Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Viruses ; 13(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34696405

RESUMO

Coronaviruses (CoVs) are widespread and highly diversified in wildlife and domestic mammals and can emerge as zoonotic or epizootic pathogens and consequently host shift from these reservoirs, highlighting the importance of veterinary surveillance. All genera can be found in mammals, with α and ß showing the highest frequency and diversification. The aims of this study were to review the literature for features of CoV surveillance in animals, to test widely used molecular protocols, and to identify the most effective one in terms of spectrum and sensitivity. We combined a literature review with analyses in silico and in vitro using viral strains and archive field samples. We found that most protocols defined as pan-coronavirus are strongly biased towards α- and ß-CoVs and show medium-low sensitivity. The best results were observed using our new protocol, showing LoD 100 PFU/mL for SARS-CoV-2, 50 TCID50/mL for CaCoV, 0.39 TCID50/mL for BoCoV, and 9 ± 1 log2 ×10-5 HA for IBV. The protocol successfully confirmed the positivity for a broad range of CoVs in 30/30 field samples. Our study points out that pan-CoV surveillance in mammals could be strongly improved in sensitivity and spectrum and propose the application of a new RT-PCR assay, which is able to detect CoVs from all four genera, with an optimal sensitivity for α-, ß-, and γ-.


Assuntos
Alphacoronavirus/genética , Infecções por Coronavirus/veterinária , Deltacoronavirus/genética , Gammacoronavirus/genética , SARS-CoV-2/genética , Animais , Animais Selvagens/virologia , Betacoronavirus/genética , COVID-19/veterinária , Quirópteros/virologia , Genoma Viral/genética , Humanos , Gado/virologia , Roedores/virologia
2.
Viruses ; 13(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34696493

RESUMO

In June 2020, a cat from Arezzo (Italy) that died from a neurological disease was diagnosed with West Caucasian Bat Lyssavirus (WCBV). The virus retained high identity across the whole-genome with the reference isolate found in 2002 from a Russian bent-winged bat. We applied control measures recommended by national regulations, investigated a possible interface between cats and bats using visual inspections, bioacoustics analyses and camera trapping and performed active and passive surveillance in bats to trace the source of infection. People that were exposed to the cat received full post-exposure prophylaxis while animals underwent six months of quarantine. One year later, they are all healthy. In a tunnel located near the cat's house, we identified a group of bent-winged bats that showed virus-neutralizing antibodies to WCBV across four sampling occasions, but no virus in salivary swabs. Carcasses from other bat species were all negative. This description of WCBV in a non-flying mammal confirms that this virus can cause clinical rabies in the absence of preventive and therapeutic measures, and highlights the lack of international guidelines against divergent lyssaviruses. We detected bent-winged bats as the most probable source of infection, testifying the encroachment between these bats and pets/human in urban areas and confirming free-ranging cats as potential hazard for public health and conservation.

3.
Pathogens ; 10(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34451511

RESUMO

The illegal trade of companion animals in the European Union poses several legal, ethical and health issues to the entire community. In the framework of the Biocrime Interreg project between Italy and Austria, we surveyed puppies and kittens confiscated at the borders to identify the most frequent pathogens associated with (i) the risk of spread within the shelter, (ii) the development of fatal disease and (iii) the zoonotic potential. From January 2018 to December 2020, we examined a total of 613 puppies and 62 kittens coming from 44 requisitions. Feces, skin specimens and blood sera from confiscated animals were tested to verify the presence of major infections and to assess the rabies post-vaccination immunity. Out of the total of individuals under investigation, necropsies and laboratory investigations were also performed on 79 puppies and three kittens that had died during the observation period. Results indicated a high prevalence of Canine Parvovirus (CPV) and Giardia spp. infections, CPV as the most likely cause of fatal gastroenteritis in puppies and Salmonella and Microsporum canis as major zoonotic pathogens. Conversely, both extended spectrum beta lactamases Escherichia coli and methicillin resistant Staphylococcus pseudintermedius strains as rare findings. Results highlighted that illegal animal trade could expose the human population to potential zoonotic risk and naïve animal population to potentially disrupting epidemic waves, both of these issues being largely underestimated when buying companion animals.

