RESUMO
A prerequisite for the realization of solid-state batteries is the development of highly conductive solid electrolytes. Li3PS4 is the archetypal member of the highly promising thiophosphate family of Li-ion conductors. Despite a multitude of investigations into this material, the underlying atomic-scale features governing the roles of and the relationships between cation and anion dynamics, in its various temperature-dependent polymorphs, are yet to be fully resolved. On this basis, we provide a comprehensive molecular dynamics study to probe the fundamental mechanisms underpinning fast Li-ion diffusion in this important solid electrolyte material. We first determine the Li-ion diffusion coefficients and corresponding activation energies in the temperature-dependent γ, ß, and α polymorphs of Li3PS4 and relate them to the structural and chemical characteristics of each polymorph. The roles that both cation correlation and anion libration play in enhancing the Li-ion dynamics in Li3PS4 are then isolated and revealed. For γ- and ß-Li3PS4, our simulations confirm that the interatomic Li-Li interaction is pivotal in determining (and restricting) their Li-ion diffusion. For α-Li3PS4, we quantify the significant role of Li-Li correlation and anion dynamics in dominating Li-ion transport in this polymorph for the first time. The fundamental understanding and analysis presented herein is expected to be highly applicable to other solid electrolytes where the interplay between cation and anion dynamics is crucial to enhancing ion transport.
RESUMO
Solid proton and oxide ion conductors have key applications in several hydrogen-based and energy-related technologies. Here, we report on the discovery of significant proton and oxide ion conductivity in palmierite oxides A3V2O8 (A = Sr, Ba), which crystallize with a framework of isolated tetrahedral VO4 units. We show that these systems present prevalent ionic conduction, with a large protonic component under humidified air (t H â¼ 0.6-0.8) and high protonic mobility. In particular, the proton conductivity of Sr3V2O8 is 1.0 × 10-4 S cm-1 at 600 °C, competitive with the best proton conductors constituted by isolated tetrahedral units. Simulations show that the three-dimensional ionic transport is vacancy-driven and facilitated by rotational motion of the VO4 units, which can stabilize oxygen defects via formation of V2O7 dimers. Our findings demonstrate that palmierite oxides are a new promising class of ionic conductors where stabilization of parallel vacancy and interstitial defects can enable high ionic conductivity.
RESUMO
Multidentate neutral amine ligands play vital roles in coordination chemistry and catalysis. In particular, these ligands are used to tune the reactivity of Group-1 metal reagents, such as organolithium reagents. Most, if not all, of these Group-1 metal reagent-mediated reactions occur in solution. However, the solution-state coordination behaviors of these ligands with Group-1 metal cations are poorly understood, compared to the plethora of solid-state structural studies based on single-crystal X-ray diffraction (SCXRD) studies. In this work, we comprehensively mapped out the coordination modes with Group-1 metal cations for three multidentate neutral amine ligands: tridentate 1,4,7-trimethyl-1,4,7-triazacyclononane (Me3TACN), tetradentate tris[2-(dimethylamino)ethyl]amine (Me6Tren), and hexadentate N,N',Nâ³-tris-(2-N-diethylaminoethyl)-1,4,7-triaza-cyclononane (DETAN). The macrocycles in the Me3TACN and DETAN are identified as the rigid structural directing motif, with the sidearms of DETAN providing flexible "on-demand" coordination sites. In comparison, the Me6Tren ligand features more robust coordination, with the sidearms less likely to undergo the decoordinating-coordinating equilibrium. This work will provide a guidance for coordination chemists in applying these three ligands, in particular, the new DETAN ligand to design metal complexes which suit their purposes.
RESUMO
Solid-state ionic conduction is a key enabler of electrochemical energy storage and conversion. The mechanistic connections between material processing, defect chemistry, transport dynamics and practical performance are of considerable importance but remain incomplete. Here, inspired by studies of fluids and biophysical systems, we re-examine anomalous diffusion in the iconic two-dimensional fast-ion conductors, the ß- and ßâ³-aluminas. Using large-scale simulations, we reproduce the frequency dependence of alternating-current ionic conductivity data. We show how the distribution of charge-compensating defects, modulated by processing, drives static and dynamic disorder and leads to persistent subdiffusive ion transport at macroscopic timescales. We deconvolute the effects of repulsions between mobile ions, the attraction between the mobile ions and charge-compensating defects, and geometric crowding on ionic conductivity. Finally, our characterization of memory effects in transport connects atomistic defect chemistry to macroscopic performance with minimal assumptions and enables mechanism-driven 'atoms-to-device' optimization of fast-ion conductors.
Assuntos
Eletrólitos , Difusão , Condutividade Elétrica , Eletrólitos/química , Transporte de Íons , Íons/químicaRESUMO
Developing effective device architectures for energy technologies-such as solar cells, rechargeable batteries or fuel cells-does not only depend on the performance of a single material, but on the performance of multiple materials working together. A key part of this is understanding the behaviour at the interfaces between these materials. In the context of a solar cell, efficient charge transport across the interface is a pre-requisite for devices with high conversion efficiencies. There are several methods that can be used to simulate interfaces, each with an in-built set of approximations, limitations and length-scales. These methods range from those that consider only composition (e.g. data-driven approaches) to continuum device models (e.g. drift-diffusion models using the Poisson equation) and ab-initio atomistic models (developed using e.g. density functional theory). Here we present an introduction to interface models at various levels of theory, highlighting the capabilities and limitations of each. In addition, we discuss several of the various physical and chemical processes at a heterojunction interface, highlighting the complex nature of the problem and the challenges it presents for theory and simulation.
RESUMO
The discovery of the lithium superionic conductor Li10GeP2S12 (LGPS) has led to significant research activity on solid electrolytes for high-performance solid-state batteries. Despite LGPS exhibiting a remarkably high room-temperature Li-ion conductivity, comparable to that of the liquid electrolytes used in current Li-ion batteries, nanoscale effects in this material have not been fully explored. Here, we predict that nanosizing of LGPS can be used to further enhance its Li-ion conductivity. By utilizing state-of-the-art nanoscale modeling techniques, our results reveal significant nanosizing effects with the Li-ion conductivity of LGPS increasing with decreasing particle volume. These features are due to a fundamental change from a primarily one-dimensional Li-ion conduction mechanism to a three-dimensional mechanism and major changes in the local structure. For the smallest nanometric particle size, the Li-ion conductivity at room temperature is three times higher than that of the bulk system. These findings reveal that nanosizing LGPS and related solid electrolytes could be an effective design approach to enhance their Li-ion conductivity.
RESUMO
Solid electrolytes are crucial for next-generation solid-state batteries, and Na3PS4 is one of the most promising Na+ conductors for such applications, despite outstanding questions regarding its structural polymorphs. In this contribution, we present a detailed investigation of the evolution in structure and dynamics of Na3PS4 over a wide temperature range 30 < T < 600 °C through combined experimental-computational analysis. Although Bragg diffraction experiments indicate a second-order phase transition from the tetragonal ground state (α, P4Ì 21 c) to the cubic polymorph (ß, I4Ì 3m) above â¼250 °C, pair distribution function analysis in real space and Raman spectroscopy indicate remnants of a tetragonal character in the range 250 < T < 500 °C, which we attribute to dynamic local tetragonal distortions. The first-order phase transition to the mesophasic high-temperature polymorph (γ, Fddd) is associated with a sharp volume increase and the onset of liquid-like dynamics for sodium-cations (translational) and thiophosphate-polyanions (rotational) evident by inelastic neutron and Raman spectroscopies, as well as pair-distribution function and molecular dynamics analyses. These results shed light on the rich polymorphism of Na3PS4 and are relevant for a range host of high-performance materials deriving from the Na3PS4 structural archetype.
RESUMO
Fast-ion conductors are critical to the development of solid-state batteries. The effects of mechanochemical synthesis that lead to increased ionic conductivity in an archetypical sodium-ion conductor Na3PS4 are not fully understood. We present here a comprehensive analysis based on diffraction (Bragg and pair distribution function), spectroscopy (impedance, Raman, NMR and INS), and ab initio simulations aimed at elucidating the synthesis-property relationships in Na3PS4. We consolidate previously reported interpretations regarding the local structure of ball-milled samples, underlining the sodium disorder and showing that a local tetragonal framework more accurately describes the structure than the originally proposed cubic one. Through variable-pressure impedance spectroscopy measurements, we report for the first time the activation volume for Na+ migration in Na3PS4, which is â¼30% higher for the ball-milled samples. Moreover, we show that the effect of ball-milling on increasing the ionic conductivity of Na3PS4 to â¼10-4 S/cm can be reproduced by applying external pressure on a sample from conventional high-temperature ceramic synthesis. We conclude that the key effects of mechanochemical synthesis on the properties of solid electrolytes can be analyzed and understood in terms of pressure, strain, and activation volume.
