Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 48(42): 15942-15954, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31589228

RESUMO

A small set of palladium Schiff-base complexes were synthesized and entrapped in the supercage of zeolite-Y. All these novel complexes in both states were systematically characterized with the help of different characterization tools like XRD, SEM-EDS, thermal analysis, XPS, IR, electronic spectroscopic and theoretical studies. These systems were thoroughly studied for their catalytic activities towards the Heck coupling reaction between bromobenzene and styrene. The aim was to meticulously compare the performance of the homogeneous catalysts, i.e., neat palladium Schiff-base complexes with that of their heterogeneous encapsulated analogs. The experimental as well as theoretical electronic structure studies suggested significant structural modification of the guest Pd(ii)-Schiff-base complexes after encapsulation in zeolite Y. These complexes manifested modified catalytic activities towards the Heck coupling reaction. The theoretical studies reinforced the correlation between the modified catalytic properties and structural alteration of these complexes on encapsulation. These heterogeneous catalysts essentially demonstrated the benefits of easy separation and reusability as compared to the homogeneous analogues.

2.
Dalton Trans ; 48(33): 12382-12385, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31373598

RESUMO

A new emissive Zn(ii)-based coordination polymer (Zn-CP) bearing paddle-wheel clusters has been developed and the same has been demonstrated to have potential for recognising a nitroaromatic-based explosive (TNP) and a pesticide (2,6-DCNA) in aqueous solution. The structural integrity of this newly developed 2D material was established through single-crystal analysis, whereas the stability of Zn-CP in aqueous medium after the recognition process was investigated by the powder-XRD technique. A combination of experimental and theoretical studies revealed that the change in fluorescence intensity of Zn-CP while interacting with TNP and 2,6-DCNA was possibly due to simultaneous operation of PET and FRET. Experimentally, it was also established that Zn-CP can be reused in up to three cycles for the detection of TNP and 2,6-DCNA.

3.
J Phys Chem Lett ; 10(8): 1805-1812, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30929427

RESUMO

All inorganic mixed-halide perovskite, CsPb(Br xI1- x)3 (0 ≤ x ≤ 1), nanocrystals possess tunable photoluminescence with high quantum yield in the visible window. However, the photoluminescence degrades rapidly with postsynthetic aging due to the spontaneous ion separation and phase instability. Here we show that the postsynthetic aging of CsPb(Br xI1- x)3 nanocubes spontaneously forms highly uniform single-crystalline nanowires with a diameter of 9 ± 0.5 nm and length of up to several micrometers. The nanowires show bright photoluminescence with an absolute photoluminescence quantum yield of 41%. Rietveld refinement identifies the stable orthorhombic phase of the nanowires, implying a phase transition from the cubic crystallographic phase of the nanocubes during the morphology evolution. Transient absorption spectroscopy reveals a faster excited-state decay dynamic with a large exciton delocalization length in 1D nanowires. Our findings elucidate the insights into the postsynthesis morphology evolution of mixed-halide perovskite nanocrystals leading to luminescent nanowires with excellent crystal phase stability for potential optoelectronic applications.

4.
Inorg Chem ; 58(2): 1527-1540, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30629414

RESUMO

A series of palladium complexes of tetradendate Schiff base ligands L1 ( N,N'-bis(salicylidene)phenylene-1,3-diamine) and its derivatives L2 and L3 have been synthesized by using the "flexible ligand method" within the supercage of zeolite-Y. These complexes in both their free and encapsulated states have been thoroughly characterized with the help of different characterization tools such as XRD, SEM-EDS, BET, thermal analysis, XPS, IR, and UV-vis spectroscopic studies. All these encapsulated complexes are identified with a dramatic red shift of the d-d transition in their electronic spectra when compared with their free states. Theoretical as well as experimental studies together suggest a substantial modification of the structural parameters of square planar Pd(II)-Schiff base complexes upon encapsulation within the supercage of zeolite-Y. Encapsulated complexes are also subject to show modified catalytic activities toward the Heck reaction. These heterogeneous catalysts can easily be separated from the reaction mixture and reused.

5.
ACS Appl Mater Interfaces ; 11(1): 31-36, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30574778

RESUMO

Herein, we report on the unidirectional branched assembly of diphenylalanine dipeptide through a one-step rapid evaporation process. Large numbers of crystalline tubular branches with smooth surfaces are developed from a hexagonal solid microrod mimicking a "Christmas tree". Density functional theory suggests the formation of tubular diphenylalanine aggregates with cis isomers. The diphenylalanine branched assembly shows good optical waveguide properties that can transmit light homogeneously along the crystal fibers as well as harvest light from the tips of branches to the microrod terminals. These findings hold importance in the development of bioinspired optical fibers for information transmission in a microscale.