4.
Cell Mol Immunol ; 18(5): 1197-1210, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33762685

RESUMO

One of the main goals of vaccine research is the development of adjuvants that can enhance immune responses and are both safe and biocompatible. We explored the application of the natural polymer hyaluronan (HA) as a promising immunological adjuvant for protein-based vaccines. Chemical conjugation of HA to antigens strongly increased their immunogenicity, reduced booster requirements, and allowed antigen dose sparing. HA-based bioconjugates stimulated robust and long-lasting humoral responses without the addition of other immunostimulatory compounds and proved highly efficient when compared to other adjuvants. Due to its intrinsic biocompatibility, HA allowed the exploitation of different injection routes and did not induce inflammation at the inoculation site. This polymer promoted rapid translocation of the antigen to draining lymph nodes, thus facilitating encounters with antigen-presenting cells. Overall, HA can be regarded as an effective and biocompatible adjuvant to be exploited for the design of a wide variety of vaccines.

5.
Acta Trop ; 216: 105787, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33385361

RESUMO

Despite declaration as a national priority disease, dog rabies remains endemic in Liberia, with surveillance systems and disease control activities still developing. The objective of these initial efforts was to establish animal rabies diagnostics, foster collaboration between all rabies control stakeholders, and develop a short-term action plan with estimated costs for rabies control and elimination in Liberia. Four rabies diagnostic tests, the direct fluorescent antibody (DFA) test, the direct immunohistochemical test (dRIT), the reverse transcriptase polymerase chain reaction (RT-PCR) assay and the rapid immunochromatographic diagnostic test (RIDT), were implemented at the Central Veterinary Laboratory (CVL) in Monrovia between July 2017 and February 2018. Seven samples (n=7) out of eight suspected animals were confirmed positive for rabies lyssavirus, and molecular analyses revealed that all isolates belonged to the Africa 2 lineage, subgroup H. During a comprehensive in-country One Health rabies stakeholder meeting in 2018, a practical workplan, a short-term action plan and an accurately costed mass dog vaccination strategy were developed. Liberia is currently at stage 1.5/5 of the Stepwise Approach towards Rabies Elimination (SARE) tool, which corresponds with countries that are scaling up local-level interventions (e.g. dog vaccination campaigns) to the national level. Overall an estimated 5.3 - 8 million USD invested over 13 years is needed to eliminate rabies in Liberia by 2030. Liberia still has a long road to become free from dog-rabies. However, the dialogue between all relevant stakeholders took place, and disease surveillance considerably improved through implementing rabies diagnosis at the CVL. The joint efforts of diverse national and international stakeholders laid important foundations to achieve the goal of zero dog-mediated human rabies deaths by 2030.


Assuntos
Testes Diagnósticos de Rotina/veterinária , Vacinas Antirrábicas/administração & dosagem , Raiva/diagnóstico , Raiva/prevenção & controle , Animais , DNA Viral , Testes Diagnósticos de Rotina/métodos , Doenças do Cão/diagnóstico , Doenças do Cão/prevenção & controle , Doenças do Cão/virologia , Cães/virologia , Feminino , Humanos , Libéria/epidemiologia , Masculino , Vacinação em Massa/veterinária , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/veterinária , Filogenia , Reação em Cadeia da Polimerase , Vacinas Antirrábicas/economia , Vírus da Raiva/genética , Vírus da Raiva/isolamento & purificação
6.
Viruses ; 13(1)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375071

RESUMO

Bats are often claimed to be a major source for future viral epidemics, as they are associated with several viruses with zoonotic potential. Here we describe the presence and biodiversity of bats associated with intensive pig farms devoted to the production of heavy pigs in northern Italy. Since chiropters or signs of their presence were not found within animal shelters in our study area, we suggest that fecal viruses with high environmental resistance have the highest likelihood for spillover through indirect transmission. In turn, we investigated the circulation of mammalian orthoreoviruses (MRVs), coronaviruses (CoVs) and astroviruses (AstVs) in pigs and bats sharing the same environment. Results of our preliminary study did not show any bat virus in pigs suggesting that spillover from these animals is rare. However, several AstVs, CoVs and MRVs circulated undetected in pigs. Among those, one MRV was a reassortant strain carrying viral genes likely acquired from bats. On the other hand, we found a swine AstV and a MRV strain carrying swine genes in bat guano, indicating that viral exchange at the bat-pig interface might occur more frequently from pigs to bats rather than the other way around. Considering the indoor farming system as the most common system in the European Union (EU), preventive measures should focus on biosecurity rather than displacement of bats, which are protected throughout the EU and provide critical ecosystem services for rural settings.


