Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Prenat Diagn ; 41(8): 910-921, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34228835

RESUMO

OBJECTIVE: To explore the concepts and strategies parents employ when considering maternal-fetal surgery (MFS) as an option for the management of spina bifida (SB) in their fetus, and how this determines the acceptability of the intervention. METHODS: A two-centre interview study enrolling parents whose fetuses with SB were eligible for MFS. To assess differences in acceptability, parents opting for MFS (n = 24) were interviewed at three different moments in time: prior to the intervention, directly after the intervention and 3-6 months after birth. Parents opting for termination of pregnancy (n = 5) were interviewed only once. Themes were identified and organised in line with the framework of acceptability. RESULTS: To parents opting for MFS, the intervention was perceived as an opportunity that needed to be taken. Feelings of parental responsibility drove them to do anything in their power to improve their future child's situation. Expectations seemed to be realistic yet were driven by hope for the best outcome. None expressed decisional regret at any stage, despite substantial impact and, at times, disappointing outcomes. For the small group of participants, who decided to opt for termination of pregnancy (TOP), MFS was not perceived as an intervention that substantially could improve the quality of their future child's life. CONCLUSION: Prospective parents opting for MFS were driven by their feelings of parental responsibility. They recognise the fetus as their future child and value information and care focusing on optimising the child's future health. In the small group of parents opting for TOP, MFS was felt to offer insufficient certainty of substantial improvement in quality of life and the perceived severe impact of SB drove their decision to end the pregnancy.

2.
J Neurosurg ; : 1-6, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34144526

RESUMO

Dysgeusia, or distorted taste, has recently been acknowledged as a complication of thalamic ablation or thalamic deep brain stimulation as a treatment of tremor. In a unique patient, left-sided MR-guided focused ultrasound thalamotomy improved right-sided essential tremor but also induced severe dysgeusia. Although dysgeusia persisted and caused substantial weight loss, tremor slowly relapsed. Therefore, 19 months after the first procedure, the patient underwent a second focused ultrasound thalamotomy procedure, which again improved tremor but also completely resolved the dysgeusia. On the basis of normative and patient-specific whole-brain tractography, the authors determined the relationship between the thalamotomy lesions and the medial border of the medial lemniscus-a surrogate for the solitariothalamic gustatory fibers-after the first and second focused ultrasound thalamotomy procedures. Both tractography methods suggested partial and complete disruption of the solitariothalamic gustatory fibers after the first and second thalamotomy procedures, respectively. The tractography findings in this unique patient demonstrate that incomplete and complete disruption of a neural pathway can induce and resolve symptoms, respectively, and serve as the rationale for ablative procedures for neurological and psychiatric disorders.

3.
Brain Stimul ; 14(4): 754-760, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33940243

RESUMO

BACKGROUND: Parkinson's disease (PD) is a common neurodegenerative disorder that results in movement-related dysfunction and has variable cognitive impairment. Deep brain stimulation (DBS) of the dorsal subthalamic nucleus (STN) has been shown to be effective in improving motor symptoms; however, cognitive impairment is often unchanged, and in some cases, worsened particularly on tasks of verbal fluency. Traditional DBS strategies use high frequency gamma stimulation for motor symptoms (∼130 Hz), but there is evidence that low frequency theta oscillations (5-12 Hz) are important in cognition. METHODS: We tested the effects of stimulation frequency and location on verbal fluency among patients who underwent STN DBS implantation with externalized leads. During baseline cognitive testing, STN field potentials were recorded and the individual patients' peak theta frequency power was identified during each cognitive task. Patients repeated cognitive testing at five different stimulation settings: no stimulation, dorsal contact gamma (130 Hz), ventral contact gamma, dorsal theta (peak baseline theta) and ventral theta (peak baseline theta) frequency stimulation. RESULTS: Acute left dorsal peak theta frequency STN stimulation improves overall verbal fluency compared to no stimulation and to either dorsal or ventral gamma stimulation. Stratifying by type of verbal fluency probes, verbal fluency in episodic categories was improved with dorsal theta stimulation compared to all other conditions, while there were no differences between stimulation conditions in non-episodic probe conditions. CONCLUSION: Here, we provide evidence that dorsal STN theta stimulation may improve verbal fluency, suggesting a potential possibility of integrating theta stimulation into current DBS paradigms to improve cognitive outcomes.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Cognição , Humanos , Testes Neuropsicológicos , Doença de Parkinson/terapia
6.
Stereotact Funct Neurosurg ; 99(1): 34-37, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32937628

RESUMO

Magnetic resonance imaging-guided focused ultrasound (MRgFUS) is a novel method for stereotactic brain lesioning and has primarily been applied for thalamotomies to treat essential tremor (ET). The electrophysiological properties of previously MRgFUS-sonicated thalamic neurons have not yet been described. We report on an ET patient who underwent an MRgFUS thalamotomy but experienced tremor recurrence. We expanded the MRgFUS-induced thalamic cavity using radiofrequency (RF), with good effect on the tremor but transient sensorimotor deficits and permanent ataxia. This is the first report of a patient undergoing RF thalamotomy after an unsuccessful MRgFUS thalamotomy. As we used microelectrode recording to guide the RF thalamotomy, we could also study for the first time the electrophysiological properties of previously sonicated thalamic neurons bordering the MRgFUS-induced cavity. These neurons displayed electrophysiological characteristics identical to those recorded from nonsonicated thalamic cells in ET patients. Hence, our findings support the widespread assumption that sonication below the necrotic threshold does not permanently alter neuronal function.


Assuntos
Tremor Essencial/diagnóstico por imagem , Tremor Essencial/terapia , Ablação por Radiofrequência/métodos , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Terapia por Ultrassom/métodos , Idoso de 80 Anos ou mais , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Microeletrodos , Psicocirurgia/métodos
8.
EJVES Vasc Forum ; 48: 32-34, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33103134

RESUMO

Introduction: Spinal cord ischaemia (SCI) is a devastating complication of the treatment of thoraco-abdominal aneurysms. Peri-operative cerebrospinal fluid (CSF) drainage, typically using a spinal catheter, is a possible preventive measure. There are no reports or guidelines on peri-operative CSF drainage for this indication in patients with a ventriculoperitoneal (VP) shunt. Report: A single case of a patient suffering SCI after fenestrated endovascular aortic repair for the treatment of a pararenal aneurysm after previous open repair of an infrarenal aortic aneurysm is presented. Despite the presence of a patent VP shunt, elevated CSF pressures were observed after placement of a CSF drain. Discussion: A VP shunt with a gravitational component may drain insufficiently in bedridden patients who often lie with their head tilted on a cushion. In this position, both the differential pressure component and the gravitational component become active, thereby increasing the overall resistance to CSF outflow, hence increasing intracranial and intraspinal pressure. VP shunts with gravitational components should be managed with caution in the setting of prophylactic or therapeutic drainage of CSF to prevent SCI in extensive aortic repair. For reliable CSF pressure monitoring or active drainage in case of symptoms, the insertion of a spinal drain is indicated.

9.
Front Hum Neurosci ; 14: 242, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670041

RESUMO

Objective: To reveal clinical characteristics of suboptimal responses to deep brain stimulation (DBS) in a multi-country DYT1 dystonia cohort. Methods: In this multi-country multi-center retrospective study, we analyzed the clinical data of DYT1 patients who experienced suboptimal responses to DBS defined as <30% improvement in dystonia scales at the last follow-up compared with baseline. We used a literature-driven historical cohort of 112 DYT1 patients for comparison. Results: Approximately 8% of our study cohort (11 out of 132) experienced suboptimal responses to DBS. Compared with the historical cohort, the multi-country cohort with suboptimal responses had a significantly younger age at onset (mean, 7.0 vs. 8.4 years; p = 0.025) and younger age at DBS (mean, 12.0 vs. 18.6 years; p = 0.019). Additionally, cranial involvement was more common in the multi-country cohort (before DBS, 64% vs. 45%, p = 0.074; before or after DBS, 91% vs. 47%, p = 0.001). Mean motor improvement at the last follow-up from baseline were 0% and 66% for the multi-country and historical cohorts, respectively. All 11 patients of the multi-country cohort had generalization of dystonia within 2.5 years after disease onset. All patients experienced dystonia improvement of >30% postoperatively; however, secondary worsening of dystonia commenced between 6 months and 3 years following DBS. The improvement at the last follow-up was less than 30% despite optimally-placed leads, a trial of multiple programming settings, and additional DBS surgeries in all patients. The on-/off-stimulation comparison at the long-term follow-up demonstrated beneficial effects of DBS despite missing the threshold of 30% improvement over baseline. Conclusion: Approximately 8% of patients represent a more aggressive phenotype of DYT1 dystonia characterized by younger age at onset, faster disease progression, and cranial involvement, which seems to be associated with long-term suboptimal responses to DBS (e.g., secondary worsening). This information could be useful for both clinicians and patients in clinical decision making and patient counseling before and following DBS implantations. Patients with this phenotype may have different neuroplasticity, neurogenetics, or possibly distinct neurophysiology.

10.
Pain ; 161(12): 2805-2819, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32694384

RESUMO

Central poststroke pain (CPSP) is a debilitating and often treatment-refractory condition that affects numerous stroke patients. The location of lesions most likely to cause pain and the identity of the functional brain networks that they impinge upon remain incompletely understood. We aimed to (1) elucidate which lesion locations are most frequently accompanied by pain; (2) explore CPSP-associated functional networks; and (3) examine how neuromodulation interacts with these networks. This multisite study investigated 17 CPSP patients who received deep brain stimulation (DBS; n = 12) or motor cortex stimulation (MCS; n = 5). Pain-causing lesions were manually segmented and normalized to standard space. To identify areas linked to high risk of pain, the locations of CPSP lesions and 220 control lesions were compared using voxelwise odds ratio mapping. The functional connectivity of pain-causing lesions was obtained using a large (n = 1000) normative resting-state functional MRI connectome and compared to that of control lesions and therapeutic DBS activation volumes. Brain regions most associated with CPSP risk (highest value = 63 times) were located along the ascending somatosensory pathways. These areas and the majority of individual CPSP lesions were functionally connected to anterior/middle cingulate cortex, insula, thalamus, and inferior parietal lobule (PBonferroni < 0.05). The extent of connectivity to the thalamus, inferior parietal lobule, and precuneus also differed between CPSP and control lesions (PBonferroni < 0.05). Posterior insula and thalamus shared connectivity with both CPSP lesions and pain-alleviating DBS activation volumes (PBonferroni < 0.05). These findings further clarify the topography and functional connectivity of pain-causing brain lesions, and provide new insights into the network-level mechanism of CPSP neuromodulation.


Assuntos
Córtex Motor , Acidente Vascular Cerebral , Analgésicos , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , Tálamo/diagnóstico por imagem
11.
Stereotact Funct Neurosurg ; 98(3): 206-212, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32294659

RESUMO

The authors report the case of an elderly male in his 60s who, after 5 months of efficacious treatment with chronic deep brain stimulation of the subthalamic nucleus (STN-DBS), developed a hardware-related erosion necessitating removal of the complete DBS system. One and a half years following the first implantation, a new STN-DBS system was implanted along an immediately adjacent trajectory, and reproduction of clinical efficacy was reported. Additionally, 2 microstimulation protocols were compared between the 2 surgeries, i.e., one to assess the stimulation frequency response of STN neurons and another to assess inhibitory synaptic plasticity in the substantia nigra pars reticulata (SNr). The spontaneous neuronal firing rates of STN neurons in each hemisphere were also compared between the 2 surgeries. The results suggest that the frequency-sensitivity of STN neurons may have been reduced (i.e., more resistant to neuronal suppression), while the spontaneous baseline firing rates of STN neurons and the plasticity measured in the SNr remained unchanged (2 factors that may be indicative of neurodegenerative processes).


Assuntos
Estimulação Encefálica Profunda/métodos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Idoso , Eletrodos Implantados , Humanos , Masculino
12.
J Neurosurg Pediatr ; : 1-10, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32109863

RESUMO

OBJECTIVE: Selective dorsal rhizotomy (SDR) is effective at permanently reducing spasticity in children with spastic cerebral palsy. The value of intraoperative neurophysiological monitoring in this procedure remains controversial, and its robustness has been questioned. This study describes the authors' institutional electrophysiological technique (based on the technique of Park et al.), intraoperative findings, robustness, value to the procedure, and occurrence of new motor or sphincter deficits. METHODS: The authors analyzed electrophysiological data of all children who underwent SDR at their center between September 2013 and February 2019. All patients underwent bilateral SDR through a single-level laminotomy at the conus and with transection of about 60% of the L2-S2 afferent rootlets (guided by intraoperative electrophysiology) and about 50% of L1 afferent roots (nonselectively). RESULTS: One hundred forty-five patients underwent SDR (64% male, mean age 6 years and 7 months, range 2 years and 9 months to 14 years and 10 months). Dorsal roots were distinguished from ventral roots anatomically and electrophysiologically, by assessing responses on free-running electromyography (EMG) and determining stimulation thresholds (≥ 0.2 mA in all dorsal rootlets). Root level was determined anatomically and electrophysiologically by assessing electromyographic response to stimulation. Median stimulation threshold was lower in sacral compared to lumbar roots (p < 0.001), and 16% higher on the first operated (right) side (p = 0.023), but unrelated to age, sex, or functional status. Similarly, responses to tetanic stimulation were consistent: 87% were graded 3+ or 4+, with similar distributions between sides. This was also unrelated to age, sex, and functional status. The L2-S2 rootlets were divided (median 60%, range 50%-67%), guided by response to tetanic stimulation at threshold amplitude. No new motor or sphincter deficits were observed, suggesting sparing of ventral roots and sphincteric innervation, respectively. CONCLUSIONS: This electrophysiological technique appears robust and reproducible, allowing reliable identification of afferent nerve roots, definition of root levels, and guidance for rootlet division. Only a direct comparative study will establish whether intraoperative electrophysiology during SDR minimizes risk of new motor or sphincter worsening and/or maximizes functional outcome.

13.
J Neurosurg ; : 1-6, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31561224

RESUMO

The authors report on a female patient with left-dominant Parkinson's disease with motor fluctuations and levodopa-induced dyskinesias and comorbid postherpetic neuralgia (PHN), who underwent a right-sided pallidotomy. Besides a substantial improvement in her Parkinson's symptoms, she reported an immediate and complete disappearance of PHN. This neuralgia had been long-standing, pharmacologically refractory, and severe (preoperative Brief Pain Inventory [BPI] pain severity score of 8.0, BPI pain interference score of 7.3, short-form McGill Pain Questionnaire sensory pain rating index of 7 and affective pain rating index of 10, Present Pain Intensity rank value of 4, and visual analog scale score of 81 mm; all postoperative scores were 0). She continued to be pain free at 16 months postoperatively.This peculiar finding adds substantially to the largely unrecognized evidence for the role of the pallidum in pain processing, based on previous electrophysiological, metabolic, anatomical, pharmacological, and clinical observations. Therefore, the potential of the pallidum as a neurosurgical target for neuropathic pain warrants further investigation.

14.
J Neurosurg Pediatr ; : 1-9, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31299640

RESUMO

OBJECTIVE: Although deep brain stimulation (DBS) is an accepted treatment for childhood dystonia, there is significant heterogeneity in treatment response and few data are available to identify ideal surgical candidates. METHODS: Data were derived from a systematic review and individual patient data meta-analysis of DBS for dystonia in children that was previously published. Outcomes were assessed using the Burke-Fahn-Marsden Dystonia Rating Scale for movement (BFMDRS-M) and for disability (BFMDRS-D). The authors used partial least squares, bootstrapping, and permutation statistics to extract patterns of contributions of specific preoperative characteristics to relationship with distinct outcomes, in all patients and in patients with primary and secondary dystonia separately. RESULTS: Of 301 children undergoing DBS for dystonia, 167 had primary dystonia, 125 secondary dystonia, and 9 myoclonus dystonia. Three dissociable preoperative phenotypes (latent variables) were identified and associated with the following: 1) BFMDRS-M at last follow-up; 2) relative change in BFMDRS-M score; and 3) relative change in BFMDRS-D score. The phenotype of patients with secondary dystonia, with a high BFMDRS-M score and truncal involvement, undergoing DBS at a younger age, was associated with a worse postoperative BFMDRS-M score. Children with primary dystonia involving the trunk had greater improvement in BFMDRS-M and -D scores. Those with primary dystonia of shorter duration and proportion of life with disease, undergoing globus pallidus DBS, had greater improvements in BFMDRS-D scores at long-term follow-up. CONCLUSIONS: In a comprehensive, data-driven, multivariate analysis of DBS for childhood dystonia, the authors identified novel and dissociable patient phenotypes associated with distinct outcomes. The findings of this report may inform surgical candidacy for DBS.

15.
J Neurosurg ; 132(2): 574-582, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30797189

RESUMO

OBJECTIVE: Neuronal loss within the cholinergic nucleus basalis of Meynert (nbM) correlates with cognitive decline in dementing disorders such as Alzheimer's disease and Parkinson's disease (PD). In nonhuman primates, the nbM firing pattern (5-40 Hz) has also been correlated with working memory and sustained attention. In this study, authors performed microelectrode recordings of the globus pallidus pars interna (GPi) and the nbM immediately prior to the implantation of bilateral deep brain stimulation (DBS) electrodes in PD patients to treat motor symptoms and cognitive impairment, respectively. Here, the authors evaluate the electrophysiological properties of the nbM in patients with PD. METHODS: Five patients (4 male, mean age 66 ± 4 years) with PD and mild cognitive impairment underwent bilateral GPi and nbM DBS lead implantation. Microelectrode recordings were performed through the GPi and nbM along a single trajectory. Firing rates and burst indices were characterized for each neuronal population with the patient at rest and performing a sustained-attention auditory oddball task. Action potential (AP) depolarization and repolarization widths were measured for each neuronal population at rest. RESULTS: In PD patients off medication, the authors identified neuronal discharge rates that were specific to each area populated by GPi cells (92.6 ± 46.1 Hz), border cells (34 ± 21 Hz), and nbM cells (13 ± 10 Hz). During the oddball task, firing rates of nbM cells decreased (2.9 ± 0.9 to 2.0 ± 1.1 Hz, p < 0.05). During baseline recordings, the burst index for nbM cells (1.7 ± 0.6) was significantly greater than those for GPi cells (1.2 ± 0.2, p < 0.05) and border cells (1.1 ± 0.1, p < 0.05). There was no significant difference in the nbM burst index during the oddball task relative to baseline (3.4 ± 1.7, p = 0.20). With the patient at rest, the width of the depolarization phase of APs did not differ among the GPi cells, border cells, and nbM cells (p = 0.60); however, during the repolarization phase, the nbM spikes were significantly longer than those for GPi high-frequency discharge cells (p < 0.05) but not the border cells (p = 0.20). CONCLUSIONS: Neurons along the trajectory through the GPi and nbM have distinct firing patterns. The profile of nbM activity is similar to that observed in nonhuman primates and is altered during a cognitive task associated with cholinergic activation. These findings will serve to identify these targets intraoperatively and form the basis for further research to characterize the role of the nbM in cognition.


Assuntos
Núcleo Basal de Meynert/fisiopatologia , Doença de Parkinson/fisiopatologia , Estimulação Acústica , Potenciais de Ação , Idoso , Antiparkinsonianos/uso terapêutico , Neurônios Colinérgicos/fisiologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Estimulação Encefálica Profunda , Feminino , Globo Pálido/fisiologia , Humanos , Masculino , Microeletrodos , Pessoa de Meia-Idade , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/terapia , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/terapia
17.
Mov Disord ; 34(2): 264-273, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30633810

RESUMO

BACKGROUND: Pantothenate kinase-associated neurodegeneration is a rare autosomal-recessive disorder, characterized by progressive neurodegeneration associated with brain iron accumulation. DBS has been trialed to treat related movement disorders, particularly dystonia. The objective of this study was to determine the outcome and safety of DBS for pantothenate kinase-associated neurodegeneration. METHODS: We performed a meta-analysis using independent participant data (n = 99) from 38 articles. Primary outcome was change in movement and disability scores of the Burke-Fahn-Marsden Dystonia Rating Scale 1 year postoperatively. Secondary outcomes were response rate and complications. RESULTS: Patients with classic-type (n = 58) and atypical-type (n = 15) pantothenate kinase-associated neurodegeneration were operated on at a median age of 11 and 31 years, respectively (P < 0.001). GPi was primarily targeted (n = 87). Mean dystonia movement score improved 1 year following GPi-DBS (-26%; 95% confidence interval, -37% to -15%), particularly in atypical versus classic cases (-45% vs -16%; P < 0.001). At least 30% improvement was observed in 34% of classic versus 73% of atypical cases (P = 0.04). Higher preoperative score and atypical type predicted larger improvement. GPi-DBS improved dystonia disability score in atypical (-31%; 95% confidence interval, -49% to -13%) but not classic (-5%; 95% confidence interval, -17% to 8%) cases. Prevalence of surgical infections (6%) and hardware failure (7%) was similar to other dystonia etiologies. Two patients died within 3 months. There was insufficient data to describe outcome > 1 year following GPi-DBS or with other DBS targets. Overall, small sample sizes limited generalizability. CONCLUSIONS: This meta-analysis provides level 4 evidence that GPi-DBS for pantothenate kinase-associated neurodegeneration may improve dystonia movement scores in classic type and atypical type and disability scores in atypical type 1 year postoperatively. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Distonia/terapia , Neurodegeneração Associada a Pantotenato-Quinase/terapia , Transtornos Parkinsonianos/terapia , Adolescente , Adulto , Encéfalo/cirurgia , Criança , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Distonia/fisiopatologia , Distúrbios Distônicos/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurodegeneração Associada a Pantotenato-Quinase/complicações , Neurodegeneração Associada a Pantotenato-Quinase/fisiopatologia , Transtornos Parkinsonianos/complicações , Resultado do Tratamento , Adulto Jovem
18.
J Neurol Neurosurg Psychiatry ; 90(4): 474-482, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30337440