RESUMO
Lithium stannate (Li2SnO3) is currently being considered as a material for electrode and electrode coating applications in Li-ion batteries. The intrinsic defect formation and Li-ion transport properties of Li2SnO3 doped with divalent and trivalent transition-metal dopants (Mn, Fe, Co, and Ni) are explored in this work using atomistic simulations. Defect formation simulations reveal that all divalent dopants occupy the Li site with charge compensation through Li vacancies. For trivalent doping, occupation of the Sn site is energetically preferred with charge compensation from Li interstitials. Molecular dynamics simulations reveal that divalent and trivalent dopants increase Li-ion diffusion and reduce its activation energy compared with the undoped system. We show that Li2SnO3 with Li excess or deficiency as a result of doping has improved Li-transport properties. This study highlights the substantial improvement in Li-ion diffusion of Li2SnO3 for both current commercial and next-generation Li-ion battery technologies that can be achieved through transition-metal doping.
RESUMO
In the critical area of sustainable energy storage, solid-state batteries have attracted considerable attention due to their potential safety, energy-density and cycle-life benefits. This Review describes recent progress in the fundamental understanding of inorganic solid electrolytes, which lie at the heart of the solid-state battery concept, by addressing key issues in the areas of multiscale ion transport, electrochemical and mechanical properties, and current processing routes. The main electrolyte-related challenges for practical solid-state devices include utilization of metal anodes, stabilization of interfaces and the maintenance of physical contact, the solutions to which hinge on gaining greater knowledge of the underlying properties of solid electrolyte materials.
RESUMO
Lattice compression through hydrostatic pressure has emerged as an effective means of tuning the structural and optoelectronic properties of hybrid halide perovskites. In addition to external pressure, the local strain present in solution-processed thin films also causes significant heterogeneity in their photophysical properties. However, an atomistic understanding of structural changes of hybrid perovskites under pressure and their effects on the electronic landscape is required. Here, we use high level ab initio simulation techniques to explore the effect of lattice compression on the formamidinium (FA) lead iodide compound, FA1-x Cs x PbI3 (x = 0, 0.25). We show that, in response to applied pressure, the Pb-I bonds shorten, the PbI6 octahedra tilt anisotropically, and the rotational dynamics of the FA+ molecular cation are partially suppressed. Because of these structural distortions, the compressed perovskites exhibit band gaps that are narrower (red-shifted) and indirect with spin-split band edges. Furthermore, the shallow defect levels of intrinsic iodide defects transform to deep-level states with lattice compression. This work highlights the use of hydrostatic pressure as a powerful tool for systematically modifying the photovoltaic performance of halide perovskites.
RESUMO
Solid electrolytes are generating considerable interest for all-solid-state Li-ion batteries to address safety and performance issues. Grain boundaries have a significant influence on solid electrolytes and are key hurdles that must be overcome for their successful application. However, grain boundary effects on ionic transport are not fully understood, especially at the atomic scale. The Li-rich anti-perovskite Li3OCl is a promising solid electrolyte, although there is debate concerning the precise Li-ion migration barriers and conductivity. Using Li3OCl as a model polycrystalline electrolyte, we apply large-scale molecular dynamics simulations to analyze the ionic transport at stable grain boundaries. Our results predict high concentrations of grain boundaries and clearly show that Li-ion conductivity is severely hindered through the grain boundaries. The activation energies for Li-ion conduction traversing the grain boundaries are consistently higher than that of the bulk crystal, confirming the high grain boundary resistance in this material. Using our results, we propose a polycrystalline model to quantify the impact of grain boundaries on conductivity as a function of grain size. Such insights provide valuable fundamental understanding of the role of grain boundaries and how tailoring the microstructure can lead to the optimization of new high-performance solid electrolytes.
RESUMO
MnO2 is well-known for its technological applications including Li ion, Li-air batteries, and electrochemical capacitors. Compared to the bulk material, nanostructuring of rutile (ß-)MnO2 has been shown to vastly improve its electrochemical properties and performance. While the bulk material cannot readily intercalate Li, nanostructured mesoporous samples exhibit good Li intercalation. This observation is not yet fully understood. In this work, we use state-of-the-art theoretical techniques to investigate Li intercalation and migration at the ß-MnO2 Σ 5(210)/[001] grain boundary (GB). We show how large tunnel structures in the GB can promote Li intercalation with voltages of up to 3.83 eV compared to the experimental value of 3.00 eV. Conversely, small tunnel structures resulting from overcoordination of ions at the GB can hinder Li intercalation with significantly reduced voltages. The size and shape of these tunnels also strongly influence the energetics of Li migration with energy barriers ranging from 0.15 to 0.89 eV, compared to a value for the bulk of 0.17 eV. Our results illustrate how GBs with large, open tunnel structures may promote electrochemical performance and could be a contributing factor to the excellent performance of nanostructured ß-MnO2.