6.
ACS Appl Mater Interfaces ; 10(20): 17409-17418, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29697251

RESUMO

Luminescent materials possessing both the mechanoluminescence (MCL) and electroluminescence (EL) properties are the quest for sensing and optoelectronic applications. We report on the synthesis of a new tailor-made luminogen, 1,2-bis(4-(1-([1,1'-biphenyl]-4-yl)-2,2-diphenylvinyl)phenyl)-1,2-diphenylethene (TPE 5), using Suzuki coupling reaction with high yield. An aggregation-induced emission (AIE) active complex TPE 5 forms supramolecular spherical aggregates at the air-water interface of a Langmuir trough. As a consequence, a large enhancement of luminescence is obtained from the mono- and multilayer Langmuir-Blodgett films of TPE 5 owing to the AIE effect. The luminogen TPE 5 exhibits a reversible MCL response, displaying photoluminescence switching due to change in the crystalline states under external stimuli. The unique feature of luminescence enhancement upon aggregate formation is utilized for the fabrication of light-emitting diodes with low threshold voltage using supramolecular aggregates as the active layer. This work demonstrates an efficient strategy for obtaining controlled supramolecular aggregates of AIEgen with a potential in the dual applications of MCL and EL.

7.
J Phys Chem A ; 122(2): 652-661, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29262686

RESUMO

Hydrolysis of iron compounds in water leads to the formation of Fe(III) oyxhydroxide-based minerals like ferrihydrite, which act as natural scavengers of inorganic contaminants in the environment. Though studied widely, experimental identification of these oxyhydroxides remains very difficult due to their extreme reactivity. The present study theoretically investigates the formation of Fe(III) oxyhydroxides starting from a single hydrated Fe(III) ion, modeling the formation of larger clusters gradually. The structures, formation enthalpies, and free energies of dimers, trimers, tetramers, and even larger Fe(III) oxyhydroxide clusters comprising of Fe5, Fe7, and Fe13-Keggin ions in gaseous phase and in aqueous medium (using self-consistent reaction field method) are systematically studied using density functional theory. Spontaneous formation of certain multinuclear Fe(III) oxyhydroxide clusters with clear structural signatures of ferrihydrite highlights their potential as prenucleation clusters in the course of mineralization.

8.
Small ; 13(15)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28134490

RESUMO

Aggregation-induced emission (AIE) is commonly observed in irregular bulk form. Herein, unique aggregation properties of an AIE-active complex into branched supramolecular wires are reported for the first time. Mono-cyclometalated Ir(III) complex shows in-plane J-aggregation at the air-water interface owing to the restriction of intramolecular vibration of bidentate phenylpyridinato and intramolecular rotations of monodentate triphenylphosphine ligands at air-water interface. As a consequence, a large enhancement of luminescence comparable to the solid state is obtained from the monolayers of supramolecular wires. This unique feature is utilized for the fabrication of light-emitting diodes with low threshold voltage using supramolecular wires as active layer. This study opens up the need of ordered assembly of AIE complexes to achieve optimal luminescence characteristics.

9.
Dalton Trans ; 45(47): 18967-18976, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27844079

RESUMO

Square planar Ni(ii)-Schiff base complexes when encapsulated in a supercage of zeolite Y have shown altered optical, magnetic properties and catalytic activities in comparison to their corresponding free states. Different characterization techniques like XRD analysis, SEM-EDX, AAS, FTIR, UV-Visible spectroscopy and magnetic studies as well as detailed theoretical studies altogether show the differences in the properties of complexes in free and encapsulated states. All these studies have suggested that the largest complex deviates by the maximum amount from its free-state properties and a fascinating correlation between the extent of deviation from molecular dimension and modified catalytic activity of encapsulated complexes is observed.

10.
Sci Rep ; 6: 26031, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27189251

RESUMO

Increasing exposure to arsenic (As) contaminated ground water is a great threat to humanity. Suitable technology for As immobilization and removal from water, especially for As(III) than As(V), is not available yet. However, it is known that As(III) is more toxic than As(V) and most groundwater aquifers, particularly the Gangetic basin in India, is alarmingly contaminated with it. In search of a viable solution here, we took a cue from the natural mineralization of Tooeleite, a mineral containing Fe(III) and As(III)ions, grown under acidic condition, in presence of SO4(2-) ions. Complying to this natural process, we could grow and separate Tooeleite-like templates from Fe(III) and As(III) containing water at overall circumneutral pH and in absence of SO4(2-) ions by using highly polar Zn-only ends of wurtzite ZnS nanorods as insoluble nano-acidic-surfaces. The central idea here is to exploit these insoluble nano-acidic-surfaces (called as INAS in the manuscript) as nucleation centres for Tooeleite growth while keeping the overall pH of the aqueous media neutral. Therefore, we propose a novel method of artificial mineralization of As(III) by mimicking a natural process at nanoscale.

11.
J Nanosci Nanotechnol ; 15(1): 252-62, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26328342

RESUMO

Electronic structure and transport is theoretically studied for neutral, all-metal aromatic sandwich molecules, Al4MAl4 (M = Cr, Mo) along with Al4 and Al4M (M = Cr, Mo) clusters in two-probe setups with silver and gold electrodes. Detailed electronic structure and transport studies of metallaromatic Al4MAl4 molecules show high electronic conductance [2.5*10(-4) S for Al4CrAl4 and 2.9*10(-4) S for Al4MoAl4] and three conduction channels simultaneously contribute to the total transmission probability. The study of transport properties of the bare Al4 cluster and Al4M cluster also show very high electronic conductance. The neutral Al4 cluster, when connected parallel to the electrodes, four Al atoms couple to the electrode atoms and at least eight electron conduction pathways contribute simultaneously to the conductance whereas for perpendicular connectivity only three conduction channels operate. All the molecules couple strongly to the electrodes by well-defined metal-metal bonds owing to their metallic nature indicating an easier electrode integration process, and the calculated current voltage curves are almost linear till applied voltages of 1 V for Al4MAl4 (M = Cr, Mo). The electronic transport of the clusters studied here resembles the values found for metal atomic chains in break junction studies.

12.
Dalton Trans ; 44(8): 3753-63, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25606818

RESUMO

It is observed that for a square planar Ni(II)-Schiff base complex of the general formula {Ni(II)L}, where L is {L: N,N'-bis(5-hydroxy-salicylidene)ethylenediamine}, when encapsulated in a supercage of zeolite Y the bulky guest complex adopts a non-planar geometry without disturbing the integrity of the zeolite framework. Detailed comparative characterization is carried out to understand the structural change of the guest complex as a result of steric and electronic interactions with the host framework. UV-Vis spectroscopic studies of the encapsulated and 'neat' complex show a significant blue shift in the d-d transition after encapsulation and the diamagnetic 'neat' complex exhibits paramagnetism after encapsulation. DFT studies of the Ni(II)-Schiff base complex have been carried out for different spin states in neat and encapsulated form and the UV-Vis spectra are simulated using TD-DFT to understand the observed spectra in detail.

13.
J Am Chem Soc ; 136(24): 8548-51, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24873554

RESUMO

Linear π-gelators self-assemble into entangled fibers in which the molecules are arranged perpendicular to the fiber long axis. However, orientation of gelator molecules in a direction parallel to the long axes of the one-dimensional (1-D) structures remains challenging. Herein we demonstrate that, at the air-water interface, an oligo(p-phenylenevinylene)-derived π-gelator forms aligned nanorods of 340 ± 120 nm length and 34 ± 5 nm width, in which the gelator molecules are reoriented parallel to the long axis of the rods. The orientation change of the molecules results in distinct excited-state properties upon local photoexcitation, as evidenced by near-field scanning optical microscopy. A detailed understanding of the mechanism by which excitation energy migrates through these 1-D molecular assemblies might help in the design of supramolecular structures with improved charge-transport properties.

14.
Sci Rep ; 3: 2612, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24018991

RESUMO

Self-assembled, one-dimensional (1D) nanomaterials are amenable building blocks for bottom-up nanofabrication processes. A current shortcoming in the self-assembly of 1D nanomaterials in solution phase is the need for specific linkers or templates under very precise conditions to achieve a handful of systems. Here we report on the origin of a novel self-assembly of 1D dumbbells consisting of Au tipped PbS nanorods into stable chains in solution without any linkers or templates. A realistic multi-particle model suggests that the mesophase comprises 1D dumbbells arrayed in chains formed by anisotropic van der Waals type interactions. We demonstrate an alternative recognition mechanism for directing the assembly of the 1D dumbbells, based on effective interaction between the neighboring dumbbells consisting of Au tips with complementary crystallographic facets that guides the entire assembly in space.

15.
Nano Lett ; 13(2): 409-15, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23297701

RESUMO

Two-dimensional (2D) sheets are currently in the spotlight of nanotechnology owing to high-performance device fabrication possibilities. Building a free-standing quantum sheet with controlled morphology is challenging when large planar geometry and ultranarrow thickness are simultaneously concerned. Coalescence of nanowires into large single-crystalline sheet is a promising approach leading to large, molecularly thick 2D sheets with controlled planar morphology. Here we report on a bottom-up approach to fabricate high-quality ultrathin 2D single crystalline sheets with well-defined rectangular morphology via collective coalescence of PbS nanowires. The ultrathin sheets are strictly rectangular with 1.8 nm thickness, 200-250 nm width, and 3-20 µm length. The sheets show high electrical conductivity at room and cryogenic temperatures upon device fabrication. Density functional theory (DFT) calculations reveal that a single row of delocalized orbitals of a nanowire is gradually converted into several parallel conduction channels upon sheet formation, which enable superior in-plane carrier conduction.


Assuntos
Chumbo/química , Nanofios/química , Sulfetos/química , Nanotecnologia , Teoria Quântica
16.
J Nanosci Nanotechnol ; 12(8): 6258-64, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22962733

RESUMO

Electronic transport through single nanowire/nanorod directly probes the fundamental limits of semiconductor device miniaturization. Point defects or impurity centers form easily during the growth of nanorods/nanowires which may strongly affect the electronic transport efficiencies. Existing models of electronic transport are often unable to determine the role of defects and impurities at the nanoscale because there are significant differences between nanostructures and bulk materials arising from unique geometries and confinement. The effect of defect and impurities on the conductance of a model ultranarrow PbS rod was modeled using density functional theory. It was observed that the introduction of defects and Au impurities modified the orbital energies of PbS nanorods and reduced the conductance compared to the defect-free rod. The conductance for the nanorods with defects and impurities were limited by the number of available conduction channels required for efficient electronic conduction.

17.
Chem Commun (Camb) ; 47(29): 8421-3, 2011 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-21706117

RESUMO

Au tipped ultranarrow PbS nanorods are synthesized. DFT electronic structure calculations and transport studies show that Au probes modify the nature and energies of PbS nanorod orbitals creating efficient electron conduction channels for enhanced conductance even at low applied bias.

18.
J Chem Phys ; 134(1): 014709, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21219022

RESUMO

The electronic structure and transport properties of the Cp(2)BzM(2) (M = Sc, Ti, and V) tripledeckers are studied by spin polarized density functional theory and nonequilibrium Green's function method considering high-spin and low-spin states. Total energy calculations show that the sandwich structured Cp(2)BzSc(2) exists in a singlet state with no local magnetic moment on the Sc atoms. Cp(2)BzTi(2) in triplet state exists as a distorted tripledecker and is more stable than singlet and quintet states. Cp(2)BzV(2) stabilizes in the quintet state with a spin density of 2.4 on each vanadium atom. Hund's coupling plays a vital role in stabilizing the higher multiplets in case of titanium and vanadium clusters. In bigger clusters like Cp(3)Bz(2)M(4), Sc multidecker has one unpaired spin, Ti multidecker has five unpaired spins, and V multidecker has seven unpaired spins in total. Spin polarized electronic transport is found for all states of vanadium tripledecker and one state of the titanium tripledecker when connected to a gold two probe junction. Moderate to high-spin filter efficiencies are calculated for these states. Cp(2)BzSc(2) shows spin-independent electronic transport for all electronic states when introduced in the gold two probe junction. Current versus voltage curves are reported for selected clusters in the two probe setup.

19.
Nanotechnology ; 21(39): 395201, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20820090

RESUMO

The electronic structure and electron transport properties of simple conjugated molecular wires like oligophenylene ethynylene (OPE) and oligophenylene vinylene (OPV) are studied under compression. If artificially confined to a given shorter length, the oligomers tend to bend and bending causes a loss in the overlap of the conjugated molecular orbitals. Theoretical modeling of electronic transport has been carried out for all undistorted and compressed OPE/OPV oligomers. OPV exists in step-like or V-like conformations and they have the same stability with very similar frontier molecular orbitals. The conductances of these molecular wires are calculated when inserted between two gold probes and the conductances for OPV are found to be comparable to OPE when the interfaces are same. The conductance decreases with bending due to the gradual loss in overlap of the molecular orbitals. It is also found that the conductances of the molecular wires decrease very strongly if the terminal sulfur atom is simultaneously bonded to hydrogen and a gold surface, thus reflecting the importance of the interface in determining the conductance in two-probe systems. From the conductance studies it may be concluded that if one or more benzene rings of OPE are rotated from coplanar conditions, the orthogonal molecular orbitals may completely block the electronic transport, rendering the molecule insulating.

20.
J Phys Chem B ; 110(47): 23806-11, 2006 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-17125344

RESUMO

We propose a model molecular wire sensor that can detect zerovalent chromium by a strong increase in conductance when included in a metal-molecule-metal junction. An essential part of the sensor is a paracyclophane unit that binds to the metal atom. The nature and the energies of the molecular orbitals change drastically after the complex is formed, resulting in a 10- to 12-fold increase in conductance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA