Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Regen Med ; 6(1): 68, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686684

RESUMO

Xenopus laevis are able to regenerate the spinal cord during larvae stages through the activation of neural stem progenitor cells (NSPCs). Here we use high-resolution expression profiling to characterize the early transcriptome changes induced after spinal cord injury, aiming to identify the signals that trigger NSPC proliferation. The analysis delineates a pathway that starts with a rapid and transitory activation of immediate early genes, followed by migration processes and immune response genes, the pervasive increase of NSPC-specific ribosome biogenesis factors, and genes involved in stem cell proliferation. Western blot and immunofluorescence analysis showed that mTORC1 is rapidly and transiently activated after SCI, and its pharmacological inhibition impairs spinal cord regeneration and proliferation of NSPC through the downregulation of genes involved in the G1/S transition of cell cycle, with a strong effect on PCNA. We propose that the mTOR signaling pathway is a key player in the activation of NPSCs during the early steps of spinal cord regeneration.

2.
Immunity ; 54(11): 2650-2669.e14, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34592166

RESUMO

Longitudinal analyses of the innate immune system, including the earliest time points, are essential to understand the immunopathogenesis and clinical course of coronavirus disease (COVID-19). Here, we performed a detailed characterization of natural killer (NK) cells in 205 patients (403 samples; days 2 to 41 after symptom onset) from four independent cohorts using single-cell transcriptomics and proteomics together with functional studies. We found elevated interferon (IFN)-α plasma levels in early severe COVD-19 alongside increased NK cell expression of IFN-stimulated genes (ISGs) and genes involved in IFN-α signaling, while upregulation of tumor necrosis factor (TNF)-induced genes was observed in moderate diseases. NK cells exert anti-SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) activity but are functionally impaired in severe COVID-19. Further, NK cell dysfunction may be relevant for the development of fibrotic lung disease in severe COVID-19, as NK cells exhibited impaired anti-fibrotic activity. Our study indicates preferential IFN-α and TNF responses in severe and moderate COVID-19, respectively, and associates a prolonged IFN-α-induced NK cell response with poorer disease outcome.


Assuntos
COVID-19/imunologia , Interferon-alfa/imunologia , Células Matadoras Naturais/imunologia , SARS-CoV-2/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Sequência de Bases , Humanos , Imunidade Inata/imunologia , Inflamação/imunologia , Interferon-alfa/sangue , Fibrose Pulmonar/patologia , RNA-Seq , Índice de Gravidade de Doença , Transcriptoma/genética , Reino Unido , Estados Unidos
3.
Nature ; 594(7862): 265-270, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34040261

RESUMO

Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning-a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.


Assuntos
Blockchain , Tomada de Decisão Clínica/métodos , Confidencialidade , Conjuntos de Dados como Assunto , Aprendizado de Máquina , Medicina de Precisão/métodos , COVID-19/diagnóstico , COVID-19/epidemiologia , Surtos de Doenças , Feminino , Humanos , Leucemia/diagnóstico , Leucemia/patologia , Leucócitos/patologia , Pneumopatias/diagnóstico , Aprendizado de Máquina/tendências , Masculino , Software , Tuberculose/diagnóstico
4.
Front Immunol ; 12: 652470, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841435

RESUMO

Strong evidence has been accumulated since the beginning of the COVID-19 pandemic that neutrophils play an important role in the pathophysiology, particularly in those with severe disease courses. While originally considered to be a rather homogeneous cell type, recent attention to neutrophils has uncovered their fascinating transcriptional and functional diversity as well as their developmental trajectories. These new findings are important to better understand the many facets of neutrophil involvement not only in COVID-19 but also many other acute or chronic inflammatory diseases, both communicable and non-communicable. Here, we highlight the observed immune deviation of neutrophils in COVID-19 and summarize several promising therapeutic attempts to precisely target neutrophils and their reactivity in patients with COVID-19.


Assuntos
COVID-19/epidemiologia , COVID-19/imunologia , Neutrófilos/imunologia , Pandemias , SARS-CoV-2/imunologia , Humanos
5.
Genome Med ; 13(1): 7, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441124

RESUMO

BACKGROUND: The SARS-CoV-2 pandemic is currently leading to increasing numbers of COVID-19 patients all over the world. Clinical presentations range from asymptomatic, mild respiratory tract infection, to severe cases with acute respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune system in the severe cases call for a better characterization and understanding of the changes in the immune system. METHODS: In order to dissect COVID-19-driven immune host responses, we performed RNA-seq of whole blood cell transcriptomes and granulocyte preparations from mild and severe COVID-19 patients and analyzed the data using a combination of conventional and data-driven co-expression analysis. Additionally, publicly available data was used to show the distinction from COVID-19 to other diseases. Reverse drug target prediction was used to identify known or novel drug candidates based on finding from data-driven findings. RESULTS: Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control donors enabling a data-driven stratification based on molecular phenotype. Neutrophil activation-associated signatures were prominently enriched in severe patient groups, which was corroborated in whole blood transcriptomes from an independent second cohort of 30 as well as in granulocyte samples from a third cohort of 16 COVID-19 patients (44 samples). Comparison of COVID-19 blood transcriptomes with those of a collection of over 3100 samples derived from 12 different viral infections, inflammatory diseases, and independent control samples revealed highly specific transcriptome signatures for COVID-19. Further, stratified transcriptomes predicted patient subgroup-specific drug candidates targeting the dysregulated systemic immune response of the host. CONCLUSIONS: Our study provides novel insights in the distinct molecular subgroups or phenotypes that are not simply explained by clinical parameters. We show that whole blood transcriptomes are extremely informative for COVID-19 since they capture granulocytes which are major drivers of disease severity.


Assuntos
COVID-19/patologia , Neutrófilos/metabolismo , Transcriptoma , Antivirais/uso terapêutico , COVID-19/tratamento farmacológico , COVID-19/virologia , Estudos de Casos e Controles , Regulação para Baixo , Reposicionamento de Medicamentos , Humanos , Neutrófilos/citologia , Neutrófilos/imunologia , Fenótipo , Análise de Componente Principal , RNA/sangue , RNA/química , RNA/metabolismo , Análise de Sequência de RNA , Índice de Gravidade de Doença , Regulação para Cima
6.
STAR Protoc ; 1(3): 100233, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377120

RESUMO

In December 2019, a new coronavirus, SARS-CoV-2, which causes the respiratory illness that led to the COVID-19 pandemic, was reported. In the face of such a new pathogen, special precautions must be taken to examine potentially infectious materials due to the lack of knowledge on disease transmissibility, infectivity, and molecular pathogenicity. Here, we present a complete and safe workflow for performing scRNA-seq experiments on blood samples of infected patients from cell isolation to data analysis using the micro-well based BD Rhapsody platform. For complete information on the use and execution of this protocol, please refer to Schulte-Schrepping et al. (2020).

7.
Cell ; 182(6): 1419-1440.e23, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32810438

RESUMO

Coronavirus disease 2019 (COVID-19) is a mild to moderate respiratory tract infection, however, a subset of patients progress to severe disease and respiratory failure. The mechanism of protective immunity in mild forms and the pathogenesis of severe COVID-19 associated with increased neutrophil counts and dysregulated immune responses remain unclear. In a dual-center, two-cohort study, we combined single-cell RNA-sequencing and single-cell proteomics of whole-blood and peripheral-blood mononuclear cells to determine changes in immune cell composition and activation in mild versus severe COVID-19 (242 samples from 109 individuals) over time. HLA-DRhiCD11chi inflammatory monocytes with an interferon-stimulated gene signature were elevated in mild COVID-19. Severe COVID-19 was marked by occurrence of neutrophil precursors, as evidence of emergency myelopoiesis, dysfunctional mature neutrophils, and HLA-DRlo monocytes. Our study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and reveals profound alterations in the myeloid cell compartment associated with severe COVID-19.


Assuntos
Infecções por Coronavirus/imunologia , Células Mieloides/imunologia , Mielopoese , Pneumonia Viral/imunologia , Adulto , Idoso , Antígenos CD11/genética , Antígenos CD11/metabolismo , COVID-19 , Células Cultivadas , Infecções por Coronavirus/sangue , Infecções por Coronavirus/patologia , Feminino , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Células Mieloides/citologia , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/patologia , Proteoma/genética , Proteoma/metabolismo , Proteômica , Análise de Célula Única
8.
Cold Spring Harb Protoc ; 2019(6)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30952685

RESUMO

Here we consider RNA-Seq, used to measure global gene expression through RNA fragmentation, capture, sequencing, and subsequent computational analysis. Xenopus, with its large number of RNA-rich, synchronously developing, and accessible embryos, is an excellent model organism for exploiting the power of high-throughput sequencing to understand gene expression during development. Here we present a standard RNA-Seq protocol for performing two-state differential gene expression analysis (between groups of replicates of control and treated embryos) using Illumina sequencing. Samples contain multiple whole embryos, and polyadenylated mRNA is measured under relative normalization. The protocol is divided into two parts: wet-lab processes to prepare samples for sequencing and downstream computational analysis including quality control, quantification of gene expression, and differential expression.


Assuntos
Perfilação da Expressão Gênica/métodos , RNA-Seq/métodos , Animais , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , Manejo de Espécimes , Xenopus/embriologia
9.
Dev Biol ; 408(2): 252-68, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26100918

RESUMO

Correct development of the vertebrate body plan requires the early definition of two asymmetric, perpendicular axes. The first axis is established during oocyte maturation, and the second is established by symmetry breaking shortly after fertilization. The physical processes generating the second asymmetric, or dorsal-ventral, axis are well understood, but the specific molecular determinants, presumed to be maternal gene products, are poorly characterized. Whilst enrichment of maternal mRNAs at the animal and vegetal poles in both the oocyte and the early embryo has been studied, little is known about the distribution of maternal mRNAs along either the dorsal-ventral or left-right axes during the early cleavage stages. Here we report an unbiased analysis of the distribution of maternal mRNA on all axes of the Xenopus tropicalis 8-cell stage embryo, based on sequencing of single blastomeres whose positions within the embryo are known. Analysis of pooled data from complete sets of blastomeres from four embryos has identified 908 mRNAs enriched in either the animal or vegetal blastomeres, of which 793 are not previously reported as enriched. In contrast, we find no evidence for asymmetric distribution along either the dorsal-ventral or left-right axes. We confirm that animal pole enrichment is on average distinctly lower than vegetal pole enrichment, and that considerable variation is found between reported enrichment levels in different studies. We use publicly available data to show that there is a significant association between genes with human disease annotation and enrichment at the animal pole. Mutations in the human ortholog of the most animally enriched novel gene, Slc35d1, are causative for Schneckenbecken dysplasia, and we show that a similar phenotype is produced by depletion of the orthologous protein in Xenopus embryos.


Assuntos
Blastômeros/metabolismo , Xenopus/embriologia , Xenopus/genética , Animais , Padronização Corporal/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Modelos Animais , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/genética , Mutação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Genética , Xenopus/metabolismo , Proteínas de Xenopus/antagonistas & inibidores , Proteínas de Xenopus/genética
10.
Development ; 141(9): 1927-39, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24757007

RESUMO

The Xenopus mid-blastula transition (MBT) marks the onset of large-scale zygotic transcription, as well as an increase in cell cycle length and a loss of synchronous cell divisions. Little is known about what triggers the activation of transcription or how newly expressed genes interact with each other. Here, we use high-resolution expression profiling to identify three waves of gene activity: a post-fertilisation wave involving polyadenylation of maternal transcripts; a broad wave of zygotic transcription detectable as early as the seventh cleavage and extending beyond the MBT at the twelfth cleavage; and a shorter post-MBT wave of transcription that becomes apparent as development proceeds. Our studies have also allowed us to define a set of maternal mRNAs that are deadenylated shortly after fertilisation, and are likely to be degraded thereafter. Experimental analysis indicates that the polyadenylation of maternal transcripts is necessary for the establishment of proper levels of zygotic transcription at the MBT, and that genes activated in the second wave of expression, including Brachyury and Mixer, contribute to the regulation of genes expressed in the third. Together, our high-resolution time series and experimental studies have yielded a deeper understanding of the temporal organisation of gene regulatory networks in the early Xenopus embryo.


Assuntos
Blástula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Xenopus/embriologia , Xenopus/genética , Animais , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Poli A/metabolismo , Poliadenilação/genética , Estabilidade de RNA/genética , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo , Transcrição Genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Peixe-Zebra/genética
11.
Dev Comp Immunol ; 44(1): 30-4, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24296437

RESUMO

Continuous light treatment during early juvenile stages in Gadus morhua is a common farming management practice but the effects of these unnatural light conditions on fish stress have received scant attention. In the present study we investigated how continuous illumination affects transcription levels of key stress-related and antimicrobial peptide genes in juvenile Atlantic cod. Gene expression quantification by real-time PCR revealed higher levels of transcripts coding for antioxidant enzymes, namely superoxide dismutase, catalase and glutathione reductase in liver of fish reared under continuous illumination, concomitantly with a 43% decrease in glutathione content. Transcription of antimicrobial peptides such as piscidins, hepcidin and cathelicidin was also affected by constant illumination. Overall, the significant changes in liver transcript levels of these biomarkers in response to continuous light may be an adaptation to light stress.


Assuntos
Gadus morhua/imunologia , Luz , Estresse Fisiológico , Adaptação Ocular , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Biomarcadores/metabolismo , Catalase/genética , Catalase/metabolismo , Regulação da Expressão Gênica , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Luz/efeitos adversos , Estresse Oxidativo , Estresse Fisiológico/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
12.
Ecotoxicol Environ Saf ; 97: 114-23, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23953925

RESUMO

Multiple anthropogenic activities present along coastal environments may affect the health status of aquatic ecosystems. In this study, specimens of European sea bass (Dicentrarchus labrax) were exposed for 30 days to highly contaminated sediment collected from the industrial area between Augusta and Priolo (Syracuse, Italy), defined as the most mercury polluted site in the Mediterranean. The aim was to evaluate the responses of juvenile D. labrax to highly contaminated sediments, particularly enriched in Hg, in order to enhance the scarce knowledge on the potential compensatory mechanisms developed by organisms under severe stress conditions. Apoptotic and proliferative activities [cell turnover: Proliferating Cell Nuclear Antigen (PCNA) and FAS Ligand (FasL)], onset of hypoxic condition [hypoxia: Hypoxia Inducibile Factor-1α (HIF-1α)], and changes in the neuroendocrine control mechanisms [neurotransmission: Tyrosine Hydroxylase (TH), Choline Acetyltransferase (ChAT), Acetylcholinesterase (AChE), 5-Hydroxytryptamine (5-HT) and 5-Hydroxytryptamine receptor 3 (5-HT3)] were investigated in sea bass gill tissues. In the specimens exposed to the polluted sediment, the occurrence of altered cell turnover may result in impaired gas exchange that leads to a condition of "functional hypoxia". Changes in neurotransmission pathways were also observed, suggesting a remodeling process as an adaptive response to increase the O2-carrying capacity and restore the normal physiological conditions of the gills. Overall, these findings demonstrated that although chronic exposure to heavy metal polluted sediments alters the functioning of both the nervous and endocrine systems, as well as plasticity of the gill epithelium, fish are able to trigger a series of physiological adjustments or adaptations interfering with specific neuroendocrine control mechanisms that enable their long-term survival.


Assuntos
Bass/fisiologia , Brânquias/efeitos dos fármacos , Metais Pesados/toxicidade , Poluentes do Solo/toxicidade , Anaerobiose/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Brânquias/citologia , Itália , Transmissão Sináptica/efeitos dos fármacos
13.
Ecotoxicol Environ Saf ; 84: 139-46, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22818846

RESUMO

Environmental metabolomics was applied to assess the metabolic responses in transplanted mussels to environmental pollution. Specimens of Mytilus galloprovincialis, sedentary filter-feeders, were caged in anthropogenic-impacted and reference sites along the Augusta coastline (Sicily, Italy). Chemical analysis revealed increased levels of PAHs in the digestive gland of mussels from the industrial area compared with control, and marked morphological changes were also observed. Digestive gland metabolic profiles, obtained by 1H NMR spectroscopy and analyzed by multivariate statistics, showed changes in metabolites involved in energy metabolism. Specifically, changes in lactate and acetoacetate could indicate increased anaerobic fermentation and alteration in lipid metabolism, respectively, suggesting that the mussels transplanted to the contaminated field site were suffering from adverse environmental condition. The NMR-based environmental metabolomics applied in this study results thus in it being a useful and effective tool for assessing environmental influences on the health status of aquatic organisms.


Assuntos
Metabolômica , Mytilus/efeitos dos fármacos , Mytilus/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental , Mytilus/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Sicília
14.
Aquat Toxicol ; 105(3-4): 688-97, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21996255

RESUMO

Aquatic ecosystems are affected by all the impacts generated by a variety of anthropogenic activities present along coastal environments. The sediment compartment is the final receptor of water-insoluble pollutants, acting both as a sink and as a source of pollutants to the water column, and affecting both nektonic and benthic organisms. The aim of this study is to assess the impact of metals in the sediments collected from two sites in the petrochemical area between Augusta and Priolo (SR, Sicily, Italy) on gills of Dicentrarchus labrax. This was done to enhance the scarce knowledge on the bioavailability of metals bound to sediment and their capacity to interact with the bioindicator species. Various sublethal endpoints were assessed such as histopathological lesions, metallothioneins (MTs) and molecules involved in the homeostasis pathways by immunolocalization and RT-PCR. In the specimens exposed to sediments, the data suggested a reduction of gill cell membrane permeability, which could result in altered osmotic balance and gas exchange. Further, an increase of MT expression was detected, consisted the involvement of this protein in detoxification of toxic non-essential metals. The findings of this study demonstrate that a subchronic test, conducted by using sensitive and sub-lethal endpoints, in combination with chemical analyses, is a powerful tool for early identification of environmental hazards associated with contaminated sediments.


Assuntos
Bass/metabolismo , Sedimentos Geológicos/química , Brânquias/efeitos dos fármacos , Metais Pesados/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Aquaporina 3/metabolismo , Disponibilidade Biológica , Exposição Ambiental/efeitos adversos , Brânquias/metabolismo , Brânquias/patologia , Metalotioneína/metabolismo , Metais Pesados/farmacocinética , Óxido Nítrico Sintase Tipo I/metabolismo , Reação em Cadeia da Polimerase , Distribuição Aleatória , ATPase Trocadora de Sódio-Potássio/metabolismo , Testes de Toxicidade Subcrônica , Poluentes Químicos da Água/farmacocinética
15.
Acta Histochem ; 113(2): 201-13, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19931122

RESUMO

An investigation was conducted to determine the effects of the heavy metal, cadmium (Cd), on the gills of the teleost fish, Thalassoma pavo Linnaeus, 1758. The fishes were exposed to several sublethal concentrations of cadmium (10, 40, 60 and 120 µM (mg/L)) for a period of 48, 96 and 192 h. The value of the LC50 after 96 h of cadmium exposure, determined using the System of Finney, was equal to 128.3 µM. The gills of the fishes were examined by light and electron microscopy. Toxic, apoptotic and cadmium effects were analyzed using some neuropeptides, metallothioneins (MT), caspase 3, PCNA and calmodulin, as bioindicators, respectively. The results showed that the alterations in the gills were proportional to the exposure periods and concentrations of the metal, which were found to be both dose and time dependent. The biological responses in the gills of the tested animals are discussed in relation to results obtained by analysis of the biomarkers. These data may be used for the planning of a model to determine biological risk in the marine environment and may be particularly useful to investigate organisms exposed to cadmium.


Assuntos
Cádmio/análise , Cádmio/farmacologia , Brânquias/química , Brânquias/ultraestrutura , Perciformes/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/análise , Calmodulina/análise , Caspase 3/análise , Caspase 3/metabolismo , Relação Dose-Resposta a Droga , Epitélio/química , Epitélio/efeitos dos fármacos , Epitélio/ultraestrutura , Brânquias/efeitos dos fármacos , Imuno-Histoquímica , Metalotioneína/análise , Neuropeptídeos/análise , Perciformes/anatomia & histologia , Antígeno Nuclear de Célula em Proliferação/análise
16.
Ecotoxicol Environ Saf ; 73(7): 1565-73, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20132985

RESUMO

To monitor the health of aquatic organisms, biomarkers have been used as effective tools in assessing environmental risk. In this study was examined the teleost Coris julis, sampled in two marine sites in Messina (Italy) at different pollution degree, Milazzo, characterized by a strong anthropogenic impact, and Marinello, the natural reserve. C. julis is a species particularly suitable to biomonitoring because its feeding habits favor bio-accumulation of xenobiotics. The following biomarkers were used to estimate the impact of highly persistent pollutants: cellular localization of cytochrome P4501A (CYP1A) and glutathione-S-transferase (GST) in the liver, their hepatic expression at the mRNA level, the enzymatic activity (EROD and BPMO), the micronucleus and comet assays in the blood, esterases (AChE in the brain and BChE in the blood) activity and evaluation of PAH metabolites in the bile. The present findings provide evidence of statistically significant differences in parameters between individuals collected in two sites.


Assuntos
Biomarcadores/metabolismo , Monitoramento Ambiental/estatística & dados numéricos , Poluentes Ambientais/metabolismo , Perciformes/metabolismo , Animais , Bile/química , Biomarcadores/sangue , Ensaio Cometa , Citocromo P-450 CYP1A1/metabolismo , Monitoramento Ambiental/métodos , Poluentes Ambientais/toxicidade , Glutationa Transferase/metabolismo , Itália , Fígado/enzimologia , Mar Mediterrâneo , Testes para Micronúcleos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...