RESUMO
Nanostructured MnO2 is renowned for its excellent energy storage capability and high catalytic activity. While the electronic and structural properties of MnO2 surfaces have received significant attention, the properties of the grain boundaries (GBs) and their contribution to the electrochemical performance of the material remains unknown. Through density functional theory (DFT) calculations, the structure and electronic properties of the ß-MnO2 Σ 5(210)/[001] GB are studied. Our calculations show this low energy GB has a significantly reduced band gap compared to the pristine material and that the formation of oxygen vacancies produces spin-polarized states that further reduce the band gap. Calculated formation energies of oxygen vacancy defects and Mn reduction at the GB core are all lower than the equivalent bulk value and in some cases lower than values recently calculated for ß-MnO2 surfaces. Oxygen vacancy formation is also shown to produce a metallic behavior at the GB with defect charge distributed over a number of oxygen and manganese sites. The low energies of oxygen defect formation and the potential creation of conductive GB pathways are likely to be important to the electrochemical performance of ß-MnO2.
RESUMO
In recent years, the nanostructuring of rutile (ß-)MnO2 has been shown to vastly improve its properties and performance in a number of technological applications. The contrast between the strong electrochemical properties of the nanostructured material and the bulk material that shows limited Li intercalation and electrochemical capacitance is not yet fully understood. In this work, we investigate the structure, stability and catalytic properties of four tilt grain boundaries in ß-MnO2 using interatomic potential methods. By considering the γ-surfaces of each of the grain boundaries, we are able to find the lowest energy configurations for each grain boundary structure. For each grain boundary, we observe a significant decrease in the oxygen vacancy energies in and around the grain boundaries compared to bulk ß-MnO2 and also the bulk-like structures in the grain boundary cells. The reduction of Mn(4+) to Mn(3+) is also considered and again is shown to be preferable at the boundaries. These energies suggest a potentially higher catalytic activity at the grain boundaries of ß-MnO2. The results are also placed into context with recent calculations of ß-MnO2 surfaces to produce a more detailed understanding into this important phenomenon.
RESUMO
Using well-established atomistic techniques, we investigate the defect chemistry, structural effects, and energetics of proton incorporation at the Σ5(310)/[001] and Σ5(210)/[001] symmetrical tilt grain boundaries of yttria-stabilized zirconia. Building upon past work, we consistently show a dramatic decrease (â¼4-5 eV) in the proton incorporation and hydration energies in and around the grain boundary structures compared to values obtained for the bulk material and undoped ZrO2 grain boundaries. This decrease is prevalent in both Y segregated grain boundaries and grain boundaries where the distribution of Y is completely random. The results presented here strongly support the argument that proton conduction in this system is primarily interfacially driven, as reported by numerous experimental studies. Redox properties are also presented for grain boundaries structures both with and without defect segregation. The methodology and results presented here can also be applied to a wide range of proton conductors and will prove essential in any future assessment of the effects of grain boundaries on the defect chemistry of protons in these systems.
RESUMO
Both classical and quantum mechanical simulation techniques have been applied to investigate the incorporation, migration and potential binding of protonic defects in bulk yttria-stabilised zirconia (YSZ). The calculated redox reaction energies are found to be high, although the reduction energies are lower than those of bulk cubic ZrO2 and are shown to decrease further with increasing Y content. The hydration energies for YSZ are also lower than the values calculated for bulk ZrO2 and are found to be lowest when the oxygen ion is in close proximity to at least one Y ion. Strong binding (proton trapping) energies are observed between the protons and additional acceptor dopants including Sc, Yb and Gd. These energies are found to vary significantly depending on local configuration and again are generally lower than the values for ZrO2. Density functional theory (DFT) calculations are used to determine energy barriers for proton transfers via neighbouring oxygen ions (Grötthuss-type mechanism). Energy barriers of 0.32-0.42 eV are obtained for the pathways with the closest O-O interatomic distances and are found to be very comparable to well-established proton conducting materials.