Assuntos
Quirópteros , Suínos , Animais , Biodiversidade , Quirópteros/virologia , Vírus de DNA/classificação , Vírus de DNA/genética , Ecossistema , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus Reordenados/genética , Suínos/virologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/transmissão , Doenças dos Suínos/virologia , Viroses/veterinária
7.
Front Vet Sci ; 7: 593683, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240962

RESUMO

Illegal animal trade (pet, wildlife, animal products, etc.) is an example of transnational organized crime (T.O.C.) that generates a large business with huge profit margins. This criminal activity causes several negative effects on human health (zoonoses), animal health and welfare, market protection, consumer fraud and may be used as tool of agro/bio-terrorism. Illegal animal trade can facilitate the spread of zoonoses that are defined as diseases and infections that are transmitted by vertebrate animals to man. Humans are affected by more than 1,700 known pathogens: 60% of existing human infectious diseases are zoonotic and at least 75% of emerging infectious diseases of humans have an animal origin and 72% of zoonoses originate from wildlife or exotic animals. The Bio-Crime Project was developed in 2017 by Friuli Venezia Giulia Region (Italy) and Land Carinthia (Austria) together with other public institutions to combat illegal animal trade and to reduce the risk of disease transmission from animals to humans. Project partners agreed that a multi-agency approach was required to tackle the illegal animal trade that was high value, easy to undertake and transnational crime. The Bio-crime model of cross-border cooperation introduces the novel approach of replicating the cooperative framework given by the triad of Veterinary Public Health, Justice and Law Enforcements/Customs across borders using the International Police and Custom Cooperation Centres (IPCCCs) as a connection link among public entities of the neighbor countries. This model has been recognized as a best practice at European level because it can be easily replicated and scaled up without any supplementary cost for Member States.

8.
EMBO Mol Med ; 12(11): e12628, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32945125

RESUMO

Rabies is a neglected disease caused by a neurotropic Lyssavirus, transmitted to humans predominantly by the bite of infected dogs. Rabies is preventable with vaccines or proper post-exposure prophylaxis (PEP), but it still causes about 60,000 deaths every year. No cure exists after the onset of clinical signs, and the case-fatality rate approaches 100% even with advanced supportive care. Here, we report that a combination of two potent neutralizing human monoclonal antibodies directed against the viral envelope glycoprotein cures symptomatic rabid mice. Treatment efficacy requires the concomitant administration of antibodies in the periphery and in the central nervous system through intracerebroventricular infusion. After such treatment, recovered mice presented good clinical condition, viral loads were undetectable, and the brain inflammatory profile was almost normal. Our findings provide the unprecedented proof of concept of an antibody-based therapeutic approach for symptomatic rabies.


Assuntos
Lyssavirus , Vacinas Antirrábicas , Vírus da Raiva , Raiva , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes , Anticorpos Antivirais , Cães , Humanos , Camundongos , Profilaxia Pós-Exposição , Raiva/tratamento farmacológico
9.
J Vis Exp ; (160)2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32658185

RESUMO

Functional rabies surveillance systems are crucial to provide reliable data and increase the political commitment necessary for disease control. To date, animals suspected as rabies-positive must be submitted to a postmortem confirmation using classical or molecular laboratory methods. However, most endemic areas are in low- and middle-income countries where animal rabies diagnosis is restricted to central veterinary laboratories. Poor availability of surveillance infrastructure leads to serious disease underreporting from remote areas. Several diagnostic protocols requiring low technical expertise have been recently developed, providing opportunity to establish rabies diagnosis in decentralized laboratories. We present here a complete protocol for field postmortem diagnosis of animal rabies using a rapid immunochromatographic diagnostic test (RIDT), from brain biopsy sampling to the final interpretation. We complete the protocol by describing a further use of the device for molecular analysis and viral genotyping. RIDT easily detects rabies virus and other lyssaviruses in brain samples. The principle of such tests is simple: brain material is applied on a test strip where gold conjugated antibodies bind specifically to rabies antigens. The antigen-antibody complexes bind further to fixed antibodies on the test line, resulting in a clearly visible purple line. The virus is inactivated in the test strip, but viral RNA can be subsequently extracted. This allows the test strip, rather than the infectious brain sample, to be safely and easily sent to an equipped laboratory for confirmation and molecular typing. Based on a modification of the manufacturer's protocol, we found increased test sensitivity, reaching 98% compared to the gold standard reference method, the direct immunofluorescence antibody test. The advantages of the test are numerous: rapid, easy-to-use, low cost and no requirement for laboratory infrastructure, such as microscopy or cold-chain compliance. RIDTs represent a useful alternative for areas where reference diagnostic methods are not available.


Assuntos
Testes Diagnósticos de Rotina/métodos , Vírus da Raiva/imunologia , Raiva/imunologia , Animais , Diagnóstico , Imunoensaio , Raiva/veterinária
10.
Acta Trop ; 224: 105459, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32404295

RESUMO

Rabies is a neglected but preventable zoonotic disease that predominantly affects the most vulnerable populations living in remote rural areas of resource-limited countries. To date, every country on the African mainland is considered endemic for dog-mediated rabies with an estimated 21'500 human rabies deaths occurring each year. In 2018, the United Against Rabies collaboration launched the Global Strategic Plan to end human deaths from dog-mediated rabies by 2030. The epidemiology of rabies from most Western and Central African countries remains poorly defined, making it difficult to assess the overall rabies situation and progress towards the 2030 goal. In this review, we attempt to provide an overview of the current rabies situation in 22 West and Central African countries based on published scientific literature and information obtained from rabies focal points. To this end, information was collected on i) established surveillance, ii) diagnostic capacity, iii) post-exposure prophylaxis (PEP) availability and coverage, iv) dog population estimates, v) dog vaccination campaigns, vi) animal and human health communication (One Health), vii) molecular studies, viii) Knowledge, Attitude and Practices (KAP), ix) cost estimates and x) national control strategies. Although rabies is a notifiable disease in the majority of the studied countries, national surveillance systems do not adequately capture the disease. A general lack of rabies diagnostic capacity has an additional negative impact on rabies surveillance and attempts to estimate rabies burden. Recurrent shortages of human rabies vaccine are reported by all of the countries, with vaccine availability usually limited to major urban centers but no country has yet adopted the new WHO-recommended 1-week intradermal vaccination regimen. Most countries carry out subsidized mass dog vaccination campaigns on World Rabies Day. Such activities are indispensable to keep rabies in the public consciousness but are not of the scale and intensity that is required to eliminate rabies from the dog population. Countries will need to scale up the intensity of their campaigns, if they are to progress towards the 2030 goal. But more than half of the countries do not yet have reliable figures on their dog populations. Only two countries reached stage 2 on the Stepwise Approach towards Rabies Elimination ladder - indicating that their national governments have truly prioritized rabies elimination and are thus providing the necessary support and political buy-in required to achieve success. In summary, the sub-region of West and Central Africa seems to be divided into countries which have accepted the challenge to eliminate rabies with governments committed to pushing forward rabies elimination, while other countries have achieved some progress, but elimination efforts remain stuck due to lacking government commitment and financial constraints. The possibility to meet the 2030 goal without international solidarity is low, because more than two-thirds of the countries rank in the low human development group (HDI ≤ 152). Leading countries should act as role models, sharing their experiences and capacities so that no country is left behind. Unified and with international support it is possible to reach the common goal of zero human rabies deaths by 2030.

11.
Infect Genet Evol ; 84: 104359, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32407794

RESUMO

Canine distemper virus (CDV) represents an important threat for both wild and domestic carnivores. Since 2006, the North-Eastern regions in Italy have been experiencing severe and widespread recurring outbreaks of CDV affecting the wild carnivore population. In this study we performed an extensive phylogeographic analysis of CDV strains belonging to the Wildlife-Europe genetic group identified between 2006 and 2018 in Veneto, Trentino Alto Adige and Friuli Venezia Giulia regions. Our analysis revealed that viruses from the first (2006-2009) and the second (2011-2018) epidemic wave cluster separately, suggesting the introduction of two distinct genetic variants. These two events were characterized by different diffusion rates and spatial distribution, thus suggesting the existence of a connection between infection spread and host population dynamics. We also report the first spillover event of this strain to a non-vaccinated dog in a rural area of Friuli Venezia Giulia. The increasing prevalence of the infection in wildlife population, the broad host range of CDV circulating in the Alpine wildlife and the first reported transmission of a wild-adapted strain to a domestic dog in this region raise concerns over the vulnerability of wildlife species and the exposure of our pets to new threatening strains. Understanding the dynamic of CDV epidemics will also improve preparedness for re-emerging diseases affecting carnivore species.


Assuntos
Animais Selvagens/virologia , Vírus da Cinomose Canina/genética , Cinomose/epidemiologia , Animais , Vírus da Cinomose Canina/isolamento & purificação , Raposas/virologia , Itália/epidemiologia , Filogenia , Filogeografia , Análise Espaço-Temporal
12.
PLoS Negl Trop Dis ; 14(2): e0008010, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32040472

RESUMO

To achieve the goal of eliminating dog-mediated human rabies deaths by 2030, many African countries have agreed to list rabies as a priority zoonotic disease and to undertake both short and long-term control programs. Within this context, reliable local diagnosis is essential for the success of field surveillance systems. However, a harmonized, sustainable and supportive diagnostic offer has yet to be achieved in the continent. We herewith describe the organization and outcome of a proficiency test (PT) for the post-mortem diagnosis of rabies in animals, involving thirteen veterinary laboratories and one public health laboratory in Africa. Participants were invited to assess both the performance of the Direct Fluorescent Antibody (DFA) test and of a conventional RT-PCR. From the submitted results, while thirteen laboratories proved to be able to test the samples through DFA test, eleven performed the RT-PCR method; ten applied both techniques. Of note, the number of laboratories able to apply rabies RT-PCR had increased from four to ten after the exercise. Importantly, results showed a higher proficiency in applying the molecular test compared to the DFA test (concordance, sensitivity and specificity: 98.2%, 96.97% and 100% for RT-PCR; 87.69%, 89.23% and 86.15% for DFA test), indicating the feasibility of molecular methods to diagnose animal pathogens in Africa. Another positive outcome of this approach was that negative and positive controls were made available for further in-house validation of new techniques; in addition, a detailed questionnaire was provided to collect useful and relevant information on the diagnostic procedures and biosafety measures applied at laboratory level.


Assuntos
Doenças do Cão/diagnóstico , Laboratórios/normas , Raiva/veterinária , Medicina Veterinária/normas , África ao Sul do Saara/epidemiologia , Animais , Doenças do Cão/epidemiologia , Cães , Humanos , Raiva/diagnóstico , Raiva/epidemiologia , Zoonoses
13.
Trop Med Infect Dis ; 5(1)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963635

RESUMO

As a neglected zoonotic disease, rabies causes approximately 5.9 × 104 human deaths annually, primarily affecting low- and middle-income countries in Asia and Africa. In those regions, insufficient surveillance is hampering adequate medical intervention and is driving the vicious cycle of neglect. Where resources to provide laboratory disease confirmation are limited, there is a need for user-friendly and low-cost reliable diagnostic tools that do not rely on specialized laboratory facilities. Lateral flow devices (LFD) offer an alternative to conventional diagnostic methods and may strengthen control efforts in low-resource settings. Five different commercially available LFDs were compared in a multi-centered study with respect to their diagnostic sensitivity and their agreement with standard rabies diagnostic techniques. Our evaluation was conducted by several international reference laboratories using a broad panel of samples. The overall sensitivities ranged from 0% up to 62%, depending on the LFD manufacturer, with substantial variation between the different laboratories. Samples with high antigen content and high relative viral load tended to test positive more often in the Anigen/Bionote test, the latter being the one with the best performance. Still, the overall unsatisfactory findings corroborate a previous study and indicate a persistent lack of appropriate test validation and quality control. At present, the tested kits are not suitable for in-field use for rabies diagnosis, especially not for suspect animals where human contact has been identified, as an incorrect negative diagnosis may result in human casualties. This study points out the discrepancy between the enormous need for such a diagnostic tool on the one hand, and on the other hand, a number of already existing tests that are not yet ready for use.

15.
PLoS One ; 14(3): e0213515, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30861028

RESUMO

Information on the population dynamics of a reservoir species have been increasingly adopted to understand and eventually predict the dispersal patterns of infectious diseases throughout an area. Although potentially relevant, to date there are no studies which have investigated the genetic structure of the red fox population in relation to infectious disease dynamics. Therefore, we genetically and spatially characterised the red fox population in the area stretching between the Eastern and Dinaric Alps, which has been affected by both distemper and rabies at different time intervals. Red foxes collected from north-eastern Italy, Austria, Slovenia and Croatia between 2006-2012, were studied using a set of 21 microsatellite markers. We confirmed a weak genetic differentiation within the fox population using Bayesian clustering analyses, and we were able to differentiate the fox population into geographically segregated groups. Our finding might be due to the presence of geographical barriers that have likely influenced the distribution of the fox population, limiting in turn gene flow and spread of infectious diseases. Focusing on the Italian red fox population, we observed interesting variations in the prevalence of both diseases among distinct fox clusters, with the previously identified Italy 1 and Italy 2 rabies as well as distemper viruses preferentially affecting different sub-groups identified in the study. Knowledge of the regional-scale population structure can improve understanding of the epidemiology and spread of diseases. Our study paves the way for an integrated approach for disease control coupling pathogen, host and environmental data to inform targeted control programs in the future.


Assuntos
Cinomose , Raposas/genética , Repetições de Microssatélites , Raiva , Animais , Áustria/epidemiologia , Croácia/epidemiologia , Cinomose/epidemiologia , Cinomose/genética , Cinomose/transmissão , Cães , Feminino , Masculino , Prevalência , Raiva/epidemiologia , Raiva/genética , Raiva/transmissão , Raiva/veterinária , Eslovênia/epidemiologia
17.
Virol J ; 15(1): 37, 2018 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-29454370

RESUMO

BACKGROUND: Rhabdoviridae is one of the most ecologically diverse families of RNA viruses which can infect a wide range of vertebrates and invertebrates. Bats, among mammals, are pointed to harbor a significantly higher proportion of unknown or emerging viruses with zoonotic potential. Herein, we report the isolation of a novel rhabdovirus, detected in the framework of a virological survey on bats implemented in North Italy. METHODS: Virus isolation and identification were performed on samples of 635 bats by using cell cultures, negative staining electron microscopy and PCRs for different viruses. NGS was commonly performed on cell culture supernatants showing cytopathic effect or in case of samples resulted positive by at least one of the PCRs included in the diagnostic protocol. RESULTS: A rhabdovirus was isolated from different organs of a Pipistrellus kuhlii. Virus identification was obtained by electron microscopy and NGS sequencing. The complete genome size was 11,774 nt comprised 5 genes, encoding the canonical rhabdovirus structural proteins, and an additional transcriptional unit (U1) encoding a hypothetical small protein (157aa) (3'-N-P-M-G-U1-L-5'). The genome organization and phylogenetic analysis suggest that the new virus, named Vaprio virus (VAPV), belongs to the recently established genus Ledantevirus (subgroup B) and it is highly divergent to its closest known relative, Le Dantec virus (LDV) (human, 1965 Senegal). A specific RT-PCR amplifying a 350 bp fragment of the ORF 6 gene, encoding for L protein, was developed and used to test retrospectively a subset of 76 bats coming from the same area and period, revealing two more VAPV positive bats. CONCLUSIONS: VAPV is a novel isolate of chiropteran rhabdovirus. Genome organization and phylogenetic analyses demonstrated that VAPV should be considered a novel species within the genus Ledantevirus for which viral ecology and disease associations should be investigated.


Assuntos
Doenças dos Animais/virologia , Quirópteros/virologia , Infecções por Rhabdoviridae/veterinária , Rhabdoviridae/classificação , Animais , Chlorocebus aethiops , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Itália , Filogenia , RNA Viral , Rhabdoviridae/isolamento & purificação , Análise de Sequência de DNA , Células Vero
18.
Infect Genet Evol ; 58: 279-289, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29355607

RESUMO

Coronaviruses (CoVs) have been documented in almost every species of bat sampled. Bat CoVs exhibit both extensive genetic diversity and a broad geographic range, indicative of a long-standing host association. Despite this, the respective roles of long-term virus-host co-divergence and cross-species transmission (host-jumping) in the evolution of bat coronaviruses are unclear. Using a phylogenetic approach we provide evidence that CoV diversity in bats is shaped by both species richness and their geographical distribution, and that CoVs exhibit clustering at the level of bat genera, with these genus-specific clusters largely associated with distinct CoV species. Co-phylogenetic analyses revealed that cross-species transmission has been more common than co-divergence across coronavirus evolution as a whole, and that cross-species transmission events were more likely between sympatric bat hosts. Notably, however, an analysis of the CoV RNA polymerase phylogeny suggested that many such host-jumps likely resulted in short-term spill-over infections, with little evidence for sustained onward transmission in new co-roosting host species.


Assuntos
Doenças dos Animais/transmissão , Doenças dos Animais/virologia , Quirópteros/virologia , Infecções por Coronavirus/veterinária , Coronavirus/genética , Animais , Coronavirus/classificação , Evolução Molecular , Variação Genética , Genoma Viral , Especificidade de Hospedeiro , Filogenia , Filogeografia
19.
Virol J ; 13: 139, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27519739

RESUMO

Mammalian Orthoreoviruses 3 (MRV3) have been described in diarrheic pigs from USA and Asia. We firstly detected MRV3 in Europe (Italy) in piglets showing severe diarrhea associated with Porcine Epidemic Diarrhea. The virus was phylogenetically related to European reoviruses of human and bat origin and to US and Chinese pig MRV3.


Assuntos
Diarreia/veterinária , Orthoreovirus Mamífero 3/isolamento & purificação , Infecções por Reoviridae/veterinária , Doenças dos Suínos/virologia , Animais , Diarreia/virologia , Europa (Continente) , Orthoreovirus Mamífero 3/classificação , Orthoreovirus Mamífero 3/genética , Filogenia , Infecções por Reoviridae/virologia , Sus scrofa , Suínos
20.
PLoS Negl Trop Dis ; 10(6): e0004776, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27336943

RESUMO

Rabies is a neglected zoonotic disease that causes an estimated 60,000 human deaths annually. The main burden lies on developing countries in Asia and Africa, where surveillance and disease detection is hampered by absence of adequate laboratory facilities and/or the difficulties of submitting samples from remote areas to laboratories. Under these conditions, easy-to-use tests such as immunochromatographic assays, i.e. lateral flow devices (LFD), may increase surveillance and improve control efforts. Several LFDs for rabies diagnosis are available but, except for one, there are no data regarding their performance. Therefore, we compared six commercially available LFDs for diagnostic and analytical sensitivity, as well as their specificity and their diagnostic agreement with standard rabies diagnostic techniques using different sample sets, including experimentally infected animals and several sets of field samples. Using field samples the sensitivities ranged between 0% up to 100% depending on the LFD and the samples, while for experimentally infected animals the maximum sensitivity was 32%. Positive results in LFD could be further validated using RT-qPCR and sequencing. In summary, in our study none of the tests investigated proved to be satisfactory, although the results somewhat contradict previous studies, indicating batch to batch variation. The high number of false negative results reiterates the necessity to perform a proper test validation before being marketed and used in the field. In this respect, marketing authorization and batch release control could secure a sufficient quality for these alternative tests, which could then fulfil their potential.


Assuntos
Encéfalo/virologia , Cromatografia de Afinidade/métodos , Mamíferos , Vírus da Raiva/isolamento & purificação , Raiva/veterinária , Animais , Cromatografia de Afinidade/normas , Humanos , RNA Viral/isolamento & purificação , Raiva/diagnóstico , Raiva/virologia , Kit de Reagentes para Diagnóstico/normas , Sensibilidade e Especificidade , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...