD. The largest case-control effect size was Cohen's d = -0.13, for asymmetry of superior frontal cortical thickness. Most effects did not depend on age, sex, IQ, severity or medication use. Altered lateralized neurodevelopment may therefore be a feature of ASD, affecting widespread brain regions with diverse functions. Large-scale analysis was necessary to quantify subtle alterations of brain structural asymmetry in ASD.

9.
Transl Psychiatry ; 9(1): 286, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712584

RESUMO

Adults with autism spectrum disorder (ASD) are frequently prescribed selective serotonin reuptake inhibitors (SSRIs). However, there is limited evidence to support this practice. Therefore, it is crucial to understand the impact of SSRIs on brain function abnormalities in ASD. It has been suggested that some core symptoms in ASD are underpinned by deficits in executive functioning (EF). Hence, we investigated the role of the SSRI citalopram on EF networks in 19 right-handed adult males with ASD and 19 controls who did not differ in gender, age, IQ or handedness. We performed pharmacological functional magnetic resonance imaging to compare brain activity during two EF tasks (of response inhibition and sustained attention) after an acute dose of 20 mg citalopram or placebo using a randomised, double-blind, crossover design. Under placebo condition, individuals with ASD had abnormal brain activation in response inhibition regions, including inferior frontal, precentral and postcentral cortices and cerebellum. During sustained attention, individuals with ASD had abnormal brain activation in middle temporal cortex and (pre)cuneus. After citalopram administration, abnormal brain activation in inferior frontal cortex was 'normalised' and most of the other brain functional differences were 'abolished'. Also, within ASD, the degree of responsivity in inferior frontal and postcentral cortices to SSRI challenge was related to plasma serotonin levels. These findings suggest that citalopram can 'normalise' atypical brain activation during EF in ASD. Future trials should investigate whether this shift in the biology of ASD is maintained after prolonged citalopram treatment, and if peripheral measures of serotonin predict treatment response.

10.
Dev Cogn Neurosci ; 40: 100721, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31704653

RESUMO

Fathers play a crucial role in their children's socio-emotional and cognitive development. A plausible intermediate phenotype underlying this association is father's impact on infant brain. However, research on the association between paternal caregiving and child brain biology is scarce, particularly during infancy. Thus, we used magnetic resonance imaging (MRI) to investigate the relationship between observed father-infant interactions, specifically paternal sensitivity, and regional brain volumes in a community sample of 3-to-6-month-old infants (N = 28). We controlled for maternal sensitivity and examined the moderating role of infant communication on this relationship. T2-weighted MR images were acquired from infants during natural sleep. Higher levels of paternal sensitivity were associated with smaller cerebellar volumes in infants with high communication levels. In contrast, paternal sensitivity was not associated with subcortical grey matter volumes in the whole sample, and this was similar in infants with both high and low communication levels. This preliminary study provides the first evidence for an association between father-child interactions and variation in infant brain anatomy.

11.
Eur Neuropsychopharmacol ; 29(12): 1333-1342, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31648854

RESUMO

Glutamatergic dysregulation is one of the leading theories regarding the pathoaetiolopy of schizophrenia. Meta-analysis of magnetic resonance spectroscopy studies in schizophrenia shows increased levels of glutamate and glutamine (Glx) in the medial frontal cortex and basal ganglia in clinical high-risk groups for psychosis and increased glutamine levels in the thalamus, but it is unclear if this is also the case in people at genetic high risk for psychosis. The aim of this study was to investigate glutamatergic function in the anterior cingulate cortex, striatum and thalamus in carriers of a genetic variant (22q11.2 deletion) associated with a high risk for psychosis. 53 volunteers (23 22q11.2 deletion carriers and 30 controls) underwent proton magnetic resonance spectroscopy imaging and neuropsychological assessments for prodromal psychotic symptoms, schizotypy, anxiety, depression and FSIQ. We did not find any difference between groups in Glx in the anterior cingulate cortex, striatum or thalamus (Glx: t(50)=-1.26, p = 0.21; U = 251, z = -0.7, p = 0.49; U = 316, z= -0.26, p = 0.79, respectively). No correlation was detected between Glx levels in any region and symptomatology or FSIQ. Our findings indicate that glutamatergic function is not altered in people at genetic high risk of psychosis due to the 22q11.2 deletion, which could suggest that this is not the mechanism underlying psychosis risk in 22q11.2 deletion carriers.

12.
Mol Psychiatry ; 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358905

RESUMO

22q11.2 deletion syndrome (22q11DS)-a neurodevelopmental condition caused by a hemizygous deletion on chromosome 22-is associated with an elevated risk of psychosis and other developmental brain disorders. Prior single-site diffusion magnetic resonance imaging (dMRI) studies have reported altered white matter (WM) microstructure in 22q11DS, but small samples and variable methods have led to contradictory results. Here we present the largest study ever conducted of dMRI-derived measures of WM microstructure in 22q11DS (334 22q11.2 deletion carriers and 260 healthy age- and sex-matched controls; age range 6-52 years). Using harmonization protocols developed by the ENIGMA-DTI working group, we identified widespread reductions in mean, axial and radial diffusivities in 22q11DS, most pronounced in regions with major cortico-cortical and cortico-thalamic fibers: the corona radiata, corpus callosum, superior longitudinal fasciculus, posterior thalamic radiations, and sagittal stratum (Cohen's d's ranging from -0.9 to -1.3). Only the posterior limb of the internal capsule (IC), comprised primarily of corticofugal fibers, showed higher axial diffusivity in 22q11DS. 22q11DS patients showed higher mean fractional anisotropy (FA) in callosal and projection fibers (IC and corona radiata) relative to controls, but lower FA than controls in regions with predominantly association fibers. Psychotic illness in 22q11DS was associated with more substantial diffusivity reductions in multiple regions. Overall, these findings indicate large effects of the 22q11.2 deletion on WM microstructure, especially in major cortico-cortical connections. Taken together with findings from animal models, this pattern of abnormalities may reflect disrupted neurogenesis of projection neurons in outer cortical layers.

13.
J Psychopharmacol ; 33(9): 1141-1148, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31237191

RESUMO

BACKGROUND: The potential benefits of cannabis and its major non-intoxicating component cannabidiol (CBD) are attracting attention, including as a potential treatment in neurodevelopmental disorders such as autism spectrum disorder (ASD). However, the neural action of CBD, and its relevance to ASD, remains unclear. We and others have previously shown that response to drug challenge can be measured using functional magnetic resonance imaging (fMRI), but that pharmacological responsivity is atypical in ASD. AIMS: We hypothesized that there would be a (different) fMRI response to CBD in ASD. METHODS: To test this, task-free fMRI was acquired in 34 healthy men (half with ASD) following oral administration of 600 mg CBD or matched placebo (random order; double-blind administration). The 'fractional amplitude of low-frequency fluctuations' (fALFF) was measured across the whole brain, and, where CBD significantly altered fALFF, we tested if functional connectivity (FC) of those regions was also affected by CBD. RESULTS: CBD significantly increased fALFF in the cerebellar vermis and the right fusiform gyrus. However, post-hoc within-group analyses revealed that this effect was primarily driven by the ASD group, with no significant change in controls. Within the ASD group only, CBD also significantly altered vermal FC with several of its subcortical (striatal) and cortical targets, but did not affect fusiform FC with other regions in either group. CONCLUSION: Our results suggest that, especially in ASD, CBD alters regional fALFF and FC in/between regions consistently implicated in ASD. Future studies should examine if this affects the complex behaviours these regions modulate.

14.
Autism Res ; 12(4): 614-627, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30801993

RESUMO

Autism spectrum disorder (ASD) is a common neurodevelopmental condition, and infant siblings of children with ASD are at a higher risk of developing autistic traits or an ASD diagnosis, when compared to those with typically developing siblings. Reports of differences in brain anatomy and function in high-risk infants which predict later autistic behaviors are emerging, but although cerebellar and subcortical brain regions have been frequently implicated in ASD, no high-risk study has examined these regions. Therefore, in this study, we compared regional MRI volumes across the whole brain in 4-6-month-old infants with (high-risk, n = 24) and without (low-risk, n = 26) a sibling with ASD. Within the high-risk group, we also examined whether any regional differences observed were associated with autistic behaviors at 36 months. We found that high-risk infants had significantly larger cerebellar and subcortical volumes at 4-6-months of age, relative to low-risk infants; and that larger volumes in high-risk infants were linked to more repetitive behaviors at 36 months. Our preliminary observations require replication in longitudinal studies of larger samples. If correct, they suggest that the early subcortex and cerebellum volumes may be predictive biomarkers for childhood repetitive behaviors. Autism Res 2019, 12: 614-627. © 2019 The Authors. Autism Research published by International Society for Autism Research published byWiley Periodicals, Inc. LAY SUMMARY: Individuals with a family history of autism spectrum disorder (ASD) are at risk of ASD and related developmental difficulties. This study revealed that 4-6-month-old infants at high-risk of ASD have larger cerebellum and subcortical volumes than low-risk infants, and that larger volumes in high-risk infants are associated with more repetitive behaviors in childhood.

15.
Neuropsychopharmacology ; 44(8): 1398-1405, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30758329

RESUMO

There is increasing interest in the use of cannabis and its major non-intoxicating component cannabidiol (CBD) as a treatment for mental health and neurodevelopmental disorders, such as autism spectrum disorder (ASD). However, before launching large-scale clinical trials, a better understanding of the effects of CBD on brain would be desirable. Preclinical evidence suggests that one aspect of the polypharmacy of CBD is that it modulates brain excitatory glutamate and inhibitory γ-aminobutyric acid (GABA) levels, including in brain regions linked to ASD, such as the basal ganglia (BG) and the dorsomedial prefrontal cortex (DMPFC). However, differences in glutamate and GABA pathways in ASD mean that the response to CBD in people with and without ASD may be not be the same. To test whether CBD 'shifts' glutamate and GABA levels; and to examine potential differences in this response in ASD, we used magnetic resonance spectroscopy (MRS) to measure glutamate (Glx = glutamate + glutamine) and GABA+ (GABA + macromolecules) levels in 34 healthy men (17 neurotypicals, 17 ASD). Data acquisition commenced 2 h (peak plasma levels) after a single oral dose of 600 mg CBD or placebo. Test sessions were at least 13 days apart. Across groups, CBD increased subcortical, but decreased cortical, Glx. Across regions, CBD increased GABA+ in controls, but decreased GABA+ in ASD; the group difference in change in GABA + in the DMPFC was significant. Thus, CBD modulates glutamate-GABA systems, but prefrontal-GABA systems respond differently in ASD. Our results do not speak to the efficacy of CBD. Future studies should examine the effects of chronic administration on brain and behaviour, and whether acute brain changes predict longer-term response.

16.
Mol Autism ; 9: 49, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30302187

RESUMO

Background: Histological evidence suggests that autism spectrum disorder (ASD) is accompanied by a reduced integrity of the grey-white matter boundary. This has also recently been confirmed by a structural neuroimaging study in vivo reporting significantly reduced grey-white matter tissue contrast (GWC) in adult individuals (18-42 years of age) with ASD relative to typically developing (TD) controls. However, it remains unknown whether the neuroanatomical differences in ASD at the grey-white matter boundary are stable across development or are age-dependent. Methods: Here, we examined differences in the neurodevelopmental trajectories of GWC in a cross-sectional sample of 77 male ASD individuals and 76 typically developing (TD) controls across childhood and early adulthood (from 7 to 25 years). Results: Using nested model comparisons, we first established that the developmental trajectory of GWC is complex in many regions across the cortex and includes linear and non-linear effects of age. Second, while ASD individuals have significantly reduced GWC overall, these differences are age-dependent and are most prominent during childhood (< 15 years). Conclusions: Taken together, our findings suggest that differences in GWC in ASD are unlikely to reflect atypical grey matter cytoarchitecture alone, but may also represent other aspects of the cortical architecture such as age-dependent variability in myelin integrity.


Assuntos
Envelhecimento/patologia , Transtorno do Espectro Autista/patologia , Substância Cinzenta/patologia , Substância Branca/patologia , Adolescente , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Criança , Substância Cinzenta/diagnóstico por imagem , Humanos , Imagem por Ressonância Magnética , Masculino , Substância Branca/diagnóstico por imagem , Adulto Jovem
17.
Mol Psychiatry ; 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29895892

RESUMO

The 22q11.2 deletion (22q11DS) is a common chromosomal microdeletion and a potent risk factor for psychotic illness. Prior studies reported widespread cortical changes in 22q11DS, but were generally underpowered to characterize neuroanatomic abnormalities associated with psychosis in 22q11DS, and/or neuroanatomic effects of variability in deletion size. To address these issues, we developed the ENIGMA (Enhancing Neuro Imaging Genetics Through Meta-Analysis) 22q11.2 Working Group, representing the largest analysis of brain structural alterations in 22q11DS to date. The imaging data were collected from 10 centers worldwide, including 474 subjects with 22q11DS (age = 18.2 ± 8.6; 46.9% female) and 315 typically developing, matched controls (age = 18.0 ± 9.2; 45.9% female). Compared to controls, 22q11DS individuals showed thicker cortical gray matter overall (left/right hemispheres: Cohen's d = 0.61/0.65), but focal thickness reduction in temporal and cingulate cortex. Cortical surface area (SA), however, showed pervasive reductions in 22q11DS (left/right hemispheres: d = -1.01/-1.02). 22q11DS cases vs. controls were classified with 93.8% accuracy based on these neuroanatomic patterns. Comparison of 22q11DS-psychosis to idiopathic schizophrenia (ENIGMA-Schizophrenia Working Group) revealed significant convergence of affected brain regions, particularly in fronto-temporal cortex. Finally, cortical SA was significantly greater in 22q11DS cases with smaller 1.5 Mb deletions, relative to those with typical 3 Mb deletions. We found a robust neuroanatomic signature of 22q11DS, and the first evidence that deletion size impacts brain structure. Psychotic illness in this highly penetrant deletion was associated with similar neuroanatomic abnormalities to idiopathic schizophrenia. These consistent cross-site findings highlight the homogeneity of this single genetic etiology, and support the suitability of 22q11DS as a biological model of schizophrenia.

18.
Hum Brain Mapp ; 39(10): 4043-4054, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29885016

RESUMO

Increased cortical thickness (CT) has been reported in Down syndrome (DS) during childhood and adolescence, but it remains unclear, which components of the neural architecture underpin these increases and if CT remains altered in adults. Among other factors, differences in CT measures could be driven by reduced tissue contrast between grey and white matter (GWC), which has been reported in neurodegenerative disorders, such as Alzheimer's disease. Using structural magnetic resonance imaging, we therefore examined differences in CT and GWC in 26 adults with DS, and 23 controls, to (1) examine between-group differences in CT in adulthood, (2) establish whether DS is associated with significant reductions in GWC, and (3) determine the influence of GWC variability on between-group differences in CT. As hypothesized, we observed that DS was accompanied by wide-spread increases in CT, and significantly reduced GWC in several large clusters distributed across the cortex. Out of all vertices with a significant between-group difference in CT, 38.50% also displayed a significant reduction in GWC. This percentage of overlap was also statistically significant and extremely unlikely to be obtained by chance (p = .0002). Differences in GWC thus seem to explain some, although not all, of the differences in CT observed in DS. In addition, our study is the first to extend previous in vivo reports of altered CT in DS during childhood and adolescence to older adults, implying that the regional pattern of neuroanatomical differences associated with DS remains stable across the lifespan.


Assuntos
Córtex Cerebral/patologia , Síndrome de Down/patologia , Substância Cinzenta/patologia , Substância Branca/patologia , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Síndrome de Down/diagnóstico por imagem , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Imagem por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Substância Branca/diagnóstico por imagem , Adulto Jovem
19.
Am J Psychiatry ; 175(4): 359-369, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29145754

RESUMO

OBJECTIVE: Neuroimaging studies show structural differences in both cortical and subcortical brain regions in children and adults with autism spectrum disorder (ASD) compared with healthy subjects. Findings are inconsistent, however, and it is unclear how differences develop across the lifespan. The authors investigated brain morphometry differences between individuals with ASD and healthy subjects, cross-sectionally across the lifespan, in a large multinational sample from the Enhancing Neuroimaging Genetics Through Meta-Analysis (ENIGMA) ASD working group. METHOD: The sample comprised 1,571 patients with ASD and 1,651 healthy control subjects (age range, 2-64 years) from 49 participating sites. MRI scans were preprocessed at individual sites with a harmonized protocol based on a validated automated-segmentation software program. Mega-analyses were used to test for case-control differences in subcortical volumes, cortical thickness, and surface area. Development of brain morphometry over the lifespan was modeled using a fractional polynomial approach. RESULTS: The case-control mega-analysis demonstrated that ASD was associated with smaller subcortical volumes of the pallidum, putamen, amygdala, and nucleus accumbens (effect sizes [Cohen's d], 0.13 to -0.13), as well as increased cortical thickness in the frontal cortex and decreased thickness in the temporal cortex (effect sizes, -0.21 to 0.20). Analyses of age effects indicate that the development of cortical thickness is altered in ASD, with the largest differences occurring around adolescence. No age-by-ASD interactions were observed in the subcortical partitions. CONCLUSIONS: The ENIGMA ASD working group provides the largest study of brain morphometry differences in ASD to date, using a well-established, validated, publicly available analysis pipeline. ASD patients showed altered morphometry in the cognitive and affective parts of the striatum, frontal cortex, and temporal cortex. Complex developmental trajectories were observed for the different regions, with a developmental peak around adolescence. These findings suggest an interplay in the abnormal development of the striatal, frontal, and temporal regions in ASD across the lifespan.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador , Imagem por Ressonância Magnética , Adolescente , Adulto , Fatores Etários , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência , Adulto Jovem
20.
Hum Brain Mapp ; 38(11): 5343-5355, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28744969

RESUMO

People with autism spectrum disorder (ASD) have poor decision-making and temporal foresight. This may adversely impact on their everyday life, mental health, and productivity. However, the neural substrates underlying poor choice behavior in people with ASD, or its' neurofunctional development from childhood to adulthood, are unknown. Despite evidence of atypical structural brain development in ASD, investigation of functional brain maturation in people with ASD is lacking. This cross-sectional developmental fMRI study investigated the neural substrates underlying performance on a temporal discounting (TD) task in 38 healthy (11-35 years old) male adolescents and adults with ASD and 40 age, sex, and IQ-matched typically developing healthy controls. Most importantly, we assessed group differences in the neurofunctional maturation of TD across childhood and adulthood. Males with ASD had significantly poorer task performance and significantly lower brain activation in typical regions that mediate TD for delayed choices, in predominantly right hemispheric regions of ventrolateral/dorsolateral prefrontal cortices, ventromedial prefrontal cortex, striatolimbic regions, and cerebellum. Importantly, differential activation in ventromedial frontal cortex and cerebellum was associated with abnormal functional brain maturation; controls, in contrast to people with ASD, showed progressively increasing activation with increasing age in these regions; which furthermore was associated with performance measures and clinical ASD measures (stereotyped/restricted interests). Findings provide first cross-sectional evidence that reduced activation of TD mediating brain regions in people with ASD during TD is associated with abnormal functional brain development in these regions between childhood and adulthood, and this is related to poor task performance and clinical measures of ASD. Hum Brain Mapp 38:5343-5355, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Cerebelo/fisiopatologia , Desvalorização pelo Atraso/fisiologia , Córtex Pré-Frontal/fisiopatologia , Adolescente , Adulto , Área Sob a Curva , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/psicologia , Mapeamento Encefálico , Cerebelo/diagnóstico por imagem , Cerebelo/crescimento & desenvolvimento , Criança , Estudos Transversais , Humanos , Imagem por Ressonância Magnética , Testes Neuropsicológicos , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/crescimento & desenvolvimento , Tempo de Reação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA