Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 688
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Molecules ; 25(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235557

RESUMO

Scaffold hopping is a frequently-used strategy in the development of non-nucleoside reverse transcriptase inhibitors. Herein, CH(CN)-DAPYs were designed by hopping the cyano-methylene linker of our previous published CH(CN)-DABOs onto the etravirine (ETR). Eighteen CH(CN)-DAPYs were synthesized and evaluated for their anti-HIV activity. Most compounds exhibited promising activity against wild-type (WT) HIV-1. Compounds B4 (EC50 = 6 nM) and B6 (EC50 = 8 nM) showed single-digit nanomolar potency against WT HIV-1. Moreover, these two compounds had EC50 values of 0.06 and 0.08 µM toward the K103N mutant, respectively, which were comparable to the reference efavirenz (EFV) (EC50 = 0.08 µM). The preliminary structure-activity relationship (SAR) indicated that introducing substitutions on C2 of the 4-cyanophenyl group could improve antiviral activity. Molecular docking predicted that the cyano-methylene linker was positioned into the hydrophobic cavity formed by Y181/Y188 and V179 residues.

2.
J Med Chem ; 63(9): 4837-4848, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32293182

RESUMO

The development of efficacious NNRTIs for AIDS therapy commonly encountered the rapid generation of drug-resistant mutations, which becomes a major impediment to effective anti-HIV treatment. Using a structure-based bioisosterism strategy, a series of piperidine-substituted thiophene[2,3-d]pyrimidine derivatives were designed and synthesized. Compound 9a yielded the greatest potency, exhibiting significantly better anti-HIV-1 activity than ETR against all of the tested NNRTI-resistant HIV-1 strains. In addition, the phenotypic (cross)resistance of 9a and other NRTIs to the different selected HIV-1 strains was evaluated. As expected, no phenotypic cross-resistance against the NRTIs (AZT and PMPA) was observed with the mutant 9ares strain. Furthermore, 9a was identified with improved solubility, lower CYP liability, and hERG inhibition. Remarkably, 9a exhibited optimal pharmacokinetic properties in rats (F = 37.06%) and safety in mice (LD50 > 2000 mg/kg), which highlights 9a as a promising anti-HIV-1 drug candidate.

3.
J Med Chem ; 63(9): 4790-4810, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32298111

RESUMO

The HIV-1 CA protein has gained remarkable attention as a promising therapeutic target for the development of new antivirals, due to its pivotal roles in HIV-1 replication (structural and regulatory). Herein, we report the design and synthesis of three series of benzenesulfonamide-containing phenylalanine derivatives obtained by further structural modifications of PF-74 to aid in the discovery of more potent and drug-like HIV-1 CA inhibitors. Structure-activity relationship studies of these compounds led to the identification of new phenylalanine derivatives with a piperazinone moiety, represented by compound 11l, which exhibited anti-HIV-1NL4-3 activity 5.78-fold better than PF-74. Interestingly, 11l also showed anti-HIV-2ROD activity (EC50 = 31 nM), with almost 120 times increased potency over PF-74. However, due to the higher significance of HIV-1 as compared to HIV-2 for the human population, this manuscript focuses on the mechanism of action of our compounds in the context of HIV-1. SPR studies on representative compounds confirmed CA as the binding target. The action stage determination assay demonstrated that these inhibitors exhibited antiviral activities with a dual-stage inhibition profile. The early-stage inhibitory activity of compound 11l was 6.25 times more potent as compared to PF-74 but appeared to work via the accelerating capsid core assembly rather than stabilization. However, the mechanism by which they exert their antiviral activity in the late stage appears to be the same as PF-74 with less infectious HIV-1 virions produced in their presence, as judged p24 content studies. MD simulations provided the key rationale for the promising antiviral potency of 11l. Additionally, 11l exhibited a modest increase in HLM and human plasma metabolic stabilities as compared to PF-74, as well as a moderately improved pharmacokinetic profile, favorable oral bioavailability, and no acute toxicity. These studies provide insights and serve as a starting point for subsequent medicinal chemistry efforts in optimizing these promising HIV inhibitors.

4.
Life Sci ; 252: 117714, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32334012
5.
Molecules ; 25(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111013

RESUMO

The key problems of human immunodeficiency virus (HIV) therapy are the rapid emergence of drug-resistant mutant strains and significant cumulative drug toxicities. Therefore, there is an urgent demand for new anti-HIV agents with low toxicity and broad-spectrum antiviral potency. A series of biphenyl-substituted diarylpyrimidines with a cyanomethyl linker were designed using a molecular hybridization strategy. The cell-based anti-HIV assay showed that most of the compounds exhibited moderate to good activities against wild-type HIV-1 and clinically relevant mutant strains with a more favorable toxicity, and the enzymatic assay showed they had nanomolar activity against reverse transcriptase (RT). Compound 10p exhibited the best activity against wild-type HIV-1 with an EC50 (50% HIV-1 replication inhibitory concentration) value of 0.027 µM, an acceptable CC50 (50% cytotoxic concentration) value of 36.4 µM, and selectivity index of 1361, with moderate activities against the single mutants (EC50: E138K, 0.17 µM; Y181C, 0.87 µM; K103N, 0.9 µM; L100I, 1.21 µM, respectively), and an IC50 value of 0.059 µM against the RT enzyme, which was six-fold higher than nevirapine (NVP). The preliminary structure-activity relationship (SAR) of these new compounds was concluded. The molecular modeling predicted the binding modes of the new compounds with RT, providing molecular insight for further drug design.

6.
Eur J Med Chem ; 193: 112237, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32200201

RESUMO

HIV-1 RT has been considered as one of the most important targets for the development of anti-HIV-1 drugs for their well-solved three-dimensional structure and well-known mechanism of action. In this study, with HIV-1 RT as target, we used miniaturized parallel click chemistry synthesis via CuAAC reaction followed by in situ biological screening to discover novel potent HIV-1 NNRTIs. A 156 triazole-containing inhibitor library was assembled in microtiter plates and in millimolar scale. The enzyme inhibition screening results showed that 22 compounds exhibited improved inhibitory activity. Anti-HIV-1 activity results demonstrated that A3N19 effected the most potent activity against HIV-1 IIIB (EC50 = 3.28 nM) and mutant strain RES056 (EC50 = 481 nM). The molecular simulation analysis suggested that the hydrogen bonding interactions of A3N19 with the main chain of Lys101 and Lys104 was responsible for its potency. Overall, the results indicated the in situ click chemistry-based strategy was rational and might be amenable for the future discovery of more potent HIV-1 NNRTIs.

7.
Nat Rev Drug Discov ; 19(3): 149-150, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127666
8.
Bioorg Chem ; 96: 103595, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32006797

RESUMO

Twenty-seven derivatives (40-66) were generated by pharmacophore fusing of sulfonylacetanilide-diarylpyrimidine (1) with rilpivirine or biphenyl-diarylpyrimidines. They displayed up to single-digit nanomolar activity against wild-type (WT) virus and various drug-resistant mutant strains in HIV-1-infected MT-4 cells, thereby targeting the reverse transcriptase (RT) enzyme. Compound 51 displayed exceptionally potent activity against WT virus (EC50 = 6 nM) and several mutant strains (L100I, EC50 = 8 nM, K103N, EC50 = 6 nM, Y181C, EC50 = 26 nM, Y188L, EC50 = 122 nM, E138K, EC50 = 26 nM). The structure-activity relationships of the newly obtained pyrimidine sulfonylacetanilides were also elucidated. Molecular docking analysis explained the activity and provided a structural insight for follow-up research.

9.
Hepatol Int ; 14(2): 212-224, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32100261

RESUMO

BACKGROUND: As an important anti-HBV drug, pegylated interferon α (PegIFNα) offers promising clinical efficacy, but biomarkers that accurately forecast treatment responses are yet to be elucidated. Here, we evaluated whether HBV RNA could act as an early monitor of pegylated interferon responses. METHODS: We analyzed a phase 3, multicenter, randomized cohort of 727 HBeAg-positive non-cirrhotic patients receiving a 48-week treatment of PegIFNα-2a or PegIFNα-2b and a 24-week treatment-free follow-up. Serum levels of HBV RNA, HBV DNA, HBeAg, and HBsAg were measured at weeks 0, 12, 24, 48, and 72. RESULTS: HBeAg seroconversion and HBsAg loss at week 72 were observed in 217 (29.8%) and 21 (2.9%) patients, respectively. During the 48-week treatment, HBV RNA decreased more rapidly than HBV DNA and HBsAg, but HBV RNA and HBeAg shared similar dynamics with positive correlations. Multivariate regression analyses consistently revealed the significance of HBV RNA at weeks 0, 12, 24, and 48 to monitor HBeAg seroconversion but not HBsAg loss. Although baseline HBV RNA only showed a modest AUC performance, HBV RNA with a significant increase of AUC at week 12 outperformed other HBV biomarkers to forecast HBeAg seroconversion (p value < 0.05). HBV RNA ≤ 1000 copies/mL was an optimized cutoff at week 12 that offered better prediction than other HBV biomarkers. This optimized cutoff plus patient age, HBV genotype B, and HBeAg offered a strong estimation of HBeAg seroconversion (accuracy 95.2%, true negative rate 99.8%). CONCLUSION: HBV RNA at week 12 is an effective monitor of HBeAg seroconversion in HBeAg-positive patients treated with pegylated interferons.

10.
Expert Opin Drug Metab Toxicol ; 16(1): 11-30, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31903790

RESUMO

Introduction: Chemokine receptors are important therapeutic targets for the treatment of many human diseases. This study will provide an overview of approved chemokine receptor antagonists and promising candidates in advanced clinical trials.Areas covered: We will describe clinical aspects of chemokine receptor antagonists regarding their clinical efficacy, mechanisms of action, and re-purposed applications.Expert opinion: Three chemokine antagonists have been approved: (i) plerixafor is a small-molecule CXCR4 antagonist that mobilizes hematopoietic stem cells; (ii) maraviroc is a small-molecule CCR5 antagonist for anti-HIV treatment; and (iii) mogamulizumab is a monoclonal-antibody CCR4 antagonist for the treatment of mycosis fungoides or Sézary syndrome. Moreover, phase 3 trials are ongoing to evaluate many potent candidates, including CCR5 antagonists (e.g. leronlimab), dual CCR2/CCR5 antagonists (e.g. cenicriviroc), and CXCR4 antagonists (e.g. balixafortide, mavorixafor, motixafortide). The success of chemokine receptor antagonists depends on the selective blockage of disease-relevant chemokine receptors which are indispensable for disease progression. Although clinical translation has been slow, antagonists targeting chemokine receptors with multifaced functions offer the potential to treat a broad spectrum of human diseases.


Assuntos
Desenvolvimento de Medicamentos , Receptores de Quimiocinas/antagonistas & inibidores , Animais , Humanos , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/metabolismo , Receptores CCR4/antagonistas & inibidores , Receptores CCR4/metabolismo , Receptores CCR5/efeitos dos fármacos , Receptores CCR5/metabolismo , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Receptores de Quimiocinas/metabolismo
11.
J Med Chem ; 63(3): 1298-1312, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-31935327

RESUMO

Our previous efforts have led to the development of two potent NNRTIs, K-5a2 and 25a, exhibiting effective anti-HIV-1 potency and resistance profiles compared with etravirine. However, both inhibitors suffered from potent hERG inhibition and short half-life. In this article, with K-5a2 and etravirine as leads, series of novel fluorine-substituted diarylpyrimidine derivatives were designed via molecular hybridization and bioisosterism strategies. The results indicated 24b was the most active inhibitor, exhibiting broad-spectrum activity (EC50 = 3.60-21.5 nM) against resistant strains, significantly lower cytotoxicity (CC50= 155 µM), and reduced hERG inhibition (IC50 > 30 µM). Crystallographic studies confirmed the binding of 24b and the role of the fluorine atom, as well as optimal contacts of a nitrile group with the main-chain carbonyl group of H235. Furthermore, 24b showed longer half-life and favorable safety properties. All the results demonstrated that 24b has significant promise in circumventing drug resistance as an anti-HIV-1 candidate.

12.
Eur J Med Chem ; 185: 111874, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31735575

RESUMO

The fragment hopping approach is widely applied in drug development. A series of diarylpyrimidines (DAPYs) were obtained by hopping the thioacetamide scaffold to novel human immunodeficiency virus type 1 (HIV-1) nonnucleoside reverse transcriptase inhibitors (NNRTIs) to address the cytotoxicity issue of Etravirine and Rilpivirine. Although the new compounds (11a-l) in the first-round optimization possessed less potent anti-viral activity, they showed much lower cytotoxicity. Further optimization on the sulfur led to the sulfinylacetamide-DAPYs exhibiting improved anti-viral activity and a higher selectivity index especially toward the K103N mutant strain. The most potent compound 12a displayed EC50 values of 0.0249 µM against WT and 0.0104 µM against the K103N mutant strain, low cytotoxicity (CC50 > 221 µM) and a high selectivity index (SI WT > 8873, SI K103N > 21186). In addition, this compound showed a favorable in vitro microsomal stability across species. Computational study predicted the binding models of these potent compounds with HIV-1 reverse transcriptase thus providing further insights for new developments.


Assuntos
Acetamidas/farmacologia , Fármacos Anti-HIV/farmacologia , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Pirimidinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Acetamidas/síntese química , Acetamidas/química , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade
13.
J Med Chem ; 62(24): 11430-11436, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31714780

RESUMO

A series of nondimethylphenyl-diarylpyrimidines with much lower cytotoxicities than their dimethyl analogues were developed. Compound B13 with a difluorobiphenyl moiety showed the highest antiviral activity against WT, mutant strains, and RT. The hydrochloride form of B13 exhibited an improved water solubility of 5.6 µg/mL compared with ETR (≪1 µg/mL), better stability in human and rat liver microsomes, and a great oral bioavailability of 44%, making it promising as a drug candidate. In addition, no apparent toxicity was observed in the acute toxicity assay (2 g/kg) and HE staining.

14.
ACS Infect Dis ; 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31599568

RESUMO

Molecular hybridization is a powerful strategy in drug discovery. A series of novel diarylbenzopyrimidine (DABP) analogues were developed by the hybridization of FDA-approved drugs etravirine (ETR) and efavirenz (EFV) as potential HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs). Substituent modifications resulted in the identification of new DABPs with the combination of the strengths of the two drugs, especially compound 12d, which showed promising activity toward the EFV-resistant K103N mutant. 12d also had a favorable pharmacokinetic (PK) profile with liver microsome clearances of 14.4 µL/min/mg (human) and 33.2 µL/min/mg (rat) and an oral bioavailability of 15.5% in rat. However, its activity against the E138K mutant was still unsatisfactory; E138K is the most prevalent NNRTI resistance-associated mutant in ETR treatment. Further optimizations resulted in a highly potent compound (12z) with no substituents on the phenyl ring and a 2-methyl-6-nitro substitution pattern on the 4-cyanovinyl-2,6-disubstitued phenyl motif. The antiviral activity of this compound was much higher than those of ETR and EFV against the WT, E138K, and K103N variants (EC50 = 3.4, 4.3, and 3.6 nM, respectively), and the cytotoxicity was decreased while the selectivity index (SI) was increased. In particular, this compound exhibited acceptable intrinsic liver microsome stability (human, 34.5 µL/min/mg; rat, 33.2 µL/min/mg) and maintained the good PK profile of its parent compound EFV and showed an oral bioavailability of 16.5% in rat. Molecular docking and structure-activity relationship (SAR) analysis provided further insights into the binding of the DABPs with HIV-1 reverse transcriptase and provided a deeper understanding of the key structural features responsible for their interactions.

15.
Expert Opin Drug Metab Toxicol ; 15(10): 813-829, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31556749

RESUMO

Introduction: Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are essential components of highly active antiretroviral therapy against HIV-1 infections. Here, we provide a comprehensive overview of approved and emerging NNRTIs. Areas covered: This review covers the latest trend of NNRTIs regarding their pharmacodynamics, pharmacokinetics, mechanisms of drug action, drug resistance as well as new applications such as two-drug regimens and long-acting formulations. Expert opinion: Since the first NNRTI, nevirapine, was approved in 1996, antiviral drug discovery led to the approval of seven NNRTIs, including nevirapine, delavirdine (discontinued), etravirine, elsulfavirine, efavirenz, rilpivirine, and doravirine. The latter three compounds with favorable pharmacodynamic profiles and minimal adverse effects are often combined with one integrase inhibitor or two NRTIs in once-daily fixed-dose tablets. NNRTI-anchored regimens have been approved as initial therapies in treatment-naïve patients (efficacy: 72% to 86%) or maintaining therapies in virologically-suppressed patients (efficacy: 91% to 95%). Future development of NNRTIs includes: (i) better resistance and cross-resistance profiles; (ii) reduction of drug burden by optimizing two-drug or three-drug combinations; and (iii) improvement of patient adherence by novel long-acting formulations with weekly or monthly administration. Overall, NNRTIs play an important role in the management of HIV-1 infections, especially in resource-limited countries.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Infecções por HIV/tratamento farmacológico , Inibidores da Transcriptase Reversa/administração & dosagem , Fármacos Anti-HIV/efeitos adversos , Fármacos Anti-HIV/farmacocinética , Terapia Antirretroviral de Alta Atividade/métodos , Preparações de Ação Retardada , Farmacorresistência Viral , HIV-1/efeitos dos fármacos , Humanos , Adesão à Medicação , Inibidores da Transcriptase Reversa/efeitos adversos , Inibidores da Transcriptase Reversa/farmacocinética
16.
Chem Asian J ; 14(22): 3962-3968, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31389664

RESUMO

Eight different compounds, all nucleoside analogues, could presently be considered as potential drug candidates for the treatment of Ebola virus (EBOV) and/or other hemorrhagic fever virus (HFV) infections. They can be considered as either (i) adenine analogues (3-deazaneplanocin A, galidesivir, GS-6620 and remdesivir) or (ii) guanine analogues containing the carboxamide entity (ribavirin, EICAR, pyrazofurin and favipiravir). All eight owe their mechanism of action to hydrogen bonded base pairing with either (i) uracil or (ii) cytosine. Four out of the eight compounds (galidesivir, GS-6620, remdesivir and pyrazofurin) are C-nucleosides, and two of them (GS-6620, remdesivir) also contain a phosphoramidate part. The C-nucleoside and phosphoramidate (and for the adenine analogues the 1'-cyano group as well) may be considered as essential attributes for their antiviral activity.


Assuntos
Adenina/análogos & derivados , Antivirais/química , Guanina/análogos & derivados , Febres Hemorrágicas Virais/tratamento farmacológico , Adenina/farmacologia , Adenina/uso terapêutico , Amidas/química , Amidas/metabolismo , Amidas/farmacologia , Amidas/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Pareamento de Bases , Ebolavirus/efeitos dos fármacos , Guanina/farmacologia , Guanina/uso terapêutico , Humanos , Nucleotídeos/química , Nucleotídeos/uso terapêutico , Ácidos Fosfóricos/química , Ácidos Fosfóricos/uso terapêutico , Pirazinas/química , Pirazinas/metabolismo , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Triazinas/química , Triazinas/uso terapêutico
17.
Eur J Med Chem ; 182: 111603, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31421633

RESUMO

Conformational restriction is a promising strategy in the development of DAPY-type non-nucleoside reverse transcriptase inhibitors (NNRTIs). Herein, eighteen thiophene-biphenyl-DAPY derivatives were designed and synthesized as potent HIV-1 NNRTIs in which halogen and methyl groups were introduced to explore the conformationally constrained effects. Molecular docking and dynamic simulation analysis indicated that substituents on different positions of the biphenyl ring induced different dihedral angles and binding conformations, further explaining their anti-viral activities. The 2'-fluoro and 3'-chloro substitutions could form electrostatic or halogen-bonding interactions with adjacent residues of the RT enzyme. The 2'-methyl group contributed to enlarge the dihedral angle of biphenyl ring and was positioned to a space-filling hydrophobic pocket. Notably, compounds 22 and 23 with two methyl groups exhibited potent biological activity against WT HIV-1-infected MT-4 cells (EC50 = 14 and 17 nM, respectively) and RT enzyme (EC50 = 27 and 42 nM, respectively). In particular, 23 exhibited much lower cytotoxicity (CC50 = 264.19 µM) and higher selectivity index (SI = 18,564) than etravirine. Taken together, a rational conformational model for further design of DAPYs is proposed, providing a new guidance for the development of NNRTIs.


Assuntos
Fármacos Anti-HIV/farmacologia , Compostos de Bifenilo/farmacologia , Desenho de Fármacos , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/enzimologia , Pirimidinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Tiofenos/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Compostos de Bifenilo/química , Linhagem Celular , Relação Dose-Resposta a Droga , Transcriptase Reversa do HIV/metabolismo , HIV-1/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Conformação Molecular , Pirimidinas/química , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade , Tiofenos/química
18.
Eur J Med Chem ; 182: 111619, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31434039

RESUMO

For more in-depth exploration of the chemical space around the entrance channel of HIV-1 reverse transcriptase (RT), a series of novel indolylarylsulfones (IASs) bearing different chiral N-substituted pyrrolidine, azetidine or substituted sulfonamide groups at indole-2-carboxamide were designed and synthesized as potent HIV NNRTIs by structure-guided scaffold morphing approach. All the IASs exhibited moderate to excellent potency against wild-type HIV-1 with EC50 values ranging from 0.0043 µM to 4.42 µM. Notably, compound 27 (EC50 = 4.7 nM, SI = 5183) and 33 (EC50 = 4.3 nM, SI = 7083) were identified as the most potent compounds, which were more active than nevirapine, lamivudine and efavirenz, and also reached the same order of etravirine. Furthermore, some compounds maintained excellent activity against various single HIV-1 mutants (L100I, K103 N, E138K, Y181C) as well as one double mutant (F227L/V106A) with EC50 values in low-micromolar concentration ranges. Notably, 34 displayed outstanding potency against F227L/V106A (EC50 = 0.094 µM), and also showed exceptional activity against E138K (EC50 = 0.014 µM), L100I (EC50 = 0.011 µM) and K103 N (EC50 = 0.025 µM). Additionally, most compounds showed markedly reduced cytotoxicity (CC50) compared to lead compounds, especially 36 (CC50 > 234.91 µM, SI > 18727) and 37 (CC50 > 252.49 µM, SI > 15152). Preliminary SARs and molecular modeling studies were also discussed in detail, which may provide valuable insights for further optimization.


Assuntos
Fármacos Anti-HIV/farmacologia , Descoberta de Drogas , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Indóis/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Sulfonas/farmacologia , Animais , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , HIV-1/genética , Humanos , Indóis/síntese química , Indóis/química , Masculino , Camundongos , Camundongos Endogâmicos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade , Sulfonas/síntese química , Sulfonas/química
19.
Bioorg Med Chem ; 27(17): 3836-3845, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31324562

RESUMO

A novel series of 3-hydroxyquinazoline-2,4(1H,3H)-diones derivatives has been designed and synthesized. Their biochemical characterization revealed that most of the compounds were effective inhibitors of HIV-1 RNase H activity at sub to low micromolar concentrations. Among them, II-4 was the most potent in enzymatic assays, showing an IC50 value of 0.41 ±â€¯0.13 µM, almost five times lower than the IC50 obtained with ß-thujaplicinol. In addition, II-4 was also effective in inhibiting HIV-1 IN strand transfer activity (IC50 = 0.85 ±â€¯0.18 µM) but less potent than raltegravir (IC50 = 71 ±â€¯14 nM). Despite its relatively low cytotoxicity, the efficiency of II-4 in cell culture was limited by its poor membrane permeability. Nevertheless, structure-activity relationships and molecular modeling studies confirmed the importance of tested 3-hydroxyquinazoline-2,4(1H,3H)-diones as useful leads for further optimization.

20.
Eur J Med Chem ; 176: 11-20, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31091477

RESUMO

A novel series of dihydroquinazolin-2-amine derivatives were synthesized and evaluated for their anti-HIV-1 activity in MT-4 cell cultures. All of the molecules were active against wild-type HIV-1 with EC50 values ranging from 0.61 µM to 0.84 nM. The most potent inhibitor, compound 4b, had an EC50 value of 0.84 nM against HIV-1 strain IIIB, and thus was more active than the reference drugs efavirenz and etravirine. Moreover, most of the compounds maintained high activity (low-micromolar EC50 values) against strains bearing the reverse transcriptase (RT) E138K mutation. Compound 4b had EC50 values of 3.5 nM and 66 nM against non-nucleoside reverse transcriptase inhibitor-resistant strains bearing the RT E138K and RES056 mutations. In enzyme activity assays, compound 4b exhibited an IC50 value of 10 nM against HIV-1 RT. Preliminary SARs and molecular docking studies provide valuable insights for further optimization.


Assuntos
Aminas/farmacologia , Fármacos Anti-HIV/farmacologia , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/enzimologia , Quinazolinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Aminas/síntese química , Aminas/metabolismo , Aminas/toxicidade , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/metabolismo , Fármacos Anti-HIV/toxicidade , Sítios de Ligação , Linhagem Celular Tumoral , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Quinazolinas/síntese química , Quinazolinas/metabolismo , Quinazolinas/toxicidade , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/metabolismo , Inibidores da Transcriptase Reversa/toxicidade , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA