Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(10): 5196-5203, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32098848

RESUMO

Black carbon (BC) absorbs solar radiation, leading to a strong but uncertain warming effect on climate. A key challenge in modeling and quantifying BC's radiative effect on climate is predicting enhancements in light absorption that result from internal mixing between BC and other aerosol components. Modeling and laboratory studies show that BC, when mixed with other aerosol components, absorbs more strongly than pure, uncoated BC; however, some ambient observations suggest more variable and weaker absorption enhancement. We show that the lower-than-expected enhancements in ambient measurements result from a combination of two factors. First, the often used spherical, concentric core-shell approximation generally overestimates the absorption by BC. Second, and more importantly, inadequate consideration of heterogeneity in particle-to-particle composition engenders substantial overestimation in absorption by the total particle population, with greater heterogeneity associated with larger model-measurement differences. We show that accounting for these two effects-variability in per-particle composition and deviations from the core-shell approximation-reconciles absorption enhancement predictions with laboratory and field observations and resolves the apparent discrepancy. Furthermore, our consistent model framework provides a path forward for improving predictions of BC's radiative effect on climate.

2.
Environ Sci Technol ; 53(21): 12366-12378, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31490675

RESUMO

Glass transitions of secondary organic aerosols (SOA) from liquid/semisolid to solid phase states have important implications for aerosol reactivity, growth, and cloud formation properties. In the present study, glass transition temperatures (Tg) of isoprene SOA components, including isoprene hydroxy hydroperoxide (ISOPOOH), isoprene-derived epoxydiols (IEPOX), 2-methyltetrols, and 2-methyltetrol sulfates, were measured at atmospherically relevant cooling rates (2-10 K/min) by thin film broadband dielectric spectroscopy. The results indicate that 2-methyltetrol sulfates have the highest glass transition temperature, while ISOPOOH has the lowest glass transition temperature. By varying the cooling rate of the same compound from 2 to 10 K/min, the Tg of these compounds increased by 4-5 K. This temperature difference leads to a height difference of 400-800 m in the atmosphere for the corresponding updraft induced cooling rates, assuming a hygroscopicity value (κ) of 0.1 and relative humidity less than 95%. The Tg of the organic compounds was found to be strongly correlated with volatility, and a semiempirical formula between glass transition temperatures and volatility was derived. The Gordon-Taylor equation was applied to calculate the effect of relative humidity (RH) and water content at five mixing ratios on the Tg of organic aerosols. The model shows that Tg could drop by 15-40 K as the RH changes from <5 to 90%, whereas the mixing ratio of water in the particle increases from 0 to 0.5. These results underscore the importance of chemical composition, updraft rates, and water content (RH) in determining the phase states and hygroscopic properties of organic particles.


Assuntos
Atmosfera , Espectroscopia Dielétrica , Aerossóis , Transição de Fase , Volatilização
3.
Faraday Discuss ; 200: 165-194, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28574555

RESUMO

Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA-soot biogenic-anthropogenic interactions and their impact on ice nucleation in relation to the particles' organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (Tg) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibit a core-shell configuration (i.e. a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respective Tg and FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.

4.
Environ Sci Technol ; 47(12): 6349-57, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23701291

RESUMO

Brown carbon (BrC), which may include secondary organic aerosol (SOA), can be a significant climate-forcing agent via its optical absorption properties. However, the overall contribution of SOA to BrC remains poorly understood. Here, correlations between oxidation level and optical properties of SOA are examined. SOA was generated in a flow reactor in the absence of NOx by OH oxidation of gas-phase precursors used as surrogates for anthropogenic (naphthalene, tricyclo[5.2.1.0(2,6)]decane), biomass burning (guaiacol), and biogenic (α-pinene) emissions. SOA chemical composition was characterized with a time-of-flight aerosol mass spectrometer. SOA mass-specific absorption cross sections (MAC) and refractive indices were calculated from real-time cavity ring-down photoacoustic spectrometry measurements at 405 and 532 nm and from UV-vis spectrometry measurements of methanol extracts of filter-collected particles (300 to 600 nm). At 405 nm, SOA MAC values and imaginary refractive indices increased with increasing oxidation level and decreased with increasing wavelength, leading to negligible absorption at 532 nm. Real refractive indices of SOA decreased with increasing oxidation level. Comparison with literature studies suggests that under typical polluted conditions the effect of NOx on SOA absorption is small. SOA may contribute significantly to atmospheric BrC, with the magnitude dependent on both precursor type and oxidation level.


Assuntos
Aerossóis/química , Compostos Orgânicos/química , Monoterpenos Bicíclicos , Carbono/química , Monoterpenos/química , Naftalenos/química , Oxirredução
5.
Science ; 339(6118): 393, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23349273

RESUMO

Jacobson argues that our statement that "many climate models may overestimate warming by BC" has not been demonstrated. Jacobson challenges our results on the basis that we have misinterpreted some model results, omitted optical focusing under high relative humidity conditions and by involatile components, and because our measurements consist of only two locations over short atmospheric time periods. We address each of these arguments, acknowledging important issues and clarifying some misconceptions, and stand by our observations. We acknowledge that Jacobson identified one detail in our experimental technique that places an additional constraint on the interpretation of our observations and reduces somewhat the potential consequences of the stated implications.


Assuntos
Atmosfera/química , Carbono/química , Aquecimento Global , Luz , Processos Fotoquímicos , Fuligem/química
6.
Science ; 337(6098): 1078-81, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22936774

RESUMO

Atmospheric black carbon (BC) warms Earth's climate, and its reduction has been targeted for near-term climate change mitigation. Models that include forcing by BC assume internal mixing with non-BC aerosol components that enhance BC absorption, often by a factor of ~2; such model estimates have yet to be clearly validated through atmospheric observations. Here, direct in situ measurements of BC absorption enhancements (E(abs)) and mixing state are reported for two California regions. The observed E(abs) is small-6% on average at 532 nm-and increases weakly with photochemical aging. The E(abs) is less than predicted from observationally constrained theoretical calculations, suggesting that many climate models may overestimate warming by BC. These ambient observations stand in contrast to laboratory measurements that show substantial E(abs) for BC are possible.


Assuntos
Atmosfera/química , Carbono/química , Aquecimento Global , Luz , Processos Fotoquímicos , Fuligem/química , Adsorção , California , Carbono/análise , Tamanho da Partícula , Fuligem/análise
7.
Environ Sci Technol ; 46(10): 5430-7, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22534114

RESUMO

Functionalization (oxygen addition) and fragmentation (carbon loss) reactions governing secondary organic aerosol (SOA) formation from the OH oxidation of alkane precursors were studied in a flow reactor in the absence of NO(x). SOA precursors were n-decane (n-C10), n-pentadecane (n-C15), n-heptadecane (n-C17), tricyclo[5.2.1.0(2,6)]decane (JP-10), and vapors of diesel fuel and Southern Louisiana crude oil. Aerosol mass spectra were measured with a high-resolution time-of-flight aerosol mass spectrometer, from which normalized SOA yields, hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios, and C(x)H(y)+, C(x)H(y)O+, and C(x)H(y)O(2)+ ion abundances were extracted as a function of OH exposure. Normalized SOA yield curves exhibited an increase followed by a decrease as a function of OH exposure, with maximum yields at O/C ratios ranging from 0.29 to 0.74. The decrease in SOA yield correlates with an increase in oxygen content and decrease in carbon content, consistent with transitions from functionalization to fragmentation. For a subset of alkane precursors (n-C10, n-C15, and JP-10), maximum SOA yields were estimated to be 0.39, 0.69, and 1.1. In addition, maximum SOA yields correspond with a maximum in the C(x)H(y)O+ relative abundance. Measured correlations between OH exposure, O/C ratio, and H/C ratio may enable identification of alkane precursor contributions to ambient SOA.


Assuntos
Aerossóis/análise , Alcanos/química , Radical Hidroxila/química , Laboratórios , Compostos Orgânicos/análise , Carbono/análise , Espectrometria de Massas , México , Oxirredução , Oxigênio/análise , Poluição por Petróleo/análise , Fatores de Tempo
9.
Phys Rev Lett ; 102(23): 235504, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19658949

RESUMO

Using a novel morphology segregation technique, we observed minority populations ( approximately 3%) of submicron-sized, cluster-dilute fractal-like aggregates, formed in the soot-formation window (fuel-to-air equivalence ratio of 2.0-3.5) of a premixed flame, to have mass fractal dimensions between 1.2 and 1.51. Our observations disagree with previous observations of a universal mass fractal dimension of approximately 1.8 for fractal-like aerosol aggregates formed in the dilute-limit via three-dimensional diffusion-limited cluster aggregation processes. A hypothesis is presented to explain this observation. Subject to verification of this hypothesis, it may be possible to control the fractal dimension and associated properties of aggregates in the cluster-dilute limit through application of a static electric field during the aggregation process.

10.
Faraday Discuss ; 137: 425-30, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18214117

RESUMO

The 137th Faraday Discussion covered a wide range of subjects divided into the four categories of Spectroscopic Techniques, Dusty Plasmas and X-Ray Characterization, Atmospheric Aerosols, and Particle Manipulation. These divisions organized the thinking into specific areas of research and allowed one to see interconnections between the two central foci of physical chemistry; techniques and applications. Physical chemists excel at developing and mastering a wide range of new techniques and applying them to a variety of tasks as the need arises. At times specific tasks present themselves and in response new techniques are developed. The presentations provided examples of both such interplays. In these remarks the presentations are summarized, common features are highlighted, and possible directions for future research are suggested.

11.
Appl Opt ; 46(28): 6990-7006, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17906729

RESUMO

This study compares the optical coefficients of size-selected soot particles measured at a wavelength of 870 nm with those predicted by three theories, namely, Rayleigh-Debye-Gans (RDG) approximation, volume-equivalent Mie theory, and integral equation formulation for scattering (IEFS). Soot particles, produced by a premixed ethene flame, were size-selected using two differential mobility analyzers in series, and their scattering and absorption coefficients were measured with nephelometry and photoacoustic spectroscopy. Scanning electron microscopy and image processing techniques were used for the parameterization of the structural properties of the fractal-like soot aggregates. The aggregate structural parameters were used to evaluate the predictions of the optical coefficients based on the three light-scattering and absorption theories. Our results show that the RDG approximation agrees within 10% with the experimental results and the exact electromagnetic calculations of the IEFS theory. Volume-equivalent Mie theory overpredicts the experimental scattering coefficient by a factor of approximately 3.2. The optical coefficients predicted by the RDG approximation showed pronounced sensitivity to changes in monomer mean diameter, the count median diameter of the aggregates, and the geometric standard deviation of the aggregate number size distribution.

12.
J Phys Chem A ; 110(21): 6814-20, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16722697

RESUMO

The heterogeneous uptake of the 8-2 fluorotelomer alcohol, F(CF2)8CH2CH2OH, on liquid water surfaces over the temperature range 256-273 K and on 1-octanol surfaces over the temperature range 264-295 K has been investigated with a droplet train flow reactor. The uptake coefficient on water droplets is zero within the error of the measurement (+/-0.01) and is independent of droplet temperature. In contrast, significant uptake onto 1-octanol is observed. Measured uptake coefficients for 1-octanol showed a negative temperature dependence, varying from 0.034 +/- 0.005 (1sigma) at 295 K to 0.103 +/- 0.009 at 264 K. The measured uptake coefficients on 1-octanol were independent of gas-liquid contact time, for typical contact times varying between 3 and 15 ms, and independent of the 8-2 fluorotelomer alcohol gas-phase concentration, indicating that the uptake coefficients are equivalent to mass accommodation coefficients. The uptake coefficients on 1-octanol were also independent of relative humidity. These results show that the uptake of FTOHs on or into the aqueous component of cloud/fog droplets or aqueous aerosol particles is not likely to be an important atmospheric sink for these compounds. In these experiments, 1-octanol was used as a model compound for organic-containing atmospheric particles. The larger uptake coefficient measured for 1-octanol surfaces indicates that FTOH partitioning to organic-containing cloud/fog droplets and aerosol particles may be an atmospheric loss mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA