Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Biomolecules ; 12(5)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35625624


Ecto-5'-nucleotidase (CD73), the ectoenzyme that together with CD39 is responsible for extracellular ATP hydrolysis and adenosine accumulation, regulates immune/inflammatory processes by controlling innate and acquired immunity cell functions. We previously demonstrated that CD73 is required for the assessment of a controlled allergic sensitization, in mice. Here, we evaluated the response to aerosolized allergen of female-sensitized mice lacking CD73 in comparison with their wild type counterpart. Results obtained show, in mice lacking CD73, the absence of airway hyperreactivity in response to an allergen challenge, paralleled by reduced airway CD23+B cells and IL4+T cells pulmonary accumulation together with reduced mast cells accumulation and degranulation. Our findings indicate CD73 as a potential therapeutic target for allergic asthma.

5'-Nucleotidase , Alérgenos , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Animais , Feminino , Pulmão/metabolismo , Camundongos , Camundongos Knockout
Phys Rev Lett ; 118(16): 160503, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28474957


We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p→q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.

Sci Rep ; 6: 22777, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26959656


We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations and for the possibility of entangling a particle with quantum gravitational radiation.

Phys Rev Lett ; 115(22): 220401, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26650281


Under the eigenstate thermalization hypothesis (ETH), quantum-quenched systems equilibrate towards canonical, thermal ensembles. While at first glance the ETH might seem a very strong hypothesis, we show that it is indeed not only sufficient but also necessary for thermalization. More specifically, we consider systems coupled to baths with well-defined macroscopic temperature and show that whenever all product states thermalize then the ETH must hold. Our result definitively settles the question of determining whether a quantum system has a thermal behavior, reducing it to checking whether its Hamiltonian satisfies the ETH.