RESUMO

There are several different surgical procedures that are used to treat essential tremor (ET), including deep brain stimulation (DBS) and thalamotomy procedures with radiofrequency (RF), radiosurgery (RS) and most recently, focused ultrasound (FUS). Choosing a surgical treatment requires a careful presentation and discussion of the benefits and drawbacks of each. We conducted a literature review to compare the attributes and make an appraisal of these various procedures. DBS was the most commonly reported treatment for ET. One-year tremor reductions ranged from 53% to 63% with unilateral Vim DBS. Similar improvements were demonstrated with RF (range, 74%-90%), RS (range, 48%-63%) and FUS thalamotomy (range, 35%-75%). Overall, bilateral Vim DBS demonstrated more improvement in tremor reduction since both upper extremities were treated (range, 66%-78%). Several studies show continued beneficial effects from DBS up to five years. Long-term follow-up data also support RF and gamma knife radiosurgical thalamotomy treatments. Quality of life measures were similarly improved among patients who received all treatments. Paraesthesias, dysarthria and ataxia were commonly reported adverse effects in all treatment modalities and were more common with bilateral DBS surgery. Many of the neurological complications were transient and resolved after surgery. DBS surgery had the added benefit of programming adjustments to minimise stimulation-related complications. Permanent neurological complications were most commonly reported for RF thalamotomy. Thalamic DBS is an effective, safe treatment with a long history. For patients who are medically unfit or reluctant to undergo DBS, several thalamic lesioning methods have parallel benefits to unilateral DBS surgery. Each of these surgical modalities has its own nuance for treatment and patient selection. These factors should be carefully considered by both neurosurgeons and patients when selecting an appropriate treatment for ET.


Assuntos
Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Ablação por Radiofrequência/métodos , Radiocirurgia/métodos , Técnicas Estereotáxicas , Tálamo/cirurgia , Procedimentos Cirúrgicos Ultrassônicos/métodos , Protocolos Clínicos , Humanos , Procedimentos Neurocirúrgicos , Implantação de Prótese
19.
Brain Stimul ; 12(2): 344-352, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30514614

RESUMO

BACKGROUND: Several different surgical procedures targeting the limbic circuit have been utilized for severe, treatment resistant obsessive-compulsive disorder; however, there has only been limited exploration of the inferior thalamic peduncle (ITP). The aim of this study was to determine the safety and initial efficacy of ITP deep brain stimulation (DBS) in patients with severe obsessive-compulsive disorder. METHODS: Patients with severe, treatment-refractory obsessive-compulsive disorder were enrolled into this open-label phase 1 DBS pilot study. Bilateral ITP DBS devices were implanted between November 2010 and December 2015. The primary outcome was safety. The initial efficacy was determined by Yale-Brown Obsessive-Compulsive scale (YBOCs) scores. Component Y-BOCs scores, Hamilton Depression Severity Scale, Quality of Life Assessment (SF-36), Oxford Happiness Questionnaire, Warwick-Edinburgh Mental Well-Being Scale, and Sheehan Disability Scale were also analyzed for a minimum of 2 years after surgery. Additionally, preoperative and three-month postoperative FDG-PET studies were performed on two patients. RESULTS: Five patients (2 males, 3 females; age range 25-48 years) received ITP DBS. All five patients were considered responders at one year (52% improvement in YBOCs scores compared to baseline (range 39-73%, p < 0.01) and last follow-up (54% improvement; range 38-85%; p < 0.01). At two years follow-up, there were three adverse events that occurred in two patients. One patient had his DBS system removed after one year due to the device becoming the object of his obsession. The other two adverse events were not related to the device. Post-operative FDG-PET imaging in two patients demonstrated decreased glucose uptake within the right caudate, right putamen, right supplementary motor area, and right cingulum and increased glucose uptake in bilateral motor areas, left temporal pole, and left orbitfrontal cortex. CONCLUSIONS: ITP DBS has a favorable safety profile and is potentially an efficacious treatment for severe obsessive-compulsive disorder. Larger clinical trials are necessary to determine efficacy.


Assuntos
Estimulação Encefálica Profunda/métodos , Transtorno Obsessivo-Compulsivo/terapia , Tálamo/fisiopatologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Estimulação Encefálica Profunda/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Tomografia por Emissão de Pósitrons , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Qualidade de Vida , Tálamo/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...