Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nanoscale ; 13(30): 12916-12928, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34477775

RESUMO

One of the most realistic approaches for delivering actives (pharmaceuticals/cosmetics) deep into skin layers is encapsulation into nanoparticles (NPs). Nonetheless, molecular-level mechanisms related to active delivery from NPs to the skin have scarcely been studied despite the large number of synthesis and characterization studies. We herein report the underlying mechanism of active translocation and permeation through the outermost layer of skin, the stratum corneum (SC), via molecular dynamics (MD) simulations complemented by experimental studies. A SC molecular model is constructed using current state-of-the-art methodology via incorporating the three most abundant skin lipids: ceramides, free fatty acids, and cholesterol. As a potent antioxidant, ferulic acid (FA) is used as the model active, and it is loaded into Gelucire 50/13 NP. MD simulations elucidate that, first, FA-loaded NP approaches the skin surface quickly, followed by slight penetration and adsorption onto the upper skin surface; FA then translocates from the NP surface to the skin surface due to stronger NP-skin interactions compared to the FA-NP interactions; then, once FA is released onto the skin surface, it slowly permeates deep into the skin bilayer. Both the free energy and resistance to permeation not only indicate the spontaneous transfer of FA from the bulk to the skin surface, but they also reveal that the main barrier against permeation exists in the middle of the lipid hydrophobic tails. Significantly lower diffusion of FA is obtained in the main barrier region compared to the bulk. The estimated permeability coefficient (log P) values are found to be higher than the experimental values. Importantly, the permeation process evaluated via MD simulations perfectly matches with experiments. The study suggests a molecular simulation platform that provides various crucial insights relating to active delivery from loaded NP to skin, and it could facilitate the design and development of novel NP-based formulations for transdermal delivery and the topical application of drugs/cosmetics.


Assuntos
Simulação de Dinâmica Molecular , Nanopartículas , Administração Cutânea , Bicamadas Lipídicas , Lipídeos , Permeabilidade , Pele
2.
J Hazard Mater ; 423(Pt A): 126985, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34464861

RESUMO

Mercury (Hg) is a highly toxic element that occurs at low concentrations in nature. However, various anthropogenic and natural sources contribute around 5000 to 8000 metric tons of Hg per year, rapidly deteriorating the environmental conditions. Mercury-resistant bacteria that possess the mer operon system have the potential for Hg bioremediation through volatilization from the contaminated milieus. Thus, bacterial mer operon plays a crucial role in Hg biogeochemistry and bioremediation by converting both reactive inorganic and organic forms of Hg to relatively inert, volatile, and monoatomic forms. Both the broad-spectrum and narrow-spectrum bacteria harbor many genes of mer operon with their unique definitive functions. The presence of mer genes or proteins can regulate the fate of Hg in the biogeochemical cycle in the environment. The efficiency of Hg transformation depends upon the nature and diversity of mer genes present in mercury-resistant bacteria. Additionally, the bacterial cellular mechanism of Hg resistance involves reduced Hg uptake, extracellular sequestration, and bioaccumulation. The presence of unique physiological properties in a specific group of mercury-resistant bacteria enhances their bioremediation capabilities. Many advanced biotechnological tools also can improve the bioremediation efficiency of mercury-resistant bacteria to achieve Hg bioremediation.

3.
Phytomedicine ; 90: 153554, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34371479

RESUMO

BACKGROUND: Epidemiological studies has revealed that a diet rich in fruits and vegetables could lower the risk of certain cancers. In this setting, natural polyphenols are potent anticancer bioactive compounds to overcome the non-target specificity, undesirable cytotoxicity and high cost of treatment cancer chemotherapy. PURPOSE: The review focuses on diverse classifications of the chemical diversity of dietary polyphenol and their molecular targets, modes of action, as well as preclinical and clinical applications in cancer prevention. RESULTS: The dietary polyphenols exhibit chemo-preventive activity through modulation of apoptosis, autophagy, cell cycle progression, inflammation, invasion and metastasis. Polyphenols possess strong antioxidant activity and control multiple molecular events through activation of tumor suppressor genes and inhibition of oncogenes involved in carcinogenesis. Numerous in vitro and in vivo studies have evidenced that these dietary phytochemicals regulate critical molecular targets and pathways to limit cancer initiation and progression. Moreover, natural polyphenols act synergistically with existing clinically approved drugs. The improved anticancer activity of combinations of polyphenols and anticancer drugs represents a promising perspective for clinical applications against many human cancers. CONCLUSION: The anticancer properties exhibited by dietary polyphenols are mainly attributed to their anti-metastatic, anti-proliferative, anti-angiogenic, anti-inflammatory, cell cycle arrest, apoptotic and autophagic effects. Hence, regular consumption of dietary polyphenols as food or food additives or adjuvants can be a promising tactic to preclude adjournment or cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Polifenóis , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Quimioprevenção , Dieta , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Polifenóis/farmacologia , Polifenóis/uso terapêutico
4.
Int J Pharm ; 605: 120814, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34147609

RESUMO

In case of colon-specific delivery of therapeutic agents through oral route, microbial/enzyme-triggered release approach has several advantages over other approaches due to unique microbial ecosystem in the colon. Multiple-unit carriers have an edge over single-unit carriers for this purpose. Among different materials/polymers explored, pectin appears as a promising biopolymer to construct microbial-triggered colon-specific carriers. Pectin is specifically degraded by colonic enzymes but insusceptible to upper gastro-intestinal enzymes. In this article, utilization of pectin solely or in combination with other polymers and/or colonic-delivery approaches is critically discussed in detail in the context of multi-particulate systems. Several studies showed that pectin-based carriers can prevent the release of payload in the stomach but start to release in the intestine. Hence, pectin alone may construct delayed release formulation but may not be sufficient for effective colon-targeting. On the other hand, combination of pectin with other materials/polymers (e.g., chitosan and Eudragit® S-100) has demonstrated huge promise for colon-specific release of payload. Hence, smartly designed pectin-based multi-particulate carriers, especially in combination with other polymers and/or colon-targeting approaches (e.g., microbial-triggered + pH-triggered or microbial-triggered + pH-triggered + time-release or microbial-triggered + pH-triggered + pressure-based), can be successful colon-specific delivery systems. However, more clinical trials are necessary to bring this idea from bench to bedside.


Assuntos
Sistemas de Liberação de Medicamentos , Pectinas , Colo , Portadores de Fármacos , Ecossistema
5.
Microsc Res Tech ; 84(10): 2451-2461, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33908128

RESUMO

Biofilm formation in bacteria is strongly affected by the nature of substrata. Different substrata such as glass, polystyrene, steel, ceramic, and rubber were used to assess the biofilm forming ability of a marine bacterium Pseudomonas aeruginosa PFL-P1 using a scanning electron microscope (SEM), atomic force microscope (AFM), and confocal laser scanning microscope (CLSM). The bacterium formed dense biofilms with varied aggregation on different substrata. SEM study revealed small rod-shaped cells with diverse arrangements within the biofilms on all the substrata under study. The AFM study revealed the highest roughness of 545 nm on the ceramic substratum. The biofilms formed on ceramic substratum were characterized with maximum roughness (742 nm), maximum peak height (1,480 nm), and maximum arithmetic mean height (611 nm), significantly higher than all the other substrata (p < .05). AFM studies confirmed that P. aeruginosa PFL-P1 exhibited biofilm heterogeneity on all the substrata. The CLSM study indicated a higher fraction of nucleic acids to α-polysaccharides ratio in the biofilms. COMSTAT analysis revealed the highest biofilm biomass of ~18 µm3 /µm2 on the ceramic substratum. The maximum biofilm thickness of ~50 µm in the native state on the ceramic substratum was significantly higher than glass (p = .0015), polystyrene (p = .0001), steel (p = .0035), and rubber substrata (p = .0001). The higher surface roughness of ceramic substratum is accountable for more area for colonization, as evident from higher biomass and thickness of the biofilm. This study provides insight into the substratum properties, which modulate the biofilm forming ability in bacteria.


Assuntos
Biofilmes , Pseudomonas aeruginosa , Bactérias , Microscopia Confocal , Microscopia Eletrônica de Varredura
6.
Phytother Res ; 35(8): 4194-4214, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33749909

RESUMO

The global incidence of cancer and cancer-related mortality is expected to rise in recent years despite advancements in cancer diagnosis and therapeutics. Increasing evidences of decrypting molecular mechanisms underlying cancer progression have commanded the tremendous development of synthetic anticancer drugs. With limitations in the current conventional cancer therapeutic approaches, the non-nutritive dietary phytochemicals have emerged as potent modulators of apoptosis and autophagy associated key signaling pathways in various cancer cells. The dynamic regulation of apoptosis and autophagy by phytochemicals in cancer are identified as promising therapeutic candidates with minimal cytotoxicity and enhanced biological activity. Dietary phytochemicals and their synthetic analogs have exhibited potency in the modulation of apoptosis and autophagy in several cancer cells as individuals or in combination with pre-existing FDA (Food and Drug Administration) approved anticancer drugs. In the current generation of medical science, developing precision and personalized medicine and their consumption as food supplements will hold high prevalence in cancer therapeutics. Hence understating the impact of dietary phytochemicals on human health and their molecular mechanism will thrive a new horizon in cancer therapeutics. Hence, this review has emphasized the role of apoptotic/autophagy modulating dietary phytochemicals in cancer therapy, their preclinical and clinical applications and the future direction of enhanced nano-formulation for better clinical efficacy.


Assuntos
Antineoplásicos Fitogênicos , Dieta , Neoplasias , Compostos Fitoquímicos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
7.
Ann Hum Biol ; 48(1): 37-48, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33470866

RESUMO

BACKGROUND: Many countries have developed their core set of STR loci for forensic application and database generation, which India lacks. AIM: To assess the usefulness of various combinations of autosomal STR marker sets for their superior use in the central Indian population for forensic and paternity applications. SUBJECTS AND METHODS: 19 STR marker sets were analysed on 200 central Indian populations and 20 paternity cases to assess their usefulness. RESULTS: Two marker sets each comprising 19 STR markers are found to be superior to 20 expanded CODIS loci in the studied population. These marker sets also showed their effectiveness in 20 paternity cases having CPI values of 7.62 × 1011 and 7.16 × 1011. Three non-CODIS STR markers Penta E, Penta D, and SE33 showed amplification in 50 challenging samples with >0.80 heterozygosity. CONCLUSION: Population-specific STR marker sets are useful in forensic and paternity applications, as well as database generation, and it is envisioned that Penta E, Penta D, and SE33 markers will be included in the list of core STR loci in the central Indian population.


Assuntos
Genética Forense/métodos , Marcadores Genéticos , Repetições de Microssatélites , Paternidade , Feminino , Humanos , Índia , Masculino
8.
3 Biotech ; 10(10): 445, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33014688

RESUMO

Toll-like receptors (TLRs) in innate immune system act as primary sensors in detecting the microbial components and activate their signaling cascades to induce NF-κB (nuclear factor NF-κB) towards the augmentation of immunoglobulin (Ig) synthesis. To gain insights into the efficacy of NF-κB pathway in immunoglobulin D (IgD) synthesis in the Indian Major Carp Catla catla, cloning and sequencing of TLR-signaling downstream molecules [TRAF3 (TNF receptor-associated factor 3), NEMO (nuclear factor-kappa B essential modulator), NF-κB and BAFF (B cell activating factor)] were performed by infecting the fish with pathogens. mRNA expression analysis of the downstream molecules and IgD showed significant up-regulation of these genes in kidney (P ≤ 0.001) as compared to spleen (P ≤ 0.05). To ascertain the role of NF-κB pathway in IgD synthesis, the primary cell culture of kidney and spleen in monolayer cell suspension was treated with NF-κB inhibitor (BAY 11-7082) and down-regulation of BAFF, NEMO, NF-κB, and IgD gene was observed. These results highlight the importance of NF-κB signaling pathway in augmenting the IgD gene expression in the freshwater carp, Catla catla.

9.
Appl Microbiol Biotechnol ; 104(22): 9497-9512, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33001249

RESUMO

Estimation of post-mortem time interval (PMI) is a key parameter in the forensic investigation which poses a huge challenge to the medico-legal experts. The succession of microbes within different parts of the human body after death has shown huge potential in the determination of PMI. Human body harbors trillions of microorganisms as commensals. With the death of an individual when biological functions are stopped, these microorganisms behave contrarily along with the invasion of degrading microbes from the environment. Human cadaver becomes a rich source of nutrients due to autolysis of cells, which attracts various invading microorganisms as well as macroorganisms. At different stages of degradation, the succession of microorganisms differs significantly which can be explored for accurate PMI estimation. With the advent of microbial genomics technique and reduction in the cost of DNA sequencing, thanatomicrobiome and epinecrotic community analysis have gained huge attention in PMI estimation. The article summarizes different sources of microorganisms in a human cadaver, their succession pattern, and analytical techniques for application in the field of microbial forensics. KEY POINTS: • Thanatomicrobiome and epinecrotic microbiome develop in postmortem human body. • Lack of metabolic, immune, neuroendocrine systems facilitate microbial succession. • Analysis of postmortem microbial communities predicts accurate PMI.


Assuntos
Cadáver , Microbiota , Mudanças Depois da Morte , Sequência de Bases , Humanos , Análise de Sequência de DNA
10.
Ecotoxicol Environ Saf ; 206: 111087, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32871516

RESUMO

Pseudomonas aeruginosa is a small rod shaped Gram-negative bacterium of Gammaproteobacteria class known for its metabolic versatility. P. aeruginosa PFL-P1 was isolated from Polycyclic Aromatic Hydrocarbons (PAHs) contaminated site of Paradip Port, Odisha Coast, India. The strain showed excellent biofilm formation and could retain its ability to form biofilm grown with different PAHs in monoculture as well as co-cultures. To explore mechanistic insights of PAHs metabolism, the whole genome of the strain was sequenced. Next generation sequencing unfolded a genome size of 6,333,060 bp encoding 5857 CDSs. Gene ontology distribution assigned to a total of 2862 genes, wherein 2235 genes were allocated to biological process, 1549 genes to cellular component and 2339 genes to molecular function. A total of 318 horizontally transferred genes were identified when the genome was compared with the reference genomes of P. aeruginosa PAO1 and P. aeruginosa DSM 50071. Further comparison of P. aeruginosa PFL-P1 genome with P. putida containing TOL plasmids revealed similarities in the meta cleavage pathway employed for degradation of aromatic compounds like xylene and toluene. Gene annotation and pathway analysis unveiled 145 genes involved in xenobiotic biodegradation and metabolism. The biofilm cultures of P. aeruginosa PFL-P1 could degrade ~74% phenanthrene within 120 h while degradation increased up to ~76% in co-culture condition. GC-MS analysis indicated presence of diverse metabolites indicating the involvement of multiple pathways for one of the PAHs (phenanthrene) degradation. The strain also possesses the genetic machinery to utilize diverse toxic aromatic compounds such as naphthalene, benzoate, aminobenzoate, fluorobenzoate, toluene, xylene, styrene, atrazine, caprolactam etc. Common catabolic gene clusters such as benABCD, xylXYZ and catAB were observed within the genome of P. aeruginosa PFL-P1 which play key roles in the degradation of various toxic aromatic compounds.


Assuntos
Biofilmes/crescimento & desenvolvimento , Genoma Bacteriano/genética , Redes e Vias Metabólicas/genética , Fenantrenos/metabolismo , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/genética , Biodegradação Ambiental , Biologia Marinha , Plasmídeos/genética , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo
11.
Metallomics ; 12(11): 1637-1655, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32996528

RESUMO

Metallothioneins (MTs) are a group of cysteine-rich, universal, low molecular weight proteins distributed widely in almost all major taxonomic groups ranging from tiny microbes to highly organized vertebrates. The primary function of this protein is storage, transportation and binding of metals, which enable microorganisms to detoxify heavy metals. In the microbial world, these peptides were first identified in a cyanobacterium Synechococcus as the SmtA protein which exhibits high affinity towards rising level of zinc and cadmium to preserve metal homeostasis in a cell. In yeast, MTs aid in reserving copper and confer protection against copper toxicity by chelating excess copper ions in a cell. Two MTs, CUP1 and Crs5, originating from Saccharomyces cerevisiae predominantly bind to copper though are capable of binding with zinc and cadmium ions. MT superfamily 7 is found in ciliated protozoa which show high affinity towards copper and cadmium. Several tools and techniques, such as western blot, capillary electrophoresis, inductively coupled plasma, atomic emission spectroscopy and high performance liquid chromatography, have been extensively utilized for the detection and quantification of microbial MTs which are utilized for the efficient remediation and sequestration of heavy metals from a contaminated environment.

12.
Sci Rep ; 10(1): 12288, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703966

RESUMO

Ferulic acid is a potent anti-oxidant with scientifically proven skin care efficacies. However, instability of this active in the skin care products restricted its wide application in beauty and skin care industries. This study aimed to stabilize ferulic acid in topical hydrogel formulation via nanoencapsulation technique. Ferulic acid loaded nanocapsules were prepared via high pressure homogenization method and physicochemically characterized. Mean particle size of ferulic acid loaded nanocapsules was < 300 nm. TEM and SEM images exhibited spherical particles with smooth surface. DSC and XRD results indicated that ferulic acid was completely dissolved in the lipid matrix of the nanocapsules and remained in amorphous form. Two types of hydrogel formulations containing ferulic acid loaded nanocapsules were prepared: Gel A with pH higher and Gel B with pH lower than pKa of ferulic acid. Cross-polarized microscopic image of the gel formulations did not show presence of any un-encapsulated and un-dissolved crystal. Gel B showed slower and controlled release of ferulic acid than Gel A. Ferulic acid permeation through skin mimic from the gel formulation demonstrated controlled permeation. Color stability of the gel and chemical stability of ferulic acid were very good in Gel B, while poor in Gel A (although significantly better than the gel with un-encapsulated ferulic acid). The result clearly indicates that together with nanoencapsulation, low pH (less than pKa of ferulic acid) of the hydrogel was crucial for both product appearance and chemical stability of ferulic acid. In fact, it has been proved that skin care product with low pH is good for skin as it can maintain skin homeostasis and microbiome. Furthermore, the permeation result suggests that ferulic acid may penetrate into deep skin layers and at the same time avoid systemic circulation. Overall, this low pH hydrogel formulation containing nanoencapsulated ferulic acid demonstrates great promise for commercialization.

13.
Colloids Surf B Biointerfaces ; 194: 111161, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32521462

RESUMO

Microemulsion can be a potential delivery vehicle to deliver skin care actives to deep skin layer for chronic skin care benefits. On top of skin care active, microemulsion vehicle composed of multiple skin beneficial oils can deliver additional skin care efficacies. In this study, microemulsions were developed using combinations of two skin beneficial oils, tea tree oil and medium chain triglyceride instead of single oil. For that, pseudo ternary phase diagrams were constructed on these oil combinations at different ratios of surfactant/co-surfactants. Ratio of oils and surfactant/co-surfactant combinations exhibited significant impact on the microemulsion region. A few compositions were selected from the single phase microemulsion regions of these phase diagrams for the preparation of resveratrol-loaded microemulsion and microemulsion gel formulations. The particle size of the resveratrol-loaded microemulsions were <50 nm. Cryogenic scanning electron microscope image clearly showed nano-droplets dispersed in continuous phase. Both physical and chemical stability of the formulations varied depending on their compositions, such as surfactant/co-surfactant combination and % total oil. The presence of chelating agent and anti-oxidant was also crucial to stabilize the formulations. The selected formulations demonstrated good physicochemical stability at 5 °C, 25 °C, and 40 °C/75 % RH (relative humidity) stability conditions. The results further showed that the % total oil and surfactant phase composition had huge influence on resveratrol release and skin permeation patterns from the microemulsion gels. In vitro skin permeation result indicated that the microemulsion gels can help resveratrol penetration into deep skin layer. Therefore, the developed resveratrol-loaded microemulsion gels can be utilized as skin care product with multiple skin care benefits.


Assuntos
Óleos , Resveratrol , Absorção Cutânea , Tensoativos , Administração Cutânea , Emulsões/metabolismo , Óleos/metabolismo , Resveratrol/administração & dosagem , Resveratrol/farmacocinética , Pele/metabolismo , Higiene da Pele , Tensoativos/metabolismo
14.
Microbiol Immunol ; 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32237168

RESUMO

TOLL-interacting protein (Tollip) is a critical regulator of TLRs (toll-like receptors) signaling pathway. It is predominantly associated with TLR2 and TLR4 during the acute inflammatory conditions and inhibits the TLR-mediated NF-κB activation by suppressing the auto-phosphorylation of interleukin-1 receptor associated kinase (IRAK1) and its kinase activity. This article describes about the Tollip in Labeo rohita (LrTollip), a highly valuable freshwater fish of the Indian subcontinent. The full-length LrTollip-cDNA (1412 nucleotides) encodes 276 amino acids protein, depicting highly conserved TBD {Target of Myb1 (Tom1) binding domain: 1-53aa}, C2 (conserved core domain 2: 54-151aa) and CUE (coupling of ubiquitin to endoplasmic reticulum degradation: 231-273aa) domains of mouse and human counterparts. The key amino acids exerting the critical functions of Tollip such as phospholipids recognition and ubiquitination are present in the C2 and CUE-domains of LrTollip respectively. LrTollip is widely expressed in kidney, gill, spleen, liver and blood, and among these tested tissues, the highest expression is observed in blood. In response to TLR-ligands and NLR-ligands stimulations, Aeromonas hydrophila, Edwardsiella tarda and Bacillus subtilis infections, LrTollip gene expression is induced in various organs/tissues with remarkable difference in their kinetics. These data together suggest the important role of LrTollip in TLR and NLR-signal transduction pathways and immune-related diseases in fish. This article is protected by copyright. All rights reserved.

15.
Chem Commun (Camb) ; 56(28): 3963-3966, 2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32149309

RESUMO

A new N- and S-rich highly ordered periodic mesoporous organosilica material DMTZ-PMO bearing thiadiazole and thiol moieties inside the pore-wall of a 2D-hexagonal nanomaterial has been synthesized. DMTZ-PMO shows a very high surface area (971 m2 g-1), and can be used for efficient and fast removal of Hg2+ from polluted water with a very high Hg2+ uptake capacity of 2081 mg g-1.

16.
Curr Microbiol ; 77(7): 1203-1209, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32095890

RESUMO

Catastrophic global accumulation of non-biodegradable plastic has led to efforts for production of alternative eco-friendly biopolymer. Here, we attempted to produce a biodegradable, cytocompatible and eco-friendly polyhydroxy-butyrate (PHB) from a pigmented Bacillus sp. C1 (2013) (KF626477) through submerged (SmF) and solid-state fermentation (SSF). Under SmF and SSF, 0.60 g l-1 and 1.56 g l-1 of PHB with 0.497 g l-1 of yellow fluorescent pigment (YFP) was produced. Fourier transform infrared (FTIR) absorption bands at 1719-1720 cm-1 indicate the presence of C=O group of PHB. Nuclear magnetic resonance (NMR) exhibited the typical chemical shift patterns of PHB, and crystallinity was confirmed from X-ray diffraction (XRD). The melting temperature (Tm), degradation temperature (Td) and crystallinity (Xc) of extracted PHB were found to be 171 °C, 288 °C and 35%, respectively. FACS (Fluorescence-activated cell sorting) confirmed cytocompatibility of PHB at 400 µg ml-1 in mouse fibroblast line. Moreover, biodegradability and elevated cytocompatibility of the PHB produced through SSF make them highly potential biomaterials to be used as a drug delivery carrier in future.


Assuntos
Bacillus/metabolismo , Materiais Biocompatíveis , Hidroxibutiratos , Poli-Hidroxialcanoatos , Células 3T3 , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/isolamento & purificação , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Fermentação , Hidroxibutiratos/química , Hidroxibutiratos/isolamento & purificação , Hidroxibutiratos/metabolismo , Hidroxibutiratos/toxicidade , Camundongos , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/isolamento & purificação , Poli-Hidroxialcanoatos/metabolismo , Poli-Hidroxialcanoatos/toxicidade , Hipoclorito de Sódio , Sonicação
17.
Colloids Surf B Biointerfaces ; 189: 110823, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32036331

RESUMO

The aim of this work was to develop microemulsions and microemulsion gels which can be used as vehicles for the topical delivery of ivermectin. Tea tree oil and ethyl butanoate were found to be suitable for ivermectin-loaded microemulsion formulations due to the higher solubility of ivermectin in these two oils than other tested oils. The pseudo-ternary phase diagrams were constructed based on these selected oils and combination of different surfactant/co-surfactant at different ratios. Ivermectin-loaded stable microemulsions and microemulsion gels were successfully formulated based on the selected compositions from the phase diagrams. Ivermectin-loaded microemulsions showed spherical nano-droplets dispersed in the continuous phase (via cryogenic field emission scanning electron microscope image) and the particle size was less than 100 nm (via dynamic light scattering measurement). Ethyl butanoate based microemulsion appeared to be the best microemulsion formulation considering the stability and permeation profiles while tea tree oil based microemulsion showed the best stability profile. Overall, microemulsion gel formulations exhibited better stability profiles than their microemulsion counterparts. All microemulsion gel formulations demonstrated significantly faster in vitro membrane permeation (release) rate of ivermectin than Soolantra cream (reference marketed product by Galderma, USA).The developed microemulsion and microemulsion gel formulations appear to be promising vehicles for topical delivery of ivermectin.


Assuntos
Antiparasitários/química , Butiratos/química , Ivermectina/química , Óleo de Melaleuca/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Emulsões/química , Tamanho da Partícula , Solubilidade , Propriedades de Superfície
18.
Eur J Pharm Biopharm ; 149: 95-104, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32035236

RESUMO

Renaissance of cocrystals as alternative solid forms for fine-tuning physicochemical properties of active pharmaceutical ingredients (APIs) has paved way for development of marketable cocrystals. The current literature reveals established strategies for the design, synthesis and characterization of cocrystals. However, barring a few isolated case studies, strategies for development of cocrystal formulations have been underdeveloped. Herein we report topical formulations of an antioxidant, ferulic acid (FA), which contain the active in its cocrystal form. Cocrystals of FA with the coformers relevant to skin care such as urea, nicotinamide (NA) and isonicotinamide (INA) have been prepared and oleogel formulations of these have been developed. The cocrystal with urea and an anhydrous cocrystal with INA have been identified for the first time in this study. The novel cocrystals were structurally characterized by single crystal X-ray diffraction. Solubility and stability studies have revealed higher solubility of the cocrystals with NA and INA than the parent active and greater stability of FA in formulations that contained the cocrystals with INA and urea than the corresponding formulations containing physical mixtures or parent active. In vitro membrane permeation tests have ascertained sustained release profile of active from the formulation that contained the FA•INA cocrystal. The higher solubility, greater stability and sustained active release profile of the FA•INA cocrystal formulation make it a promising topical formulation of FA.


Assuntos
Antioxidantes/química , Ácidos Cumáricos/química , Niacinamida/química , Ureia/química , Administração Tópica , Química Farmacêutica , Cristalização , Preparações de Ação Retardada , Estabilidade de Medicamentos , Compostos Orgânicos , Solubilidade , Difração de Raios X
19.
Mol Biol Rep ; 47(3): 2347-2360, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31983014

RESUMO

Forensic DNA typing and subsequent molecular methods of sex determination in humans have been proven to be an imperious tool to criminal justice system. In current practice, most of the short tandem repeat (STR) based commercial kits contain amelogenin as the sexing marker. Amelogenin gene which contributes to the tooth enamel formation is present on both X and Y chromosome with a variation in base pair size. However, huge discrepancies have been observed with amelogenin based sex determination mostly due to X and Y deletion in the population and mutation in primer binding sites. Some ethnicities such as those in Indian population are affected badly with inappropriate sex determination by amelogenin marker due to the presence of high frequency of Y deletion in the population. Presence of PCR inhibitors, degradation in the DNA samples and presence of mixed DNA also contribute to the discrepancy in results obtained by amelogenin analysis. To overcome this problem, many alternative markers/techniques such as STS, SRY, TSPY, DXYS156, SNPs, DYZ1 and Next generation sequencing have been discussed in much detail with their respective pros and cons. In this regard, inclusion of one or more alternative markers along with amelogenin will decrease the anomalies in sex determination observed while using the amelogenin marker alone in forensic sample analysis.


Assuntos
Amelogenina/genética , Genética Forense , Marcadores Genéticos , Análise para Determinação do Sexo , Processos de Determinação Sexual/genética , Amelogenina/química , Feminino , Genética Forense/métodos , Humanos , Masculino , Mutação , Reação em Cadeia da Polimerase , Domínios e Motivos de Interação entre Proteínas/genética , Análise para Determinação do Sexo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...