Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Ann Surg Oncol ; 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33856603

RESUMO

BACKGROUND: Management of patients with sentinel lymph node (SLN)-positive melanoma has changed dramatically over the last few years such that completion lymph node dissection (CLND) has become uncommon, and many patients receive adjuvant immunotherapy or targeted therapy. This study seeks to characterize patterns and predictors of early recurrence in this setting. PATIENTS AND METHODS: All patients with primary cutaneous melanoma undergoing sentinel lymph node biopsy (SLNB) between 3/2016 and 12/2019 were identified. The subset with a positive SLN who did not undergo CLND were examined for further analysis of outcomes and predictors of recurrence. RESULTS: Overall, 215 patients with SLN-positive melanoma who did not have CLND were identified. Adjuvant systemic therapy was administered to 102 (47%), with 93% of this subset receiving immunotherapy (n = 95). Median follow-up from SLNB was 20 months (IQR 12-28.5 months), and 57 patients (27%) recurred during this time. The SLN basin was the most common site of recurrence (n = 38, 67% of recurrence), with isolated nodal recurrence being the most common first site of recurrent disease (n = 22, 39% of recurrence). On multivariable analysis, lymphovascular invasion (LVI) of the primary tumor, two or more involved nodes, and > 1 mm nodal deposit were independently associated with higher rates of nodal relapse. CONCLUSIONS: Nodal recurrence is a primary driver of early disease relapse for patients with SLN-positive melanoma who do not undergo CLND in the era of effective adjuvant systemic therapy. LVI, ≥ 2 nodes, or > 1 mm nodal disease identifies patients at particularly high risk of nodal relapse.

2.
Oncologist ; 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33861486

RESUMO

LESSONS LEARNED: This study suggests that trametinib has significant clinical activity in non-V600 BRAF mutation and BRAF fusion metastatic melanoma, albeit in a small cohort. All patients with metastatic melanoma should undergo sequencing of the BRAF gene to identify noncanonical BRAF mutations that may indicate benefit from treatment with trametinib. BACKGROUND: Non-V600 BRAF mutations and BRAF fusions in aggregate occur in approximately 5% of all melanomas. Inhibition of the mitogen-activated protein kinase (MAPK) pathway has been implicated as a possible treatment strategy for these patients. METHODS: In this open-label, multicenter, phase II study, patients with advanced melanoma harboring mutations in BRAF outside V600 (non-V600) or BRAF fusions received trametinib 2.0 mg daily. Patients were divided into cohorts based on the intrinsic catalytic activity of BRAF mutation (high, cohort A; low/unknown, cohort B). The primary endpoint was objective response rate (ORR) for patients in cohort A; secondary endpoints included ORR in cohort B, safety, and survival in both treatment arms. RESULTS: Among all patients, the ORR was 33% (three of nine patients), including 67% in cohort A and 17% in cohort B. Two patients had stable disease as best response, and six patients had some degree of tumor shrinkage. The median progression-free survival (PFS) was 7.3 months. Treatment-related adverse events occurred in all patients (100%); most (89%) were grade 1-2. CONCLUSION: In contrast to recently described tumor-agnostic studies in a genetically similar population, trametinib had considerable activity in a small population of patients with melanoma harboring BRAF non-V600 mutations and fusions, providing rationale for sequencing in search of these genomic alterations.

3.
Cancer Discov ; 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707233

RESUMO

Many patients with advanced melanoma are resistant to immune checkpoint inhibition. In the ILLUMINATE-204 phase 1/2 trial, we assessed intratumoral tilsotolimod, an investigational Toll-like receptor 9 agonist, with systemic ipilimumab in patients with anti-PD-1-resistant advanced melanoma. In all patients, 48.4% experienced grade 3/4 treatment-emergent adverse events. The overall response rate at the recommended phase 2 dose of 8 mg was 22.4%, and an additional 49% of patients had stable disease. Responses in non-injected lesions and in patients expected to be resistant to ipilimumab monotherapy were observed. Rapid induction of a local interferon-alpha gene signature, dendritic cell maturation and enhanced markers of antigen presentation, and T-cell clonal expansion correlated with clinical response. A phase 3 clinical trial with this combination (NCT03445533) is ongoing.

4.
Cancer Med ; 10(7): 2293-2299, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33686688

RESUMO

BACKGROUND: Anti-programmed cell death protein 1 (PD-1) antibodies are a standard treatment for metastatic melanoma patients. However, the understanding of the efficacy of anti-PD-1 for acral melanoma (AM) and mucosal melanoma (MM) is limited as these subtypes are relatively rare compared to cutaneous melanoma (CM). METHODS: This single institution, retrospective cohort study included patients with advanced AM and MM who underwent anti-PD-1 therapy for metastatic melanoma between 2012 and 2018. Objective responses were determined using the investigator-assessed Response Evaluation Criteria in Solid Tumors version 1.1. Progression-free survival (PFS) and overall survival (OS) were assessed using the Kaplan-Meier method. A Cox regression analysis was performed to identify the factors associated with survival outcomes. RESULTS: Ninety-seven patients were identified, 38 (39%) with AM and 59 (61%) with MM. The objective response rates (ORRs) were 21.0% and 15.2% in patients with AM and MM, respectively. The median PFS and OS were 3.6 and 25.7 months for AM patients, and 3.0 and 20.1 months for MM patients, respectively. Elevated serum lactate dehydrogenase (LDH) (AM: hazard ratio [HR], 0.22; 95% confidence interval [CI], 0.06-0.87; p = 0.03, MM: HR, 0.20; 95% CI, 0.08-0.53; p = 0.001) was significantly associated with shorter OS for both subtypes. CONCLUSIONS: The ORR, PFS, and OS with anti-PD-1 therapy were poor in patients with AM and MM compared to those previously reported clinical trials for nonacral CM. High serum LDH was associated with significantly shorter OS.

5.
Cancer Immunol Res ; 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653716

RESUMO

Immunotherapy (IT) and targeted therapy (TT) are both effective against melanoma, but their combination is frequently toxic. Here, we investigated whether the sequence of IT (anti-PD-1)→ TT (ceritinib-trametinib or dabrafenib-trametinib) was associated with improved antitumor responses in mouse models of BRAF- and NRAS-mutant melanoma. Mice with NRAS-mutant (SW1) or BRAF-mutant (SM1) mouse melanomas were treated with either IT, TT, or the sequence of IT→TT. Tumor volumes were measured, and samples from the NRAS-mutant melanomas were collected for immune-cell analysis, single-cell RNA sequencing (scRNA-seq), and reverse phase protein analysis (RPPA). scRNA-seq demonstrated that the IT→TT sequence modulated the immune environment, leading to increased infiltration of T cells, monocytes, dendritic cells and natural killer cells, and decreased numbers of tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells. Durable responses to the IT→TT sequence were dependent on T-cell activity, with depletion of CD8+, but not CD4+, T cells abrogating the therapeutic response. An analysis of transcriptional heterogeneity in the melanoma compartment showed the sequence of IT→TT enriched for a population of melanoma cells with increased expression of MHC class I and melanoma antigens. RPPA analysis demonstrated that the sustained immune response induced by IT→TT suppressed tumor-intrinsic signaling pathways required for therapeutic escape. These studies establish that upfront IT improves the responses to TT in BRAF- and NRAS-mutant melanoma models.

6.
Nat Med ; 27(2): 301-309, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33558722

RESUMO

The association among pathological response, recurrence-free survival (RFS) and overall survival (OS) with neoadjuvant therapy in melanoma remains unclear. In this study, we pooled data from six clinical trials of anti-PD-1-based immunotherapy or BRAF/MEK targeted therapy. In total, 192 patients were included; 141 received immunotherapy (104, combination of ipilimumab and nivolumab; 37, anti-PD-1 monotherapy), and 51 received targeted therapy. A pathological complete response (pCR) occurred in 40% of patients: 47% with targeted therapy and 33% with immunotherapy (43% combination and 20% monotherapy). pCR correlated with improved RFS (pCR 2-year 89% versus no pCR 50%, P < 0.001) and OS (pCR 2-year OS 95% versus no pCR 83%, P = 0.027). In patients with pCR, near pCR or partial pathological response with immunotherapy, very few relapses were seen (2-year RFS 96%), and, at this writing, no patient has died from melanoma, whereas, even with pCR from targeted therapy, the 2-year RFS was only 79%, and OS was only 91%. Pathological response should be an early surrogate endpoint for clinical trials and a new benchmark for development and approval in melanoma.


Assuntos
Melanoma/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Intervalo Livre de Doença , Feminino , Humanos , Imunoterapia/efeitos adversos , Ipilimumab/administração & dosagem , Ipilimumab/efeitos adversos , Masculino , Melanoma/genética , Melanoma/imunologia , Melanoma/patologia , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Terapia Neoadjuvante/efeitos adversos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/patologia , Nivolumabe/administração & dosagem , Nivolumabe/efeitos adversos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Adulto Jovem
7.
Lancet Oncol ; 22(3): 370-380, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33587894

RESUMO

BACKGROUND: Melanoma lacks validated blood-based biomarkers for monitoring and predicting treatment efficacy. Cell-free circulating tumour DNA (ctDNA) is a promising biomarker; however, various detection methods have been used, and, to date, no large studies have examined the association between serial changes in ctDNA and survival after BRAF, MEK, or BRAF plus MEK inhibitor therapy. We aimed to evaluate whether baseline ctDNA concentrations and kinetics could predict survival outcomes. METHODS: In this clinical validation study, we used analytically validated droplet digital PCR assays to measure BRAFV600-mutant ctDNA in pretreatment and on-treatment plasma samples from patients aged 18 years or older enrolled in two clinical trials. COMBI-d (NCT01584648) was a double-blind, randomised phase 3 study of dabrafenib plus trametinib versus dabrafenib plus placebo in previously untreated patients with BRAFV600 mutation-positive unresectable or metastatic melanoma. Patients had an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1. COMBI-MB (NCT02039947) was an open-label, non-randomised, phase 2 study evaluating dabrafenib plus trametinib in patients with BRAFV600 mutation-positive metastatic melanoma and brain metastases. Patients in cohort A of COMBI-MB had asymptomatic brain metastases, no previous local brain-directed therapy, and an ECOG performance status of 0 or 1. Biomarker analysis was a prespecified exploratory endpoint in both trials and performed in the intention-to-treat populations in COMBI-d and COMBI-MB. We investigated the association between mutant copy number (baseline or week 4 or zero conversion status) and efficacy endpoints (progression-free survival, overall survival, and best overall response). We used Cox models, Kaplan-Meier plots, and log-rank tests to explore the association of pretreatment ctDNA concentrations with progression-free survival and overall survival. The effect of additional prognostic variables such as lactate dehydrogenase was also investigated in addition to the mutant copy number. FINDINGS: In COMBI-d, pretreatment plasma samples were available from 345 (82%) of 423 patients and on-treatment (week 4) plasma samples were available from 224 (53%) of 423 patients. In cohort A of COMBI-MB, pretreatment and on-treatment samples were available from 38 (50%) of 76 patients with intracranial and extracranial metastatic melanoma. ctDNA was detected in pretreatment samples from 320 (93%) of 345 patients (COMBI-d) and 34 (89%) of 38 patients (COMBI-MB). When assessed as a continuous variable, elevated baseline BRAFV600 mutation-positive ctDNA concentration was associated with worse overall survival outcome (hazard ratio [HR] 1·13 [95% CI 1·09-1·18], p<0·0001 by univariate analysis), independent of treatment group and baseline lactate dehydrogenase concentrations (1·08 [1·03-1·13], p=0·0020), in COMBI-d. A ctDNA cutoff point of 64 copies per mL of plasma stratified patients enrolled in COMBI-d as high risk or low risk with respect to survival outcomes (HR 1·74 [95% CI 1·37-2·21], p<0·0001 for progression-free survival; 2·23 [1·73-2·87], p<0·0001 for overall survival) and was validated in the COMBI-MB cohort (3·20 [1·39-7·34], p=0·0047 for progression-free survival; 2·94 [1·18-7·32], p=0·016 for overall survival). In COMBI-d, undetectable ctDNA at week 4 was significantly associated with extended progression-free and overall survival, particularly in patients with elevated lactate dehydrogenase concentrations (HR 1·99 [95% CI 1·08-3·64], p=0·027 for progression-free survival; 2·38 [1·24-4·54], p=0·0089 for overall survival). INTERPRETATION: Pretreatment and on-treatment BRAFV600-mutant ctDNA measurements could serve as independent, predictive biomarkers of clinical outcome with targeted therapy. FUNDING: Novartis.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/secundário , DNA Tumoral Circulante/genética , Melanoma/patologia , Idoso , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , DNA Tumoral Circulante/análise , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Imidazóis/administração & dosagem , Masculino , Melanoma/tratamento farmacológico , Melanoma/genética , Pessoa de Meia-Idade , Oximas/administração & dosagem , Prognóstico , Piridonas/administração & dosagem , Pirimidinonas/administração & dosagem , Taxa de Sobrevida
8.
Acta Neuropathol ; 141(2): 303-321, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33394124

RESUMO

The deadly complication of brain metastasis (BM) is largely confined to a relatively narrow cross-section of systemic malignancies, suggesting a fundamental role for biological mechanisms shared across commonly brain metastatic tumor types. To identify and characterize such mechanisms, we performed genomic, transcriptional, and proteomic profiling using whole-exome sequencing, mRNA-seq, and reverse-phase protein array analysis in a cohort of the lung, breast, and renal cell carcinomas consisting of BM and patient-matched primary or extracranial metastatic tissues. While no specific genomic alterations were associated with BM, correlations with impaired cellular immunity, upregulated oxidative phosphorylation (OXPHOS), and canonical oncogenic signaling pathways including phosphoinositide 3-kinase (PI3K) signaling, were apparent across multiple tumor histologies. Multiplexed immunofluorescence analysis confirmed significant T cell depletion in BM, indicative of a fundamentally altered immune microenvironment. Moreover, functional studies using in vitro and in vivo modeling demonstrated heightened oxidative metabolism in BM along with sensitivity to OXPHOS inhibition in murine BM models and brain metastatic derivatives relative to isogenic parentals. These findings demonstrate that pathophysiological rewiring of oncogenic signaling, cellular metabolism, and immune microenvironment broadly characterizes BM. Further clarification of this biology will likely reveal promising targets for therapeutic development against BM arising from a broad variety of systemic cancers.

9.
Cancer Cell ; 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33157050

RESUMO

Perturbation biology is a powerful approach to modeling quantitative cellular behaviors and understanding detailed disease mechanisms. However, large-scale protein response resources of cancer cell lines to perturbations are not available, resulting in a critical knowledge gap. Here we generated and compiled perturbed expression profiles of ∼210 clinically relevant proteins in >12,000 cancer cell line samples in response to ∼170 drug compounds using reverse-phase protein arrays. We show that integrating perturbed protein response signals provides mechanistic insights into drug resistance, increases the predictive power for drug sensitivity, and helps identify effective drug combinations. We build a systematic map of "protein-drug" connectivity and develop a user-friendly data portal for community use. Our study provides a rich resource to investigate the behaviors of cancer cells and the dependencies of treatment responses, thereby enabling a broad range of biomedical applications.

10.
Cancer Med ; 9(22): 8650-8661, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33016647

RESUMO

Elevated serum lactate dehydrogenase (sLDH) is associated with poor clinical outcomes in patients with stage IV metastatic melanoma (MM). It is currently unknown if sLDH elevation correlates with distinct molecular, metabolic, or immune features of melanoma metastases. The identification of such features may identify rational therapeutic strategies for patients with elevated sLDH. Thus, we obtained sLDH levels for melanoma patients with metastases who had undergone molecular and/or immune profiling. Our analysis of multi-omics data from independent cohorts of melanoma metastases showed that elevated sLDH was not significantly associated with differences in immune cell infiltrate, point mutations, DNA copy number variations, promoter methylation, RNA expression, or protein expression in melanoma metastases. The only significant association observed for elevated sLDH was with the number of metastatic sites of disease. Our data support that sLDH correlates with disease burden, but not specific molecular or immunological phenotypes, in metastatic melanoma.

11.
Cell Death Dis ; 11(10): 882, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082316

RESUMO

Current treatment modalities for disseminated cutaneous malignant melanoma (CMM) improve survival, however disease progression commonly ensues. In a previous study we identified afatinib and crizotinib in combination as a novel potential therapy for CMM independent of BRAF/NRAS mutation status. Herein, we elucidate the underlying mechanisms of the combination treatment effect to find biomarkers and novel targets for development of therapy that may provide clinical benefit by proteomic analysis of CMM cell lines and xenografts using mass spectrometry based analysis and reverse phase protein array. Identified candidates were validated using immunoblotting or immunofluorescence. Our analysis revealed that mTOR/Insulin signaling pathways were significantly decreased by the afatinib and crizotinib combination treatment. Both in vitro and in vivo analyses showed that the combination treatment downregulated pRPS6KB1 and pRPS6, downstream of mTOR signaling, and IRS-1 in the insulin signaling pathway, specifically ablating IRS-1 nuclear signal. Silencing of RPS6 and IRS-1 alone had a similar effect on cell death, which was further induced when IRS-1 and RPS6 were concomitantly silenced in the CMM cell lines. Silencing of IRS-1 and RPS6 resulted in reduced sensitivity towards combination treatment. Additionally, we found that IRS-1 and RPS6KB1 expression levels were increased in advanced stages of CMM clinical samples. We could demonstrate that induced resistance towards combination treatment was reversible by a drug holiday. CD171/L1CAM, mTOR and PI3K-p85 were induced in the combination resistant cells whereas AXL and EPHA2, previously identified mediators of resistance to MAPK inhibitor therapy in CMM were downregulated. We also found that CD171/L1CAM and mTOR were increased at progression in tumor biopsies from two matched cases of patients receiving targeted therapy with BRAFi. Overall, these findings provide insights into the molecular mechanisms behind the afatinib and crizotinib combination treatment effect and leverages a platform for discovering novel biomarkers and therapy regimes for CMM treatment.

13.
Immunotherapy ; 12(17): 1213-1219, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32900256

RESUMO

Recognizing rare but clinically significant toxicity of immunotherapy is critical. Here we describe the first detailed case of severe osteonecrosis of the jaw due to anti-PD-1. A 75-year-old man with metastatic melanoma, with no prior radiation or treatment with bone-targeting agents, experienced jaw pain 1 week after his first dose of nivolumab. Imaging studies were negative, and treatment was resumed after pain was controlled. 4 months later, the patient experienced acute exacerbation of pain and malocclusion of the jaw. Imaging showed bilateral fractures of the angle of mandible with extensive disruption of the normal trabecular architecture, requiring total mandibulectomy. The patient's metastatic melanoma responded to treatment and remains controlled >20 months after treatment cessation without further therapy.

14.
Cancer Immunol Res ; 8(11): 1365-1380, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32917656

RESUMO

Despite the clinical success of T-cell checkpoint blockade, most patients with cancer still fail to have durable responses to immunotherapy. The molecular mechanisms driving checkpoint blockade resistance, whether preexisting or evolved, remain unclear. To address this critical knowledge gap, we treated B16 melanoma with the combination of CTLA-4, PD-1, and PD-L1 blockade and a Flt3 ligand vaccine (≥75% curative), isolated tumors resistant to therapy, and serially passaged them in vivo with the same treatment regimen until they developed complete resistance. Using gene expression analysis and immunogenomics, we determined the adaptations associated with this resistance phenotype. Checkpoint resistance coincided with acquisition of a "hypermetabolic" phenotype characterized by coordinated upregulation of the glycolytic, oxidoreductase, and mitochondrial oxidative phosphorylation pathways. These resistant tumors flourished under hypoxic conditions, whereas metabolically starved T cells lost glycolytic potential, effector function, and the ability to expand in response to immunotherapy. Furthermore, we found that checkpoint-resistant versus -sensitive tumors could be separated by noninvasive MRI imaging based solely on their metabolic state. In a cohort of patients with melanoma resistant to both CTLA-4 and PD-1 blockade, we observed upregulation of pathways indicative of a similar hypermetabolic state. Together, these data indicated that melanoma can evade T-cell checkpoint blockade immunotherapy by adapting a hypermetabolic phenotype.

15.
Cancer Discov ; 10(9): 1352-1373, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32571778

RESUMO

A hallmark of metastasis is the adaptation of tumor cells to new environments. Metabolic constraints imposed by the serine and glycine-limited brain environment restrict metastatic tumor growth. How brain metastases overcome these growth-prohibitive conditions is poorly understood. Here, we demonstrate that 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of glucose-derived serine synthesis, is a major determinant of brain metastasis in multiple human cancer types and preclinical models. Enhanced serine synthesis proved important for nucleotide production and cell proliferation in highly aggressive brain metastatic cells. In vivo, genetic suppression and pharmacologic inhibition of PHGDH attenuated brain metastasis, but not extracranial tumor growth, and improved overall survival in mice. These results reveal that extracellular amino acid availability determines serine synthesis pathway dependence, and suggest that PHGDH inhibitors may be useful in the treatment of brain metastasis. SIGNIFICANCE: Using proteomics, metabolomics, and multiple brain metastasis models, we demonstrate that the nutrient-limited environment of the brain potentiates brain metastasis susceptibility to serine synthesis inhibition. These findings underscore the importance of studying cancer metabolism in physiologically relevant contexts, and provide a rationale for using PHGDH inhibitors to treat brain metastasis.This article is highlighted in the In This Issue feature, p. 1241.

16.
Mol Oncol ; 14(8): 1760-1778, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32358995

RESUMO

Melanoma metastasis to the brain is one of the most frequent extracranial brain tumors. Cell surface gangliosides are elevated in melanoma metastasis; however, the metabolic regulatory mechanisms that govern these specific changes are poorly understood in melanoma particularly brain metastases (MBM) development. We found ganglioside GD3 levels significantly upregulated in MBM compared to lymph node metastasis (LNM) but not for other melanoma gangliosides. Moreover, we demonstrated an upregulation of ST8SIA1 (GD3 synthase) as melanoma progresses from melanocytes to MBM cells. Using RNA-ISH on FFPE specimens, we evaluated ST8SIA1 expression in primary melanomas (PRM) (n = 23), LNM and visceral metastasis (n = 45), and MBM (n = 39). ST8SIA1 was significantly enhanced in MBM compared to all other specimens. ST8SIA1 expression was assessed in clinically well-annotated melanoma patients from multicenters with AJCC stage III B-D LNM (n = 58) with 14-year follow-up. High ST8SIA1 expression was significantly associated with poor overall survival (HR = 3.24; 95% CI, 1.19-8.86, P = 0.02). In a nude mouse human xenograft melanoma brain metastasis model, MBM variants had higher ST8SIA1 expression than their respective cutaneous melanoma variants. Elevated ST8SIA1 expression enhances levels of cell surface GD3, a phenotype that favors MBM development, hence associated with very poor prognosis. Functional assays demonstrated that ST8SIA1 overexpression enhanced cell proliferation and colony formation, whereby ST8SIA1 knockdown had opposite effects. Icaritin a plant-derived phytoestrogen treatment significantly inhibited cell growth in high GD3-positive MBM cells through targeting the canonical NFκB pathway. The study demonstrates GD3 phenotype associates with melanoma progression and poor outcome.

17.
Mol Cancer Ther ; 19(8): 1719-1726, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32430489

RESUMO

Frequent GNAQ and GNA11 mutations in uveal melanoma hyperactivate the MEK-ERK signaling pathway, leading to aberrant regulation of cyclin-dependent kinases (CDK) and cell-cycle progression. MEK inhibitors (MEKi) alone show poor efficacy in uveal melanoma, raising the question of whether downstream targets can be vertically inhibited to provide long-term benefit. CDK4/6 selective inhibitors are FDA-approved in patients with estrogen receptor (ER)-positive breast cancer in combination with ER antagonists/aromatase inhibitors. We determined the effects of MEKi plus CDK4/6 inhibitors (CDK4/6i) in uveal melanoma. In vitro, palbociclib, a CDK4/6i, enhanced the effects of MEKi via downregulation of cell-cycle proteins. In contrast, in vivo CDK4/6 inhibition alone led to cytostasis and was as effective as MEKi plus CDK4/6i treatment at delaying tumor growth. RNA sequencing revealed upregulation of the oxidative phosphorylation (OxPhos) pathway in both MEKi-resistant tumors and CDK4/6i-tolerant tumors. Furthermore, oxygen consumption rate was increased following MEKi + CDK4/6i treatment. IACS-010759, an OxPhos inhibitor, decreased uveal melanoma cell survival in combination with MEKi + CDK4/6i. These data highlight adaptive upregulation of OxPhos in response to MEKi + CDK4/6i treatment in uveal melanoma and suggest that suppression of this metabolic state may improve the efficacy of MEKi plus CDK4/6i combinations.

18.
J Invest Dermatol ; 140(11): 2242-2252.e7, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32389536

RESUMO

Melanomas frequently harbor activating NRAS mutations leading to activation of MAPK kinase (MEK) and extracellular signal-regulated kinase 1/2 signaling; however, the clinical efficacy of inhibitors to this pathway is limited by resistance. Tumors rewire metabolic pathways in response to stress signals such as targeted inhibitors and drug resistance, but most therapy-resistant preclinical models are generated in conditions that lack physiological metabolism. We generated human NRAS-mutant melanoma xenografts that were resistant to the MEK inhibitor (MEKi) PD0325901 in vivo. MEKi-resistant cells showed cross-resistance to the structurally distinct MEKi trametinib and elevated extracellular signal-regulated kinase 1/2 phosphorylation and downstream signaling. Additionally, we observed upregulation of the serine synthesis pathway and PHGDH, a key enzyme in this pathway. Suppressing PHGDH in MEKi-resistant cells together with MEKi treatment decreased oxidative stress tolerance and cell proliferation. Together, our data suggest targeting PHGDH as a potential strategy in overcoming MEKi resistance.

19.
Nat Commun ; 11(1): 1839, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32296058

RESUMO

Complex tumor microenvironmental (TME) features influence the outcome of cancer immunotherapy (IO). Here we perform immunogenomic analyses on 67 intratumor sub-regions of a PD-1 inhibitor-resistant melanoma tumor and 2 additional metastases arising over 8 years, to characterize TME interactions. We identify spatially distinct evolution of copy number alterations influencing local immune composition. Sub-regions with chromosome 7 gain display a relative lack of leukocyte infiltrate but evidence of neutrophil activation, recapitulated in The Cancer Genome Atlas (TCGA) samples, and associated with lack of response to IO across three clinical cohorts. Whether neutrophil activation represents cause or consequence of local tumor necrosis requires further study. Analyses of T-cell clonotypes reveal the presence of recurrent priming events manifesting in a dominant T-cell clonotype over many years. Our findings highlight the links between marked levels of genomic and immune heterogeneity within the physical space of a tumor, with implications for biomarker evaluation and immunotherapy response.


Assuntos
Genômica/métodos , Melanoma/metabolismo , Biomarcadores Tumorais/genética , Variações do Número de Cópias de DNA/genética , Humanos , Melanoma/genética , Mutação/genética , Ativação de Neutrófilo/genética , Ativação de Neutrófilo/fisiologia , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia
20.
Oncologist ; 25(3): e602-e605, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32162820

RESUMO

Anti-programmed cell death protein-1 (anti-PD-1) therapy has greatly improved outcomes of patients with melanoma; however, many fail to respond. Although preclinical studies suggest a potentially synergistic relationship with anti-PD-1 therapy and certain concurrent medications, their clinical role remains unclear. Here, we retrospectively evaluated the use of nonsteroidal anti-inflammatory drugs (NSAIDs) and other drugs in 330 patients with melanoma treated with anti-PD-1 therapy from four academic centers. In the cohort, 37% of patients used NSAIDs including aspirin (acetylsalicylic acid; ASA; 47%), cyclooxygenase (COX)-2 inhibitors (2%), and non-ASA/nonselective COX inhibitor NSAIDs (59%). The objective response rates (ORRs) were similar in patients with NSAID (43.4%) and no NSAID (41.3%) use with no significant difference in overall suvival (OS). There was a trend toward improved progression-free survival (PFS) in patients who took NSAIDs (median PFS: 8.5 vs. 5.2 months; p = .054). Most patients (71.3%) took NSAIDs once daily or as needed. Multivariate analysis did not reveal an association with NSAID use with ORR, PFS, or OS. Concurrent use of metformin or beta blockers did not affect ORR, PFS, or OS. Our study found no conclusive association of concurrent NSAID or other medication use with improved outcomes in patients with melanoma treated with anti-PD-1 therapy. Larger and more systematic analysis is required to confirm these findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...