Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Total Environ ; : 151038, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34688738

RESUMO

Given a large number of SARS-CoV-2 infected individuals, clinical detection has proved challenging. The wastewater-based epidemiological paradigm would cover the clinically escaped asymptomatic individuals owing to the faecal shedding of the virus. We hypothesised using wastewater as a valuable resource for analysing SARS-CoV-2 mutations circulating in the wastewater of Pune region (Maharashtra; India), one of the most affected during the covid-19 pandemic. We conducted study in open wastewater drains from December 2020-March 2021 to assess the presence of SARS-CoV-2 nucleic acid and further detect mutations using ARTIC protocol of MinION sequencing. The analysis revealed 108 mutations across six samples categorised into 39 types of mutations. We report the occurrence of mutations associated with Delta variant lineage in March-2021 samples, simultaneously also reported as a Variant of Concern (VoC) responsible for the rapid increase in infections. The study also revealed four mutations; S:N801, S:C480R, NSP14:C279F and NSP3:L550del not currently reported from wastewater or clinical data in India but reported worldwide. Further, a novel mutation NSP13:G206F mapping to NSP13 region was observed from wastewater. Notably, S:P1140del mutation was detected in December 2020 samples while it was reported in February 2021 from clinical data, indicating the instrumentality of wastewater data in early detection. This is the first study in India to demonstrate utility of sequencing in wastewater-based epidemiology to identify mutations associated with SARS-CoV-2 virus fragments from wastewater as an early warning indicator system.

2.
Arch Microbiol ; 203(8): 4839-4845, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34226954

RESUMO

The taxonomic position of two isolates, SGD-V-76T and SGD-M-37, isolated from sediment sample of Veraval coast, India, was examined using the polyphasic taxonomic approach. The morphological and chemotaxonomic characteristics of these two organisms are typical of the genus Priestia. The phylogenetic analyses performed using almost complete 16S rRNA gene sequences demonstrated that the isolate belongs to the Bacillaceae family, and forms a clade within the cluster containing Priestia flexus MTCC 2909T, Priestia aryabhattai B8W22T and Priestia megaterium KCTC 3007T and both strains showed highest similarity of > 98% with 3-29 nucleotide differences. The cell wall contained meso-diaminopimelic acid as the diagnostic diamino acid. The predominant isoprenoid quinone was MK-7 and the G + C content of strains was 37.5-37.7 mol%. However, the DNA-DNA hybridization and the phenotypic characteristics revealed that, the strain SGD-V-76T and strain SGD-M-37 are similar species but different from any known Priestia species with ANI values of 79.2, 79.3 and 79.2 and the dDDH values of 17.7, 17.8 and 18.0% respectively. On the basis of phenotypic characteristics, phylogenetic analysis and the results of biochemical and physiological tests, and genomic data strain SGD-V-76T was clearly distinguished from closely related members of the Priestia genus. Based on the above data analysis strain SGD-V-76T (= DSM28242T = KCTC33802T = CIP111056T = NCIM5510T) represents a novel species of the genus Priestia, and we propose the name Priestia veravalensis sp. nov.


Assuntos
Ácidos Graxos , Fosfolipídeos , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
J Biotechnol ; 328: 47-58, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33476738

RESUMO

Basmati and non-basmati rice varieties are commercially important. Aromatic rice varieties are low yielding and recently depletion in aroma is observed due to the shift towards modern agriculture. Therefore, it is necessary to restore the aroma and increase the yield through sustainable agriculture. The use of microbial bioinoculants is one of the promising ways to achieve these targets. With these objectives, rhizospheric bacterial strains Enterobacter hormaechei (AM122) and Lysinibacillus xylanilyticus (DB25) having the property of synthesizing 2-acetyl-1-pyrroline (2AP) were isolated from the rhizosphere of two aromatic rice varieties, Ambemohar-157 and Dehradun Basmati respectively and their effect on plant growth, aroma and yield enhancement under mono-inoculation and consortium conditions was analyzed. The bacterial inoculum in consortium resulted in significant improvement in vegetative growth, yield and 2AP content over mono inoculation and control. The study highlights the potential of E. hormaechei and L. xylanilyticus in plant growth, yield and aroma enhancement in basmati and non-basmati rice varieties. These strains can be taken up further for developing a commercial bioformulation.


Assuntos
Oryza , Bacillaceae , Enterobacter , Odorantes
4.
Phytochemistry ; 184: 112654, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33461046

RESUMO

To understand the compatibility of three native endophytic fungi Phialemoniopsis cornearis (SF1), Macrophomina pseudophaseolina (SF2) and Fusarium redolens (RF1) with Trichoderma viride (TV1) on Coleus forskohlii in enhancing plant growth and forskolin content, field experiments were conducted. Co-inoculation of RF1+TV1 showed significant improvement in plant growth (52%), root biomass (67%), and in-planta forskolin content (94%), followed by treatment with SF2+TV1 and SF1+TV1. qRT-PCR was carried out to quantify expression of five key forskolin biosynthetic pathway genes (CfTPS2, CfTPS3, CfTPS4, CfCYP76AH15, and CfACT1-8) in RF1+TV1 treated C. forskohlii plants. Elevated expression of CfTPS2, CfTPS4, CfCYP76AH15 and CfACT1-8 genes was observed with RF1+TV1 combination as compared to uninoculated C. forskohlii plants. Besides, RF1+TV1 treatment considerably reduced the severity of nematode infection of C. forskohlii plants under field conditions. Thus, congruent properties of F. redolens (RF1) were witnessed with co-inoculation of T. viride (TV1) under field conditions which resulted in enhanced forskolin content, root biomass, and reduced nematode infections in C. forskohlii. Overall, this approach could be an economical and sustainable step towards cultivation of commercially important medicinal plants.


Assuntos
Plectranthus , Trichoderma , Ascomicetos , Colforsina/farmacologia , Endófitos , Fusarium , Hypocreales , Raízes de Plantas
5.
Materials (Basel) ; 13(23)2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33291216

RESUMO

Electrospun nanofibers are used for many applications due to their large surface area, mechanical properties, and bioactivity. Bacterial biofilms are the cause of numerous problems in biomedical devices and in the food industry. On the other hand, these bacterial biofilms can produce interesting metabolites. Hence, the objective of this study is to evaluate the efficiency of poly (Ɛ- caprolactone)/Curcumin (PCL/CUR) nanofibers to promote bacterial biofilm formation. These scaffolds were characterized by scanning electron microscopy (SEM), which showed homogeneous fibers with diameters between 441-557 nm; thermogravimetric analysis and differential scanning calorimetry (TGA and DSC) demonstrated high temperature resilience with degradation temperatures over >350 °C; FTIR and 1H-NMR serve as evidence of CUR incorporation in the PCL fibers. PCL/CUR scaffolds successfully promoted the formation of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa biofilms. These results will be valuable in the study of controlled harvesting of pathogenic biofilms as well as in metabolites production for biotechnological purposes.

6.
Nat Prod Res ; : 1-6, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32643424

RESUMO

The first total synthesis of (-)-2-methoxy-2-butenolide-3-cinnamate (butenolide cinnamate) was achieved using commercially available starting material. The synthesized compound was found to have promising antibacterial activity against Gram-negative strains Escherichia coli (ATCC 8739), Salmonella typhimurium (ATCC 23564) and Pseudomonas aeruginosa (ATCC 19154) with a minimum inhibitory concentration of 2.0 µg/mL, 1.0 µg/mL and 2.0 µg/mL, respectively. Notably, the compound was more potent against Gram-negative test strains than the Gram-positive test strains.

7.
Micromachines (Basel) ; 11(4)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331467

RESUMO

Skin burns and ulcers are considered hard-to-heal wounds due to their high infection risk. For this reason, designing new options for wound dressings is a growing need. The objective of this work is to investigate the properties of poly (ε-caprolactone)/poly (vinyl-pyrrolidone) (PCL/PVP) microfibers produced via electrospinning along with sorbents loaded with Argovit™ silver nanoparticles (Ag-Si/Al2O3) as constituent components for composite wound dressings. The physicochemical properties of the fibers and sorbents were characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The mechanical properties of the fibers were also evaluated. The results of this work showed that the tested fibrous scaffolds have melting temperatures suitable for wound dressings design (58-60 °C). In addition, they demonstrated to be stable even after seven days in physiological solution, showing no macroscopic damage due to PVP release at the microscopic scale. Pelletized sorbents with the higher particle size demonstrated to have the best water uptake capabilities. Both, fibers and sorbents showed antimicrobial activity against Gram-negative bacteria Pseudomona aeruginosa and Escherichia coli, Gram-positive Staphylococcus aureus and the fungus Candida albicans. The best physicochemical properties were obtained with a scaffold produced with a PCL/PVP ratio of 85:15, this polymeric scaffold demonstrated the most antimicrobial activity without affecting the cell viability of human fibroblast. Pelletized Ag/Si-Al2O3-3 sorbent possessed the best water uptake capability and the higher antimicrobial activity, over time between all the sorbents tested. The combination of PCL/PVP 85:15 microfibers with the chosen Ag/Si-Al2O3-3 sorbent will be used in the following work for creation of wound dressings possessing exudate retention, biocompatibility and antimicrobial activity.

8.
Chemosphere ; 252: 126507, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32200181

RESUMO

River confluences are interesting ecological niche with limited information in respect of the structure and the functions of diverse microbial communities. Fungi are gaining global attention as promising biological spectacles for defining the trophic status of riverine systems. We condense existing knowledge in confluence diversity in two Indian rivers (i.e. Ganges and Yamuna), by combining sediment metagenomics using long read aided MinION nanopore sequencing. A total of 63 OTU's were observed, of which top 20 OTU's were considered based on relative abundance of each OTU at a particular location. Fungal genera such as Aspergillus, Penicillium, Kluveromyces, Lodderomyces, and Nakaseomyces were deciphered as potential bio indicators of river pollution and eutrophication in the confluent zone. In silico functional gene analysis uncovered hits for neurodegenerative diseases and xenobiotic degradation potential, supporting bioindication of river pollution in wake of anthropogenic intervention.


Assuntos
Biomarcadores Ambientais , Monitoramento Ambiental/métodos , Microbiota , Microbiologia da Água , Fungos , Metagenômica , Rios/química , Rios/microbiologia
9.
ACS Chem Biol ; 15(3): 780-788, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32058690

RESUMO

Rediscovery of known compounds and time consumed in identification, especially high molecular weight compounds with complex structure, have let down interest in drug discovery. In this study, whole-genome analysis of microbe and Global Natural Products Social (GNPS) molecular networking helped in initial understanding of possible compounds produced by the microbe. Genome data revealed 10 biosythethic gene clusters that encode for secondary metabolites with anticancer potential. NMR analysis of the pure compound revealed the presence of a four-ringed benz[a]anthracene, thus confirming angucycline; molecular networking further confirmed production of this class of compounds. The type II polyketide synthase gene identified in the microbial genome was matched with the urdamycin cluster by BLAST analysis. This information led to ease in identification of urdamycin E and a novel natural derivative, urdamycin V, purified from Streptomyces sp. OA293. Urdamycin E (Urd E) induced apoptosis and autophagy in cancer cell lines. Urd E exerted anticancer action through inactivation of the mTOR complex by preventing phosphorylation at Ser 2448 and Ser 2481 of mTORC1 and mTORC2, respectively. Significant reduction in phosphorylation of the major downstream regulators of both mTORC1 (p70s6k and 4e-bp1) and mTORC2 (Akt) were observed, thus further confirming complete inhibition of the mTOR pathway. Urd E presents itself as a novel mTOR inhibitor that employs a novel mechanism in mTOR pathway inhibition.


Assuntos
Aminoglicosídeos/biossíntese , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Estudo de Associação Genômica Ampla/métodos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Sequência de Aminoácidos , Aminoglicosídeos/metabolismo , Antineoplásicos/química , Autofagia/efeitos dos fármacos , Benzo(a)Antracenos/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Inibidores Enzimáticos/metabolismo , Regulação da Expressão Gênica , Humanos , Família Multigênica , Fosforilação/efeitos dos fármacos , Ligação Proteica , Transdução de Sinais , Streptomyces/química , Streptomyces/genética
10.
Microb Pathog ; 141: 103972, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31923557

RESUMO

Culturable bacteria associated with marine sponges and coral mucus (collected from Gulf of Mannar and Palk Bay) were screened for their prospective antimicrobial compounds against 9 bacterial pathogens (Bacillus megaterium, B. cereus, Salmonella typhimurium, Staphylococcus aureus, Proteus vulgaris, Klebsillla pneumoniae, Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii) and a fungal pathogen (Candida albicans). Of the 263 bacterial isolates obtained during this study, 52 isolates displayed antimicrobial activity against one or more pathogens. 16S rRNA gene sequencing revealed that these 52 strains affiliated to 14 genera from three phyla Proteobacteria, Firmicutes and Actinobacteria. Sponge associated bacterial strains F-04, I-23, I-33 and G-03 inhibited the growth of all the bacterial pathogens tested in this study and significantly the former 2 strains inhibited the growth of fungal pathogen also. Majority of the potential strains (88.4% out of 52 strains) inhibited the growth of Bacillus cereus. Interestingly, an actinomycete strain F-04 (isolated from sponge Orina sagittaria) inhibited the growth of methicillin resistant Staphylococcus aureus. In total, 10 volatile organic compounds were determined from the ethyl acetate and hexane extract of the strain F-04 using GC-MS. Overall, marine bacteria isolated during this study demonstrate the potential for the development of broad spectrum antibiotics.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Produtos Biológicos/farmacologia , Recifes de Corais , Microbiota/efeitos dos fármacos , Poríferos/microbiologia , Animais , Anti-Infecciosos/isolamento & purificação , Bactérias/isolamento & purificação , Biodiversidade , Produtos Biológicos/isolamento & purificação , Fracionamento Químico , Cromatografia Gasosa-Espectrometria de Massas , Interações Hospedeiro-Patógeno
11.
Probiotics Antimicrob Proteins ; 12(2): 481-493, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31407234

RESUMO

Coleus forskohlii is an herb, well-known for its medicinal compound forskolin present in its roots, with wide range of pharmaceutical applications. Here, we report, for the first time, the role of plant-probiotic bacterial endophytes of C. forskohlii, CFLB1 and CFRB1, isolated from leaf and root, which regulate plant growth and in plant forskolin content. Native bacterial endophyte, CFRB1 (Alcaligenes faecalis), significantly modulates primary plant productivity and forskolin content under pot and field conditions. Under field conditions, CFRB1 endophyte application significantly enhanced photosynthetic pigments and reduced the severity of root-knot and root rot diseases. Expression analyses of functional genes involved in the forskolin biosynthesis in C. forskohlii plants treated with CFRB1 endophyte under field conditions revealed differential upregulation of four C. forskohlii diterpene synthases (CfTPSs), CfTPS1, CfTPS2, CfTPS3 and CfTPS4, along with cytochrome P450 (CfCYP76AH15) and acyltransferase (CfACT1-8) genes. CFRB1 treatment reduced the severity of nematode infection and root rot in C. forskohlii plants by 81 and 78%, respectively. Overall, we demonstrate that cross-talk of plant-endophyte interaction in C. forskohlii is beneficial, leading to enhanced forskolin content through modulation of forskolin biosynthetic pathway genes along with increased plant yield and reduced disease incidence. Thus, endophytic isolate, A. faecalis (CFRB1), could be deployed as a novel bio-stimulant for enhancing in planta forskolin content during cultivation of C. forskohlii.


Assuntos
Alcaligenes faecalis/isolamento & purificação , Colforsina/metabolismo , Endófitos/isolamento & purificação , Folhas de Planta/metabolismo , Plectranthus/metabolismo , Simbiose , Animais , Resistência à Doença , Interações entre Hospedeiro e Microrganismos , Nematoides , Doenças das Plantas/parasitologia
12.
Microbiol Res ; 227: 126310, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31421714

RESUMO

Deployment of plant endophytes at field level is reported to make an impact on agricultural crop productivity; development and deployment of suitable crop specific plant probiotics in a suitable delivery matrix is a value-added task. In our study, we attempted to develop bioformulations of native, fungal endophytes of Coleus forskohlii to improve plant yield using two different carrier-based materials (talc and wheat bran). Initially, fungal endophytes (RF1, SF1, and SF2) were grown on sterilized wheat bran under solid state condition and their growth kinetics and pattern were analyzed by ergosterol content and scanning electron microscope, respectively. 10-day-grown fungal endophytic cultures were used for the development of two types of formulations (wheat bran and talc-based formulations) and tested for their efficacy on host plant, C. forskohlii under field conditions. Interestingly, application of wheat bran-based endophytic formulations significantly (p < 0.01) enhanced plant height (12-29%), number of branches (51-63%), root biomass (26-33%), photosynthetic pigments (32-101%), and forskolin content (35-56%) compared to talc-based formulations under field conditions. Shelf life of endophytes (RF1, SF1, and SF2) in both formulations revealed spore viability in wheat bran-based formulations for 6 months storage period as compared to talc-based formulations. Overall, the present investigation envisages developing plant probiotic bioformulations of functional endophytes of C. forskohlii to enhance root biomass and in planta forskolin content.


Assuntos
Endófitos/crescimento & desenvolvimento , Endófitos/fisiologia , Desenvolvimento Vegetal , Plectranthus/microbiologia , Probióticos , Biomassa , Colforsina/metabolismo , Produtos Agrícolas , Fibras na Dieta/microbiologia , Ergosterol/metabolismo , Viabilidade Microbiana , Fotossíntese , Pigmentos Biológicos , Raízes de Plantas/microbiologia , Probióticos/economia
13.
J Hazard Mater ; 380: 120868, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31319332

RESUMO

In this study, a novel thermo stable biosurfactants, 1-Pentanonacontene (C95H190) a fatty alkene and 3-Hydroxy-16-methylheptadecanoic acid (C18H36O3) were isolated from a marine isolate SGD-AC-13. Biosurfactants were produced using 1% yeast extract in tap water as production medium at 24 h in flask and 12 h in bioreactor. Using 16S rRNA gene sequence (1515 bp) and BCL card (bioMérieux VITEK®), strain was identified as Bacillus sp. Crude biosurfactant reduced the surface tension of distilled water to 31.32 ±â€¯0.93 mN/m with CMC value of 0.3 mg/ml. Cell free supernatant showed excellent emulsification and oil displacement activity with stability up to 160 °C, pH 6-12 and 50 g/L NaCl conc. Biosurfactants were characterized using FTIR, TLC, HPLC LC-MS and NMR spectroscopy. Cell free supernatant reduced the contact angle of distilled water droplet from 117° to 52.28° and of 2% pesticide from 78.77° to 73.42° while 750 µg/ml of crude biosurfactant reduced from 66.06° to 56.33° for 2% pesticide and recovered 35% ULO and 12% HWCO from the contaminated sand. To our best of knowledge, this is the first report of thermo stable fatty alkene as a biosurfactant and is structurally different from previously reported, with having potential application in agriculture, oil recovery and bioremediation.


Assuntos
Alcenos/química , Alcenos/farmacologia , Bacillus/química , Pentanonas/química , Pentanonas/farmacologia , Tensoativos/química , Tensoativos/farmacologia , Alcenos/isolamento & purificação , Clorpirifos/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Inseticidas/química , Óleos/química , Pentanonas/isolamento & purificação , Tensão Superficial , Tensoativos/isolamento & purificação , Molhabilidade
14.
Sci Total Environ ; 679: 52-60, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31082602

RESUMO

Applicability of thermophilic and thermo-tolerant microorganisms for biodegradation of polycyclic aromatic hydrocarbons (PAHs) with low water solubility is an interesting strategy for improving the biodegradation efficiency. In this study, we evaluated utility of thermophilic and thermo-tolerant bacteria isolated from Unkeshwar hot spring (India) for biodegradation of four different PAHs. Water samples were enriched in mineral salt medium (MSM) containing a mixture of four PAHs compounds (anthracene: ANT, fluorene: FLU, phenanthrene: PHE and pyrene: PYR) at 37 °C and 50 °C. After growth based screening, four potent strains obtained which were identified as Aeribacillus pallidus (UCPS2), Bacillus axarquiensis (UCPD1), Bacillus siamensis (GHP76) and Bacillus subtilis subsp. inaquosorum (U277) based on the 16S rRNA gene sequence analysis. Degradation of mixed PAH compounds was evaluated by pure as well as mixed cultures under shake flask conditions using MSM supplemented with 200 mg/L concentration of PAHs (50 mg/L of each compound) for 15 days at 37 °C and 50 °C. A relatively higher degradation of ANT (92%- 96%), FLU (83% - 86%), PHE (16% - 54%) and PYR (51% - 71%) was achieved at 50 °C by Aeribacillus sp. (UCPS2) and mixed culture. Furthermore, crude oil was used as a substrate to study the degradation of same PAHs using these organisms which also revealed with similar results with the higher degradation at 50 °C. Interestingly, PAH-degrading strains were also positive for biosurfactant production. Biosurfactants were identified as the variants of surfactins (lipopeptide biosurfactants) based on analytical tools and phylogenetic analysis of the surfactin genes. Overall, this study has shown that hot spring microbes may have a potential for PAHs degradation and also biosurfactant production at a higher temperature, which could provide a novel perspective for removal of PAHs residues from oil contaminated sites.


Assuntos
Bactérias/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Fontes Termais/microbiologia , Índia , Tensoativos , Termotolerância
15.
Sci Total Environ ; 674: 288-299, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31005831

RESUMO

River confluences are interesting ecosystems to investigate for their microbial community structure and functional potentials. River Ganges is one of the most important and holy river of India with great mythological history and religious significance. The Yamuna River meets Ganges at the Prayagraj (formerly known as Allahabad), India to form a unique confluence. The influence of Yamuna River on taxonomic and functional aspects of microbiome at this confluence and its downstream, remains unexplored. To unveil this dearth, whole metagenome sequencing of the microbial (bacterial and archaeal) community from the sediment samples of December 2017 sampling expedition was executed using high throughput MinION technology. Results revealed differences in the relative abundance of bacterial and archaeal communities across the confluence. Grouped by the confluence, a higher abundance of Proteobacteria and lower abundance of Bacteroidetes and Firmicutes was observed for Yamuna River (G15Y) and at immediate downstream of confluence of Ganges (G15DS), as compared to the upstream, confluence, and farther downstream of confluence. A similar trend was observed for archaeal communities with a higher abundance of Euryarchaeota in G15Y and G15DS, indicating Yamuna River's influence. Functional gene(s) analysis revealed the influence of Yamuna River on xenobiotic degradation, resistance to toxic compounds, and antibiotic resistance interceded by the autochthonous microbes at the confluence and succeeding downstream locations. Overall, similar taxonomic and functional profiles of microbial communities before confluence (upstream of Ganges) and farther downstream of confluence, suggested a transient influence of Yamuna River. Our study is significant since it may be foundational basis to understand impact of Yamuna River and also rare event of mass bathing on the microbiome of River Ganges. Further investigation would be required to understand, the underlying cause behind the restoration of microbial profiles post-confluence farther zone, to unravel the rejuvenation aspects of this unique ecosystem.


Assuntos
Monitoramento Ambiental , Metagenômica , Rios/microbiologia , Archaea , Bactérias , Resistência Microbiana a Medicamentos , Ecossistema , Sedimentos Geológicos , Índia , Metagenoma/fisiologia , Proteobactérias , Rios/química
16.
Syst Appl Microbiol ; 42(3): 360-372, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30982666

RESUMO

The species Bacillus badius is one of the oldest members of the genus Bacillus isolated from faeces of children and was classified based on its ability to form endospores [8]. In 16S rRNA gene sequence and phylogenetic analysis, Bacillus badius DSM 23T shared low similarity (93.0%) and distant relationship with B. subtilis, the type species of the genus Bacillus indicating that it does not belong to this genus. Additional strains of the species, B. badius DSM 5610, DSM 30822 and B. encimensis SGD-V-25 (which has been recently reclassified as a member of this species) were included in the study to consider intraspecies diversity. Detailed molecular phylogenetic and comparative genome analysis clearly showed that the strains of B. badius were consistently retrieved outside the cluster of Bacillus sensu stricto and also distantly related to the genera Domibacillus and Quasibacillus. Further, the data from biochemical reactions (inability to ferment most carbohydrates), polar lipids profile (presence of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an aminophosphoglycolipid) and fatty acids supported the molecular analysis. Thus the four B. badius strains; DSM 23T, DSM 5610, DSM 30822 and SGD-V-25 displayed sufficient demarcating phenotypic characteristics that warrant their classification as members of a novel genus and single species, for which the name Pseudobacillus badius gen. nov. comb. nov. is proposed with Pseudobacillus badius DSM 23T (= ATCC 14574T) as the type strain. Additionally, based on our findings from phenotypic, chemotaxonomic and genotypic parameters, Bacillus wudalianchiensis DSM 100757T was reclassified as Pseudobacillus wudalianchiensis comb. nov.


Assuntos
Bacillaceae/classificação , Filogenia , Bacillaceae/química , Bacillaceae/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Genoma Bacteriano/genética , Lipídeos/análise , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Int. microbiol ; 22(1): 1-6, mar. 2019. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-184808

RESUMO

Between 150 and 200 species of plants, insects, birds or mammals go extinct every day. We do not have any idea what the global extinction rate for microorganisms is. What is clear is that we have already lost a maximum number of the microbes that used to live in and on our skins. Many of our microbial partners are facing extinction as we apply selection pressures that are unprecedented in our long-standing relationships. Recent estimates are that we have lost at least one third of the diversity of our skin microbiome. Every day, most of us bath or shower in water that contains chlorine or fluorine; these additives do a great job of killing pathogenic microbes, but they are probably not helping our skin microbiome. Most of the people apply cosmetic products every day, as these products contain preservatives that prevent microbial growth on the shelf. These same chemicals may well kill microbes on the skin. The daily use of high-pH soaps probably will not help microbial life that is adapted to living on the skin's natural pH of 5. The rise in the rate of C-section births from around 5% in 1970 to more than 30% today is likely to be a contributing factor. Vaginal microbes seed our skins at birth and C-sections disrupt this process. The overuse of broad-spectrum antibiotics has contributed to the loss of our microbial partners in all body sites and the skin is no exception. It is now clear that skin is an ecosystem that is dependent on commensal microbes for optimal health. In general, a diverse ecosystem is a healthy ecosystem that is robust in the face of change. Low-diversity ecosystems are more fragile and susceptible to dysbiosis. Eczema and acne rates have increased rapidly over the last 50 years. These diseases are almost unknown in hunter-gatherer communities. Now, we face two exciting challenges: finding out which species matter and how to get them back


No disponible


Assuntos
Humanos , Micobioma , Pele/microbiologia , Disbiose/microbiologia , Bactérias/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Simbiose , Extinção Biológica , Cosméticos/efeitos adversos , Compostos Químicos/efeitos adversos , Fenômenos Microbiológicos
19.
Int Microbiol ; 22(1): 1-6, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30810942

RESUMO

Between 150 and 200 species of plants, insects, birds or mammals go extinct every day. We do not have any idea what the global extinction rate for microorganisms is. What is clear is that we have already lost a maximum number of the microbes that used to live in and on our skins. Many of our microbial partners are facing extinction as we apply selection pressures that are unprecedented in our long-standing relationships. Recent estimates are that we have lost at least one third of the diversity of our skin microbiome. Every day, most of us bath or shower in water that contains chlorine or fluorine; these additives do a great job of killing pathogenic microbes, but they are probably not helping our skin microbiome. Most of the people apply cosmetic products every day, as these products contain preservatives that prevent microbial growth on the shelf. These same chemicals may well kill microbes on the skin. The daily use of high-pH soaps probably will not help microbial life that is adapted to living on the skin's natural pH of 5. The rise in the rate of C-section births from around 5% in 1970 to more than 30% today is likely to be a contributing factor. Vaginal microbes seed our skins at birth and C-sections disrupt this process. The overuse of broad-spectrum antibiotics has contributed to the loss of our microbial partners in all body sites and the skin is no exception. It is now clear that skin is an ecosystem that is dependent on commensal microbes for optimal health. In general, a diverse ecosystem is a healthy ecosystem that is robust in the face of change. Low-diversity ecosystems are more fragile and susceptible to dysbiosis. Eczema and acne rates have increased rapidly over the last 50 years. These diseases are almost unknown in hunter-gatherer communities. Now, we face two exciting challenges: finding out which species matter and how to get them back.


Assuntos
Bactérias/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Pele/microbiologia , Simbiose , Humanos
20.
Virus Res ; 263: 184-188, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30769122

RESUMO

The phage taxonomy is primarily based on the morphology derived from Transmission Electron Microscopic (TEM) studies. TEM based characterization is authentic and accepted by scientific community. However, TEM based identification is expensive and time consuming. After the phage isolation, before analysis TEM, a DNA based rapid method could be introduced. The DNA based method could dramatically reduce the number of samples analyzed by TEM and thereby increase the speed and reduce the cost of identification. In the present work, four environmental phage isolates were identified based on TEM studies and genome size. The identification of these four phages was validated using DNA based method. The taxon-specific DNA markers were identified through multiple sequence alignments. The primers were designed at conserved genes (DNA polymerase or integrase) of 4 different phage taxa viz. family Ackermannviridae, genus Jerseyvirus, genus T4virus, and genus P22virus. These primers were evaluated using both in vitro and in silico approach for the amplification of the target taxons. Majority of the primer sets were found to amplify member species of the targeted taxa in vitro. In In silico analysis, six primer sets intended for identification of family Ackermannviridae showed positive amplification of ≥86.7% classified species. Further, the primers targeting the genus Jerseyvirus and T4virus showed the amplification of 53.8% and ≥84.6% species, respectively. The present work is a case study performed to explore the possibility of use of taxon-specific primers for identification and taxonomic studies of newly isolated phages to supplement the TEM.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/genética , Classificação/métodos , Primers do DNA/genética , Reação em Cadeia da Polimerase/métodos , Virologia/métodos , Bacteriófagos/isolamento & purificação , Microbiologia Ambiental , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...