Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Sci Rep ; 8(1): 13908, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224742


Here we show that the novel object recognition test can discriminate between high (HRN, neophobic) and low (LRN, neophilic) novelty responders in zebrafish populations. Especially when we observe the latency to the first entry in the novel object zone, zebrafish did not maintain these behavioral phenotypes in sequential tests and only the HRN group returned to their initial responsive behavior when exposed to fluoxetine. Our results have important implications for behavioral data analysis since such behavioral differences can potentially increase individual response variability and interfere with the outcomes obtained from various behavioral tasks. Our data reinforce the validity of personality determination in zebrafish since we show clear differences in behavior in response to fluoxetine.

Comportamento Animal/efeitos dos fármacos , Fluoxetina/farmacologia , Peixe-Zebra/fisiologia , Animais , Masculino
PeerJ ; 6: e5343, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30090692


Here we show that the feeding regimen modulates zebrafish (Danio rerio) behavior. With regard to the time elapsed between feeding and behavioral evaluation, fish fed 3 h before behavioral evaluation in the novel tank test (NTT) showed decreased activity and a trend toward an anxiolytic reaction (increased use of the upper section of the aquarium) in comparison to fish fed 0.5, 6, 12, 24 or 48 h before testing, although differences were not statistically significant for all comparisons. Activity and use of the upper section of the aquarium did not differ significantly among the other treatments. Regarding feeding frequency, fish fed once a day showed higher anxiety-like behavior (decreased use of the upper section of the aquarium) in comparison to fish fed twice a day, but feeding four or six times per day or only every second day did not result in differences from feeding twice a day. Feeding frequency had no effect on activity level. Metabolically, fish fed once a day presented decreased levels of glucose and glycogen and increased lactate when compared to the regular feeding (fish fed twice a day), suggesting that feeding regimen may modulate carbohydrate metabolism. Mechanistically, we suggest that the metabolic changes caused by the feeding regimen may induce behavioral changes. Our results suggest that the high variability of the results among different laboratories might be related to different feeding protocols. Therefore, if issues pertaining to the feeding regimen are not considered during experiments with zebrafish, erroneous interpretations of datasets may occur.

Gen Comp Endocrinol ; 252: 236-238, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716505


In this article, we show that the tyrosine hydroxylase inhibitor α-Methyl-l-tyrosine (AMPT) decreased the responsiveness of the zebrafish stress axis to an acute stressful challenge. These effects were specific for responses to stimulation, since unstimulated (basal) cortisol levels were not altered by AMPT. Moreover, AMPT decreased the stress response 15min after stimulation, but not after that time period. To our knowledge, this is the first report about the effects of AMPT on the neuroendocrine axis of adult zebrafish in acute stress responses. Overall, these results suggest a mechanism of catecholamine-glucocorticoid interplay in neuroendocrine responses of fish, pointing an interesting avenue for physiological research, as well as an important endpoint that can be disrupted by environmental contamination. Further experiments will unravel the mechanisms by which AMPT blocked the cortisol response.

Inibidores Enzimáticos/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores , Peixe-Zebra/fisiologia , alfa-Metiltirosina/farmacologia , Animais , Feminino , Hidrocortisona/sangue , Masculino , Tirosina 3-Mono-Oxigenase/metabolismo , Peixe-Zebra/sangue