Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Basic Res Cardiol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536505

RESUMO

Right ventricular (RV) failure remains the strongest determinant of survival in pulmonary hypertension (PH). We aimed to identify relevant mechanisms, beyond pressure overload, associated with maladaptive RV hypertrophy in PH. To separate the effect of pressure overload from other potential mechanisms, we developed in pigs two experimental models of PH (M1, by pulmonary vein banding and M2, by aorto-pulmonary shunting) and compared them with a model of pure pressure overload (M3, pulmonary artery banding) and a sham-operated group. Animals were assessed at 1 and 8 months by right heart catheterization, cardiac magnetic resonance and blood sampling, and myocardial tissue was analyzed. Plasma unbiased proteomic and metabolomic data were compared among groups and integrated by an interaction network analysis. A total of 33 pigs completed follow-up (M1, n = 8; M2, n = 6; M3, n = 10; and M0, n = 9). M1 and M2 animals developed PH and reduced RV systolic function, whereas animals in M3 showed increased RV systolic pressure but maintained normal function. Significant plasma arginine and histidine deficiency and complement system activation were observed in both PH models (M1&M2), with additional alterations to taurine and purine pathways in M2. Changes in lipid metabolism were very remarkable, particularly the elevation of free fatty acids in M2. In the integrative analysis, arginine-histidine-purines deficiency, complement activation, and fatty acid accumulation were significantly associated with maladaptive RV hypertrophy. Our study integrating imaging and omics in large-animal experimental models demonstrates that, beyond pressure overload, metabolic alterations play a relevant role in RV dysfunction in PH.

2.
Environ Monit Assess ; 196(4): 368, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489071

RESUMO

This study analyzed the meteorological and hydrological droughts in a typical basin of the Brazilian semiarid region from 1994 to 2016. In recent decades, this region has faced prolonged and severe droughts, leading to marked reductions in agricultural productivity and significant challenges to food security and water availability. The datasets employed included a digital elevation model, land use and cover data, soil characteristics, climatic data (temperature, wind speed, solar radiation, humidity, and precipitation), runoff data, images from the MODIS/TERRA and AQUA sensors (MOD09A1 and MODY09A1 products), and soil water content. A variety of methods and products were used to study these droughts: the meteorological drought was analyzed using the Standardized Precipitation Index (SPI) derived from observed precipitation data, while the hydrological drought was assessed using the Standardized Soil Index (SSI), the Nonparametric Multivariate Standardized Drought Index (NMSDI), and the Parametric Multivariate Standardized Drought Index (PMSDI). These indices were determined using water balance components, including streamflow and soil water content, from the Soil Water Assessment Tool (SWAT) model, and evapotranspiration data from the Surface Energy Balance Algorithm for Land (SEBAL). The findings indicate that the methodology effectively identified variations in water dynamics and drought periods in a headwater basin within Brazil's semiarid region, suggesting potential applicability in other semiarid areas. This study provides essential insights for water resource management and resilience building in the face of adverse climatic events, offering a valuable guide for decision-making processes.


Assuntos
Secas , Monitoramento Ambiental , Brasil , Água , Solo
3.
Front Nutr ; 10: 1079407, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845063

RESUMO

Introduction: The lower rates of cardiovascular disease in Southern Europe could be partially explained by the low prevalence of lipid-rich atheroma plaques. Consumption of certain foods affects the progression and severity of atherosclerosis. We investigated whether the isocaloric inclusion of walnuts within an atherogenic diet prevents phenotypes predicting unstable atheroma plaque in a mouse model of accelerated atherosclerosis. Methods: Apolipoprotein E-deficient male mice (10-week-old) were randomized to receive a control diet (9.6% of energy as fat, n = 14), a palm oil-based high-fat diet (43% of energy as fat, n = 15), or an isocaloric diet in which part of palm oil was replaced by walnuts in a dose equivalent to 30 g/day in humans (n = 14). All diets contained 0.2% cholesterol. Results: After 15 weeks of intervention, there were no differences in size and extension in aortic atherosclerosis among groups. Compared to control diet, palm oil-diet induced features predicting unstable atheroma plaque (higher lipid content, necrosis, and calcification), and more advanced lesions (Stary score). Walnut inclusion attenuated these features. Palm oil-based diet also boosted inflammatory aortic storm (increased expression of chemokines, cytokines, inflammasome components, and M1 macrophage phenotype markers) and promoted defective efferocytosis. Such response was not observed in the walnut group. The walnut group's differential activation of nuclear factor kappa B (NF-κB; downregulated) and Nrf2 (upregulated) in the atherosclerotic lesion could explain these findings. Conclusion: The isocaloric inclusion of walnuts in an unhealthy high-fat diet promotes traits predicting stable advanced atheroma plaque in mid-life mice. This contributes novel evidence for the benefits of walnuts, even in an unhealthy dietary environment.

4.
Am J Physiol Heart Circ Physiol ; 324(4): H417-H429, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36705993

RESUMO

α-Adrenergic receptors are crucial regulators of vascular hemodynamics and essential pharmacological targets for cardiovascular diseases. With aging, there is an increase in sympathetic activation, which could contribute to the progression of aging-associated cardiovascular dysfunction, including stroke. Nevertheless, there is little information directly associating adrenergic receptor dysfunction in the blood vessels of aged females. This study determined the role of a-adrenergic receptors in carotid dysfunction of senescent female mice (accelerated-senescence prone, SAMP8), compared with a nonsenescent (accelerated-senescence prone, SAMR1). Vasoconstriction to phenylephrine (Phe) was markedly increased in common carotid artery of SAMP8 [area under the curve (AUC), 527 ± 53] compared with SAMR1 (AUC, 334 ± 30, P = 0.006). There were no changes in vascular responses to the vasoconstrictor agent U46619 or the vasodilators acetylcholine (ACh) and sodium nitroprusside (NPS). Hyperactivity to Phe in female SAMP8 was reduced by cyclooxygenase-1 and cyclooxygenase-2 inhibition and associated with augmented ratio of TXA2/PGI2 release (SAMR1, 1.1 ± 0.1 vs. SAMP8, 2.1 ± 0.3, P = 0.007). However, no changes in cyclooxygenase expression were seen in SAMP8 carotids. Selective α1A-receptor antagonism markedly reduced maximal contraction, whereas α1D antagonism induced a minor shift in Phe contraction in SAMP8 carotids. Ligand binding analysis revealed a threefold increase of α-adrenergic receptor density in smooth muscle cells (VSMCs) of SAMP8 vs. SAMR1. Phe rapidly increased intracellular calcium (Cai2+) in VSMCs via the α1A-receptor, with a higher peak in VSMCs from SAMP8. In conclusion, senescence intensifies vasoconstriction mediated by α1A-adrenergic signaling in the carotid of female mice by mechanisms involving increased Cai2+ and release of cyclooxygenase-derived prostanoids.NEW & NOTEWORTHY The present study provides evidence that senescence induces hyperreactivity of α1-adrenoceptor-mediated contraction of the common carotid. Impairment of α1-adrenoceptor responses is linked to increased Ca2+ influx and release of COX-derived vasoconstrictor prostanoids, contributing to carotid dysfunction in the murine model of female senescence (SAMP8). Increased reactivity of the common carotid artery during senescence may lead to morphological and functional changes in arteries of the cerebral microcirculation and contribute to cognitive decline in females. Because the elderly population is growing, elucidating the mechanisms of aging- and sex-associated vascular dysfunction is critical to better direct pharmacological and lifestyle interventions to prevent cardiovascular risk in both sexes.


Assuntos
Prostaglandinas , Vasoconstritores , Idoso , Humanos , Masculino , Camundongos , Feminino , Animais , Vasoconstritores/farmacologia , Ciclo-Oxigenase 1 , Prostaglandinas/metabolismo , Envelhecimento/metabolismo , Fenilefrina/farmacologia , Ciclo-Oxigenase 2
5.
ESC Heart Fail ; 10(1): 453-464, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36303443

RESUMO

AIMS: Inhibitors of SGLT2 (SGLT2i) have shown a positive impact in patients with chronic heart failure and reduced ejection fraction (HFrEF). Nonetheless, the direct effects of SGLT2i on cardiac cells and how their association with main drugs used for HFrEF affect the behaviour and signalling pathways of myocardial fibroblasts are still unknown. We aimed to determine the effects of dapagliflozin alone and in combination with sacubitril/valsartan (LCZ696) or spironolactone on the function of myocardial fibroblasts of patients with heart failure and reduced ejection fraction (HFrEF). METHODS AND RESULTS: Myocardial fibroblasts isolated from HFrEF patients (n = 5) were treated with dapagliflozin alone (1 nM-1 µM) or combined with LCZ696 (100 nM) or spironolactone (100 nM). The migratory rate was determined by wound-healing scratch assay. Expression of heart failure (HF) markers and signalling pathways activation were analysed with multiplexed protein array. Commercially available cardiac fibroblasts from healthy donors were used as Control (n = 4). Fibroblasts from HFrEF show higher migratory rate compared with control (P = 0.0036), and increased expression of HF markers [fold-change (Log2): COL1A1-1.3; IL-1b-1.9; IL-6-1.7; FN1-2.9 (P < 0.05)]. Dapagliflozin slowed the migration rate of HFrEF fibroblasts in a dose-dependent manner and markedly decreased the expression of IL-1ß, IL-6, MMP3, MMP9, GAL3, and FN1. SGLT2i had no effect on control fibroblasts. These effects were associated with decreased phosphorylation of AKT/GSK3 and PYK2 kinases and the signal transducer and activator of transcription (STAT). A combination of dapagliflozin + LCZ696 further decreased fibroblast migration, although it did not have a significant effect on the regulation of signalling pathways and the expression of biomarkers induced by SGLT2 inhibition alone. In contrast, the combination of dapagliflozin + spironolactone did not change the migration rate of fibroblast but significantly altered SGLT2i responses on MMP9, GAL3, and IL-1b expression, in association with increased phosphorylation of the kinases AKT/GSK3 and ERK1/2. CONCLUSIONS: SGLT2i, LCZ696, and spironolactone modulate the function of isolated myocardial fibroblasts from HFrEF patients through the activation of different signalling pathways. The combination of SGLT2i + LCZ696 shows an additive effect on migration, while spironolactone modifies the signalling pathways activated by SGLT2i and its beneficial effects of biomarkers of heart failure.


Assuntos
Insuficiência Cardíaca , Humanos , Espironolactona/farmacologia , Metaloproteinase 9 da Matriz/farmacologia , Metaloproteinase 9 da Matriz/uso terapêutico , Transportador 2 de Glucose-Sódio/farmacologia , Transportador 2 de Glucose-Sódio/uso terapêutico , Volume Sistólico , Quinase 3 da Glicogênio Sintase/farmacologia , Quinase 3 da Glicogênio Sintase/uso terapêutico , Interleucina-6 , Proteínas Proto-Oncogênicas c-akt/farmacologia , Proteínas Proto-Oncogênicas c-akt/uso terapêutico , Valsartana/uso terapêutico , Fibroblastos , Biomarcadores
6.
Transl Stroke Res ; 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536168

RESUMO

Atherosclerosis is responsible for 20% of ischemic strokes, and severe carotid stenosis is associated with a higher incidence of first-ever and recurrent strokes. The release of pro-inflammatory mediators into the blood in severe atherosclerosis may aggravate endothelial dysfunction after stroke contributing to impair disease outcomes. We hypothesize that environments of severe carotid atherosclerotic disease worsen endothelial dysfunction in stroke linked to enhanced risk of further cerebrovascular events. We mounted nonischemic common carotid arteries from 2- to 4-month-old male Oncins France 1 mice in tissue baths for isometric contraction force measurements and exposed them to serum from men with a recent ischemic stroke and different degrees of carotid stenosis: low- or moderate-grade stenosis (LMGS; < 70%) and high-grade stenosis (HGS; ≥ 70%). The results show that serum from stroke patients induced an impairment of acetylcholine relaxations in mice carotid arteries indicative of endothelium dysfunction. This effect was more pronounced after incubation with serum from patients with a recurrent stroke or vascular death within 1 year of follow-up. When patients were stratified according to the degree of stenosis, serum from HGS patients induced more pronounced carotid artery endothelial dysfunction, an effect that was associated with enhanced circulating levels of IL-1ß. Mechanistically, endothelial dysfunction was prevented by both nonselective and selective COX blockade. Altogether, the present findings add knowledge on the understanding of the mechanisms involved in the increased risk of stroke in atherosclerosis and suggest that targeting COX in the carotid artery wall may represent a potential novel therapeutic strategy for secondary stroke prevention.

7.
JACC Basic Transl Sci ; 7(7): 681-693, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35958697

RESUMO

Moderate exercise has well-founded benefits in cardiovascular health. However, increasing, yet controversial, evidence suggests that extremely trained athletes may not be protected from cardiovascular events as much as moderately trained individuals. In our rodent model, intensive but not moderate training promoted aorta and carotid stiffening and elastic lamina ruptures, tunica media thickening of intramyocardial arteries, and an imbalance between vasoconstrictor and relaxation agents. An up-regulation of angiotensin-converter enzyme, miR-212, miR-132, and miR-146b might account for this deleterious remodeling. Most changes remained after a 4-week detraining. In conclusion, our results suggest that intensive training blunts the benefits of moderate exercise.

8.
Cells ; 11(11)2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35681518

RESUMO

MicroRNAs (miRNA) are major regulators of intercellular communication and key players in the pathophysiology of cardiovascular disease. This study aimed to determine the miRNA fingerprint in a cohort of 53 patients with acute myocardial infarction (AMI) with non-ST-segment elevation (NSTEMI) relative to miRNA expression in healthy controls (n = 51). miRNA expression was initially profiled by miRNA array in the serum of patients undergoing cardiac catheterization during NSTEMI (n = 8) and 1 year past the event (follow-up, n = 8) and validated in the entire cohort. In total, 58 miRNAs were differentially expressed during AMI (p < 0.05), while 36 were modified at follow-up (Fisher's exact test: p = 0.0138). Enrichment analyses revealed differential regulation of biological processes by miRNA at each specific time point (AMI vs. follow-up). During AMI, the miRNA profile was associated mainly with processes involved in vascular development. However, 1 year after AMI, changes in miRNA expression were partially related to the regulation of cardiac tissue morphogenesis. Linear correlation analysis of miRNA with serum levels of cytokines and chemokines revealed that let-7g-5p, let-7e-5p, and miR-26a-5p expression was inversely associated with serum levels of pro-inflammatory cytokines TNF-α, and the chemokines MCP-3 and MDC. Transient transfection of human endothelial cells (HUVEC) with let-7e-5p inhibitor or mimic demonstrated a key role for this miRNA in endothelial function regulation in terms of cell adhesion and angiogenesis capacity. HUVEC transfected with let-7e-5p mimic showed a 20% increase in adhesion capacity, whereas transfection with let-7e-5p inhibitor increased the number of tube-like structures. This study pinpoints circulating miRNA expression fingerprint in NSTEMI patients, specific to the acute event and changes at 1-year follow-up. Additionally, given its involvement in modulating endothelial cell function and vascularization, altered let-7e-5p expression may constitute a therapeutic biomarker and target for ischemic heart disease.


Assuntos
MicroRNA Circulante , MicroRNAs , Infarto do Miocárdio , Infarto do Miocárdio sem Supradesnível do Segmento ST , MicroRNA Circulante/genética , Citocinas , Células Endoteliais/metabolismo , Seguimentos , Humanos , MicroRNAs/metabolismo , Infarto do Miocárdio/genética
9.
Life (Basel) ; 12(1)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35054479

RESUMO

INTRODUCTION: Preeclampsia is a multi-system disorder unique to pregnancy responsible for a great part of maternal and perinatal morbidity and mortality. The precise pathogenesis of this complex disorder is still unrevealed. METHODS: We examined the pathophysiological pathways involved in early-onset preeclampsia, a specific subgroup representing its most severe presentation, using LC-MS/MS metabolomic analysis based on multi-level extraction of lipids and small metabolites from maternal blood samples, collected at the time of diagnosis from 14 preeclamptic and six matched healthy pregnancies. Statistical analysis comprised multivariate and univariate approaches with the application of over representation analysis to identify differential pathways. RESULTS: A clear difference between preeclamptic and control pregnancies was observed in principal component analysis. Supervised multivariate analysis using orthogonal partial least square discriminant analysis provided a robust model with goodness of fit (R2X = 0.91, p = 0.002) and predictive ability (Q2Y = 0.72, p < 0.001). Finally, univariate analysis followed by 5% false discovery rate correction indicated 82 metabolites significantly altered, corresponding to six overrepresented pathways: (1) aminoacyl-tRNA biosynthesis; (2) arginine biosynthesis; (3) alanine, aspartate and glutamate metabolism; (4) D-glutamine and D-glutamate metabolism; (5) arginine and proline metabolism; and (6) histidine metabolism. CONCLUSION: Metabolomic analysis focusing specifically on the early-onset severe form of preeclampsia reveals the interplay between pathophysiological pathways involved in this form. Future studies are required to explore new therapeutic approaches targeting these altered metabolic pathways in early-onset preeclampsia.

10.
J Cereb Blood Flow Metab ; 42(1): 162-174, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34474613

RESUMO

Growing evidence indicates that perivascular tissue is critical to modulate vessel function. We hypothesized that the arachnoid membrane surrounding middle cerebral artery (MCA) regulates its function via sphingosine-1-phosphate (S1P)-induced vasoconstriction. The MCA from 3- to 9-month-old male and female wild-type (Oncine France 1 and C57BL/6) mice and sphingosine kinase 2 knockout (SphK2-/-) mice in the C57BL/6 background was mounted in pressure myographs with and without arachnoid membrane. Raman microspectroscopy and imaging were used for in situ detection of S1P. The presence of arachnoid tissue was associated with reduced external and lumen MCA diameters, and with an increase in basal tone regardless of sex and strain background. Strong S1P-positive signals were detected in the arachnoid surrounding the MCA wall in both mice models, as well as in a human post-mortem specimen. Selective S1P receptor 3 antagonist TY 52156 markedly reduced both MCA vasoconstriction induced by exogenous S1P and arachnoid-dependent basal tone increase. Compared to 3-month-old mice, the arachnoid-mediated contractile influence persisted in 9-month-old mice despite a decline in arachnoid S1P deposits. Genetic deletion of SphK2 decreased arachnoid S1P content and vasoconstriction. This is the first experimental evidence that arachnoid membrane regulates the MCA tone mediated by S1P.


Assuntos
Aracnoide-Máter/metabolismo , Lisofosfolipídeos/metabolismo , Artéria Cerebral Média/metabolismo , Transdução de Sinais , Receptores de Esfingosina-1-Fosfato/metabolismo , Esfingosina/análogos & derivados , Vasoconstrição , Animais , Feminino , Hidrazonas/farmacologia , Lisofosfolipídeos/genética , Masculino , Camundongos , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/genética , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Receptores de Esfingosina-1-Fosfato/genética
11.
Life (Basel) ; 11(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34947854

RESUMO

Endothelial cell dysfunction is the principal cause of several cardiovascular diseases that are increasing in prevalence, healthcare costs, and mortality. Developing a standardized, representative in vitro model of endothelial cell dysfunction is fundamental to a greater understanding of the pathophysiology, and to aiding the development of novel pharmacological therapies. We subjected human umbilical vein endothelial cells (HUVECs) to different periods of nutrient deprivation or increasing doses of H2O2 to represent starvation or elevated oxidative stress, respectively, to investigate changes in cellular function. Both in vitro cellular models of endothelial cell dysfunction-associated senescence developed in this study, starvation and oxidative stress, were validated by markers of cellular senescence (increase in ß-galactosidase activity, and changes in senescence gene markers SIRT1 and P21) and endothelial dysfunction as denoted by reductions in angiogenic and migratory capabilities. HUVECs showed a significant H2O2 concentration-dependent reduction in cell viability (p < 0.0001), and a significant increase in oxidative stress (p < 0.0001). Furthermore, HUVECs subjected to 96 h of starvation, or exposed to concentrations of H2O2 of 400 to 1000 µM resulted in impaired angiogenic and migratory potentials. These models will enable improved physiological studies of endothelial cell dysfunction, and the rapid testing of cellular efficacy and toxicity of future novel therapeutic compounds.

12.
J Clin Med ; 10(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068127

RESUMO

The exact mechanisms leading to myocardial injury in the coronavirus disease 2019 (COVID-19) are still unknown. In this retrospective observational study, we include all consecutive COVID-19 patients admitted to our center. They were divided into two groups according to the presence of myocardial injury. Clinical variables, Charlson Comorbidity Index (CCI), C-reactive protein (CRP), CAC (COVID-19-associated coagulopathy), defined according to the ISTH score, treatment and in-hospital events were collected. Between March and April 2020, 331 COVID-19 patients were enrolled, 72 of them (21.8%) with myocardial injury. Patients with myocardial injury showed a higher CCI score (median (interquartile range), 5 (4-7) vs. 2 (1-4), p = 0.001), higher CRP values (18.3 (9.6-25.9) mg/dL vs. 12.0 (5.4-19.4) mg/dL, p ˂ 0.001) and CAC score (1 (0-2) vs. 0 (0-1), p = 0.001), and had lower use of any anticoagulant (57 patients (82.6%) vs. 229 patients (90.9%), p = 0.078), than those without. In the adjusted logistic regression, CRP, myocardial injury, CCI and CAC score were positive independent predictors of mortality, whereas anticoagulants resulted as a protective factor. Myocardial injury in COVID-19 patients is associated with inflammation and coagulopathy, resulting in a worse in-hospital prognosis. Treatment with anticoagulant agents may help to improve in-hospital outcomes.

13.
Sci Rep ; 11(1): 3048, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542402

RESUMO

Preeclampsia is a pregnancy-specific multisystem disorder and a leading cause of maternal and perinatal morbidity and mortality. The exact pathogenesis of this multifactorial disease remains poorly defined. We applied proteomics analysis on maternal blood samples collected from 14 singleton pregnancies with early-onset severe preeclampsia and 6 uncomplicated pregnancies to investigate the pathophysiological pathways involved in this specific subgroup of preeclampsia. Maternal blood was drawn at diagnosis for cases and at matched gestational age for controls. LC-MS/MS proteomics analysis was conducted, and data were analyzed by multivariate and univariate statistical approaches with the identification of differential pathways by exploring the global human protein-protein interaction network. The unsupervised multivariate analysis (the principal component analysis) showed a clear difference between preeclamptic and uncomplicated pregnancies. The supervised multivariate analysis using orthogonal partial least square discriminant analysis resulted in a model with goodness of fit (R2X = 0.99, p < 0.001) and a strong predictive ability (Q2Y = 0.8, p < 0.001). By univariate analysis, we found 17 proteins statistically different after 5% FDR correction (q-value < 0.05). Pathway enrichment analysis revealed 5 significantly enriched pathways whereby the activation of the complement and coagulation cascades was on top (p = 3.17e-07). To validate these results, we assessed the deposits of C5b-9 complement complex and on endothelial cells that were exposed to activated plasma from an independent set of 4 cases of early-onset severe preeclampsia and 4 uncomplicated pregnancies. C5b-9 and Von Willbrand factor deposits were significantly higher in early-onset severe preeclampsia. Future studies are warranted to investigate potential therapeutic targets for early-onset severe preeclampsia within the complement and coagulation pathway.


Assuntos
Coagulação Sanguínea/genética , Proteínas do Sistema Complemento/genética , Pré-Eclâmpsia/sangue , Proteômica , Adulto , Biomarcadores/sangue , Cromatografia Líquida , Proteínas do Sistema Complemento/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Idade Gestacional , Humanos , Pré-Eclâmpsia/patologia , Gravidez , Espectrometria de Massas em Tandem
14.
Transl Res ; 228: 64-75, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32835905

RESUMO

Right ventricle (RV) dysfunction is a main determinant of morbidity and mortality in postcapillary pulmonary hypertension (PH). However, currently there are not available therapies. Since reduced nitric oxide (NO) availability and cyclic guanylate monophosphate (cGMP) levels are central in this disease, therapies targeting the NO pathway might have a beneficial effect on RV performance. In this regard, sildenafil has shown contradictory results. Our objective was to evaluate the effect of sildenafil on RV performance in an experimental pig model of postcapillary PH induced by a fixed banding of the venous pulmonary confluent. Animals were evaluated by right heart catheterization and cardiac magnetic resonance before randomization and after 8 weeks on sildenafil (n = 8) or placebo (n = 8), and myocardial tissues were analyzed with histology and molecular biology. At the end of the study, animals receiving sildenafil showed better RV performance as compared with those on placebo (improvement in RV ejection fraction of 7.3% ± 5.8% versus -0.6% ± 5.0%, P= 0.021) associated with less apoptotic cells and gene expression related with reduced oxidative stress and increased anti-inflammatory activity in the myocardium. No differences were observed in pulmonary hemodynamics. In conclusion, in a translational large animal model of chronic postcapillary PH, sildenafil improved RV systolic function independently of afterload. Further research with pharmacological approaches able to manipulate the NO-cGMP axis are needed to confirm this potential cardioprotective effect.


Assuntos
Ventrículos do Coração/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Citrato de Sildenafila/uso terapêutico , Vasodilatadores/uso terapêutico , Animais , Modelos Animais de Doenças , Citrato de Sildenafila/farmacologia , Suínos , Vasodilatadores/farmacologia
15.
Free Radic Biol Med ; 162: 615-635, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248264

RESUMO

Reactive oxygen and nitrogen species are produced in a wide range of physiological reactions that, at low concentrations, play essential roles in living organisms. There is a delicate equilibrium between formation and degradation of these mediators in a healthy vascular system, which contributes to maintaining these species under non-pathological levels to preserve normal vascular functions. Antioxidants scavenge reactive oxygen and nitrogen species to prevent or reduce damage caused by excessive oxidation. However, an excessive reductive environment induced by exogenous antioxidants may disrupt redox balance and lead to vascular pathology. This review summarizes the main aspects of free radical biochemistry (formation, sources and elimination) and the crucial actions of some of the most biologically relevant and well-characterized reactive oxygen and nitrogen species (hydrogen peroxide, superoxide anion and nitric oxide) in the physiological regulation of vascular function, structure and angiogenesis. Furthermore, current preclinical and clinical evidence is discussed on how excessive removal of these crucial responses by exogenous antioxidants (vitamins and related compounds, polyphenols) may perturb vascular homeostasis. The aim of this review is to provide information of the crucial physiological roles of oxidation in the endothelium, vascular smooth muscle cells and perivascular adipose tissue for developing safer and more effective vascular interventions with antioxidants.


Assuntos
Óxido Nítrico , Superóxidos , Antioxidantes/farmacologia , Homeostase , Peróxido de Hidrogênio , Oxirredução , Espécies Reativas de Oxigênio
16.
Sci Rep ; 10(1): 5373, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214121

RESUMO

Despite the promising value of miRNAs in the diagnostic and prognostic of cardiovascular disease (CVD), recent meta-analyses did not support their potential. Methodological variances in studies may interfere with miRNA profile and affect their results. This study determines if the blood starting material is a source of variance in miRNA profile by performing a paired comparison in plasma and serum of the expression of primary miRNAs associated with CVD. Circulating miRNA yield was similar in both plasma and serum, although a significant increase was observed in patients with Non-ST-elevation myocardial infarction (NSTEMI) compared to control volunteers. When normalized by the expression of miR-484, different patterns of miRNA expression between serum and plasma. Although NSTEMI modified the expression of miR-1 and miR-208 in both serum and plasma, plasma displayed a higher variance than serum (Levene's test p < 0.01). For miR-133a and miR-26a, differences were only detected in serum (p = 0.0240), and conversely, miR-499a showed differences only in plasma of NSTEMI (p = 0.001). Interestingly, miR-21 showed an opposite pattern of expression, being increased in serum (2-ΔΔCt: 5.7, p = 0.0221) and decreased in plasma (2-ΔΔCt: 0.5, p = 0.0107). Plasma and serum exhibit different patterns of circulating miRNA expression in NSTEMI and suggest that results from studies with different starting material could not be comparable.


Assuntos
MicroRNAs/sangue , Infarto do Miocárdio/genética , Plasma/química , Idoso , Biomarcadores/sangue , MicroRNA Circulante/genética , Feminino , Expressão Gênica/genética , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio sem Supradesnível do Segmento ST/genética , Prognóstico , Curva ROC , Transcriptoma/genética
17.
J Am Heart Assoc ; 9(3): e014035, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32009525

RESUMO

Background Hypothermia has been associated with therapeutic benefits including reduced mortality and better neurologic outcomes in survivors of cardiac arrest. However, undesirable side effects have been reported in patients undergoing coronary interventions. Using a large animal model of temperature management, we aimed to describe how temperature interferes with the coronary vasculature. Methods and Results Coronary hemodynamics and endothelial function were studied in 12 pigs at various core temperatures. Left circumflex coronary artery was challenged with intracoronary nitroglycerin, bradykinin, and adenosine at normothermia (38°C) and mild hypothermia (34°C), followed by either rewarming (38°C; n=6) or moderate hypothermia (MoHT; 32°C, n=6). Invasive coronary hemodynamics by Doppler wire revealed a slower coronary blood velocity at 32°C in the MoHT protocol (normothermia 20.2±11.2 cm/s versus mild hypothermia 18.7±4.3 cm/s versus MoHT 11.3±5.3 cm/s, P=0.007). MoHT time point was also associated with high values of hyperemic microvascular resistance (>3 mm Hg/cm per second) (normothermia 2.0±0.6 mm Hg/cm per second versus mild hypothermia 2.0±0.8 mm Hg/cm per second versus MoHT 3.4±1.6 mm Hg/cm per second, P=0.273). Assessment of coronary vasodilation by quantitative coronary analysis showed increased endothelium-dependent (bradykinin) vasodilation at 32°C when compared with normothermia (normothermia 6.96% change versus mild hypothermia 9.01% change versus MoHT 25.42% change, P=0.044). Results from coronary reactivity in vitro were in agreement with angiography data and established that endothelium-dependent relaxation in MoHT completely relies on NO production. Conclusions In this porcine model of temperature management, 34°C hypothermia and rewarming (38°C) did not affect coronary hemodynamics or endothelial function. However, 32°C hypothermia altered coronary vasculature physiology by slowing coronary blood flow, increasing microvascular resistance, and exacerbating endothelium-dependent vasodilatory response.


Assuntos
Regulação da Temperatura Corporal , Circulação Coronária , Vasos Coronários/fisiopatologia , Endotélio Vascular/fisiopatologia , Hipotermia Induzida , Microcirculação , Vasodilatação , Animais , Velocidade do Fluxo Sanguíneo , Vasos Coronários/diagnóstico por imagem , Feminino , Hipotermia Induzida/efeitos adversos , Modelos Animais , Sus scrofa , Fatores de Tempo
18.
Sci Rep ; 10(1): 889, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31965005

RESUMO

Williams-Beuren syndrome (WBS) is a rare disorder caused by a heterozygous deletion of 26-28 contiguous genes that affects the brain and cardiovascular system. Here, we investigated whether WBS affects aortic structure and function in the complete deletion (CD) mouse model harbouring the most common deletion found in WBS patients. Thoracic aortas from 3-4 months-old male CD mice and wild-type littermates were mounted in wire myographs or were processed for histomorphometrical analysis. Nitric oxide synthase (NOS) isoforms and oxidative stress levels were assessed. Ascending aortas from young adult CD mice showed moderate (50%) luminal stenosis, whereas endothelial function and oxidative stress were comparable to wild-type. CD mice showed greater contractions to KCl. However, α1-adrenergic contractions to phenylephrine, but not with a thromboxane analogue, were compromised. Decreased phenylephrine responses were not affected by selective inducible NOS blockade with 1400 W, but were prevented by the non-selective NOS inhibitor L-NAME and the selective neuronal NOS inhibitor SMTC. Consistently, CD mice showed increased neuronal NOS expression in aortas. Overall, aortic stenosis in CD mice coexists with excessive nNOS-derived NO signaling that compromises ascending aorta α1-adrenergic contractions. We suggest that increased neuronal NOS signaling may act as a physiological 'brake' against the detrimental effects of stenosis.


Assuntos
Aorta Torácica/fisiopatologia , Receptores Adrenérgicos alfa 1/metabolismo , Síndrome de Williams/fisiopatologia , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Estenose Aórtica Supravalvular/fisiopatologia , Modelos Animais de Doenças , Elastina/metabolismo , Endotélio Vascular/fisiologia , Etídio/análogos & derivados , Etídio/sangue , Masculino , Camundongos Mutantes , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Estresse Oxidativo , Fenilefrina/farmacologia , Receptores Adrenérgicos alfa 1/genética , Síndrome de Williams/genética , Síndrome de Williams/metabolismo
19.
Transl Stroke Res ; 11(6): 1332-1347, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-30219993

RESUMO

Hypertension is the most important modifiable risk factor for stroke and is associated with poorer post-stroke outcomes. The antioxidant uric acid is protective in experimental normotensive ischaemic stroke. However, it is unknown whether this treatment exerts long-term protection in hypertension. We aimed to evaluate the impact of transient intraluminal middle cerebral artery (MCA) occlusion (90 min)/reperfusion (1-15 days) on brain and vascular damage progression in adult male Wistar-Kyoto (WKY; n = 36) and spontaneously hypertensive (SHR; n = 37) rats treated (i.v./120 min post-occlusion) with uric acid (16 mg kg-1) or vehicle (Locke's buffer). Ischaemic brain damage was assessed longitudinally with magnetic resonance imaging and properties of MCA from both hemispheres were studied 15 days after stroke. Brain lesions in WKY rats were associated with a transitory increase in circulating IL-18 and cerebrovascular oxidative stress that did not culminate in long-term MCA alterations. In SHR rats, more severe brain damage and poorer neurofunctional outcomes were coupled to higher cortical cerebral blood flow at the onset of reperfusion, a transient increase in oxidative stress and long-lasting stroke-induced MCA hypertrophic remodelling. Thus, stroke promotes larger brain and vascular damage in hypertensive rats that persists for long-time. Uric acid administered during early reperfusion attenuated short- and long-term brain injuries in both normotensive and hypertensive rats, an effect that was associated with abolishment of the acute oxidative stress response and prevention of stroke-induced long-lasting MCA remodelling in hypertension. These results suggest that uric acid might be an effective strategy to improve stroke outcomes in hypertensive subjects.


Assuntos
Lesões Encefálicas/prevenção & controle , Revascularização Cerebral/métodos , Hipertensão/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Ácido Úrico/administração & dosagem , Remodelação Vascular/efeitos dos fármacos , Animais , Antioxidantes/administração & dosagem , Lesões Encefálicas/diagnóstico por imagem , Hipertensão/diagnóstico por imagem , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Resultado do Tratamento , Remodelação Vascular/fisiologia
20.
Cells ; 8(10)2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597326

RESUMO

Recent analysis of clinical trials on estrogen therapy proposes the existence of a therapeutic window of opportunity for the cardiovascular benefits of estrogens, which depend on women's age and the onset of therapy initiation. In this study, we aimed to determine how vascular senescence and the onset of estrogen treatment influence the common carotid artery (CCA) function in senescent and non-senescent females. Ovariectomized female senescence-accelerated (SAMP8) or non-senescent (SAMR1) mice were treated with vehicle (OVX) or 17ß-estradiol starting at the day of ovariectomy (early-onset, E2E) or 45 days after surgery (late-onset, E2L). In SAMR1, both treatments, E2E and E2L, reduced constriction to phenylephrine (Phe) in CCA [(AUC) OVX: 193.8 ± 15.5; E2E: 128.1 ± 11.6; E2L: 130.2 ± 15.8, p = 0.004] in association with positive regulation of NO/O2- ratio and increased prostacyclin production. In contrast, E2E treatment did not modify vasoconstrictor responses to Phe in OVX-SAMP8 and, yet, E2L increased Phe vasoconstriction [(AUC) OVX: 165.3 ± 10; E2E: 183.3 ± 11.1; E2L: 256.3 ± 30.4, p = 0.005]. Increased vasoconstriction in E2L-SAMP8 was associated with augmented thromboxane A2 and reduced NO production. Analysis of wild-type receptor alpha (ERα66) expression and its variants revealed an increased expression of ERα36 in E2L-SAMP8 in correlation with unfavorable effects of estrogen in those animals. In conclusion, estrogen exerts beneficial effects in non-senescent CCA, regardless of the initiation of the therapy. In senescent CCA, however, estrogen loses its beneficial action even when administered shortly after ovariectomy and may become detrimental when given late after ovariectomy. Aging and onset of estrogen treatment are two critical factors in the mechanism of action of this hormone in CCA.


Assuntos
Envelhecimento , Artérias Carótidas/fisiopatologia , Receptor alfa de Estrogênio/genética , Estrogênios/efeitos adversos , Prostaglandinas/metabolismo , Vasoconstrição , Animais , Artérias Carótidas/metabolismo , Estrogênios/uso terapêutico , Feminino , Regulação da Expressão Gênica , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...