Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32970411

RESUMO

Heterogeneous single-site catalysts contain spatially isolated, well-defined active sites. This allows not only their easy recovery by solid-liquid separation, but also the detailed active site design like in homogeneous catalysts. Here, heterogeneous Pd(II) single-site catalysts were assembled, based on mesoporous metal oxide-bisphosphonate materials as supports. This new family of hybrid organic-inorganic materials with tunable porosity was further functionalized with thioether ligands containing S,O-binding sites that enhance the activity of Pd(II) for C-H activation reactions. The structures of the resulting Pd(II) single-site catalysts were carefully analyzed via solid-state NMR spectroscopy, via texture analysis by N2 physisorption, infrared spectroscopy, and transmission electron microscopy. Furthermore, the immediate environment of the isolated Pd(II) active sites was studied with X-ray absorption spectroscopy. A clear relationship between thioether ligand surface density and catalyst activity could be established. Significantly higher yields were obtained using highly porous metal oxide-bisphosphonate materials as supports compared to materials with lower porosities, such as conventional metal oxides, indicating that the high surface area facilitates the presence of isolated, well-accessible S,O-supported Pd(II) active sites. A wide scope of model substrates, including industrially relevant arenes, can be converted with high yields by the optimal heterogeneous Pd catalyst.

2.
Angew Chem Int Ed Engl ; 59(33): 14086-14090, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32365255

RESUMO

Perfluorinated alkylated substances (PFASs) are widely used in industrial and commercial applications, leading to a widespread occurrence of these persistent and harmful contaminants in our environment. Removal of these compounds from surface and waste waters is being mandated by European and U.S. governments. Currently, there are no treatment techniques available that lower the concentrations of these compounds for large water bodies in a cost- and energy-efficient way. We hereby propose a hydrophobic, all-silica zeolite Beta material that is a highly selective and high-capacity adsorbent for PFASs, even in the presence of organic competitors. Advanced characterization data demonstrate that the adsorption process is driven by a very negative adsorption enthalpy and favorable steric factors.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32453899

RESUMO

There are a large number of zeolites, such as ITH, that cannot be prepared in the aluminosilicate form. Now, the successful synthesis of aluminosilicate ITH zeolite using a simple cationic oligomer as an organic template is presented. Key to the success is that the cationic oligomer has a strong complexation ability with aluminum species combined with a structural directing ability for the ITH structure similar to that of the conventional organic template. The aluminosilicate ITH zeolite has very high crystallinity, nanosheet-like crystal morphology, large surface area, fully four-coordinated Al species, and abundant acidic sites. Methanol-to-propylene (MTP) tests reveal that the Al-ITH zeolite shows much higher selectivity for propylene and longer lifetime than commercial ZSM-5. FCC tests show that Al-ITH zeolite is a good candidate as a shape-selective FCC additive for enhancing propylene and butylene selectivity.

4.
ChemSusChem ; 13(10): 2786-2791, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32061039

RESUMO

An efficient and selective procedure was developed for the direct C2-H arylation of indoles using a Pd-loaded metal-organic framework (MOF) as a heterogeneous catalyst and the nontoxic biomass-derived solvent γ-valerolactone (GVL) as a reaction medium. The developed method allows for excellent yields and C-2 selectivity to be achieved and tolerates various substituents on the indole scaffold. The established conditions ensure the stability of the catalyst as well as recoverability, reusability, and low metal leaching into the solution.

5.
J Am Chem Soc ; 142(6): 3174-3183, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31971786

RESUMO

The stability of metal-organic frameworks (MOFs) typically decreases with an increasing number of defects, limiting the number of defects that can be created and limiting catalytic and other applications. Herein, we use a hemilabile (Hl) linker to create up to a maximum of six defects per cluster in UiO-66. We synthesized hemilabile UiO-66 (Hl-UiO-66) using benzene dicarboxylate (BDC) as linker and 4-sulfonatobenzoate (PSBA) as the hemilabile linker. The PSBA acts not only as a modulator to create defects but also as a coligand that enhances the stability of the resulting defective framework. Furthermore, upon a postsynthetic treatment in H2SO4, the average number of defects increases to the optimum of six missing BDC linkers per cluster (three per formula unit), leaving the Zr-nodes on average sixfold coordinated. Remarkably, the thermal stability of the materials further increases upon this treatment. Periodic density functional theory calculations confirm that the hemilabile ligands strengthen this highly defective structure by several stabilizing interactions. Finally, the catalytic activity of the obtained materials is evaluated in the acid-catalyzed isomerization of α-pinene oxide. This reaction is particularly sensitive to the Brønsted or Lewis acid sites in the catalyst. In comparison to the pristine UiO-66, which mainly possesses Brønsted acid sites, the Hl-UiO-66 and the postsynthetically treated Hl-UiO-66 structures exhibited a higher Lewis acidity and an enhanced activity and selectivity. This is further explored by CD3CN spectroscopic sorption experiments. We have shown that by tuning the number of defects in UiO-66 using PSBA as the hemilabile linker, one can achieve highly defective and stable MOFs and easily control the Brønsted to Lewis acid ratio in the materials and thus their catalytic activity and selectivity.

6.
J Am Chem Soc ; 141(45): 18318-18324, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31644275

RESUMO

A large amount of zeolite structures are still not synthetically available or not available in the form of aluminosilicate currently. Despite significant progress in the development of predictive concepts for zeolite synthesis, accessing some of these new materials is still challenging. One example is the IWR structure as well. Despite successful synthesis of Ge-based IWR zeolites, direct synthesis of aluminosilicate IWR zeolite is still not successful. In this report we show how a suitable organic structure directing agent (OSDA), through modeling of an OSDA/zeolite cage interaction, could access directly the aluminum-containing IWR structure (denoted as COE-6), which might allow access to new classes of materials and thus open opportunities in valuable chemical applications. The experimental results reveal that the COE-6 zeolites with a SiO2/Al2O3 ratio as low as 30 could be obtained. Very interestingly, the COE-6 zeolite has much higher hydrothermal and thermal stabilities than those of the conventional Ge-Al-IWR zeolite. In methanol-to-propylene (MTP) reaction, the COE-6 zeolite exhibits excellent selectivity for propylene, offering a potential catalyst for MTP reaction in the future.

7.
Chem Commun (Camb) ; 55(85): 12869-12872, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31599274

RESUMO

A hierarchical USY zeolite has been produced using the surfactant-templating method and used as a catalyst for the production of two important active pharmaceutical ingredients. The presence of intracrystalline mesoporosity in the zeolite results in a significant increase in both the activity (up to 30 fold increase in TOF) and reusability for Friedel-Crafts alkylation and aldol condensation steps.


Assuntos
Nanoestruturas/química , Preparações Farmacêuticas/química , Tensoativos/química , Zeolitas/química , Catálise
8.
Adv Sci (Weinh) ; 6(19): 1901020, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31592140

RESUMO

Metal-organic frameworks (MOFs) are emerging materials for luminescent and photochemical applications. Armed with femto to millisecond spectroscopies, and fluorescence microscopy, the photobehaviors of two Ce-based MOFs are unravelled: Ce-NU-1000 and Ce-CAU-24-TBAPy. It is observed that both MOFs show ligand-to-cluster charge transfer reactions in ≈100 and ≈70 fs for Ce-NU-1000 and Ce-CAU-24-TBAPy, respectively. The formed charge separated states, resulting in electron and hole generation, recombine in different times for each MOF, being longer in Ce-CAU-24-TBAPy: 1.59 and 13.43 µs than in Ce-NU-1000: 0.64 and 4.91 µs. The linkers in both MOFs also undergo a very fast intramolecular charge transfer reaction in ≈160 fs. Furthermore, the Ce-NU-1000 MOF reveals excimer formation in 50 ps, and lifetime of ≈14 ns. The lack of this interlinkers event in Ce-CAU-24-TBAPy arises from topological restriction and demonstrates the structural differences between the two frameworks. Single-crystal fluorescence microscopy of Ce-CAU-24-TBAPy shows the presence of a random distribution of defects along the whole crystal, and their impact on the observed photobehavior. These findings reflect the effect of linkers topology and metal clusters orientations on the outcome of electronic excitation of reticular structure, key to their applicability in different fields of science and technology, such as photocatalysis and photonics.

9.
Chemistry ; 25(45): 10724-10734, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31170321

RESUMO

The practical application of Shilov-type Pt catalysis to the selective hydroxylation of terminal aliphatic C-H bonds remains a formidable challenge, due to difficulties in replacing PtIV with a more economically viable oxidant, particularly O2 . We report the potential of employing FeCl2 as a suitable redox mediator to overcome the kinetic hurdles related to the direct use of O2 in the Pt reoxidation. For the selective conversion of butyric acid to γ-hydroxybutyric acid (GHB), a significantly enhanced catalyst activity and stability (turnover numbers (TON)>30) were achieved under 20 bar O2 in comparison to current state-of-the-art systems (TON<10). In this regard, essential reaction parameters affecting the overall activity were identified, along with specific additives to attain catalyst stability at longer reaction times. Notably, deactivation by reduction to Pt0 was prevented by the addition of monodentate pyridine derivatives, such as 2-fluoropyridine, but also by introducing varying partial pressures of N2 in the gaseous atmosphere. Finally, stability tests revealed the involvement of PtII and FeCl2 in catalyzing the non-selective overoxidation of GHB. Accordingly, in situ esterification with boric acid proved to be a suitable strategy to maintain enhanced selectivities at much higher conversions (TON>60). Altogether, a useful catalytic system for the selective hydroxylation of primary aliphatic C-H bonds with O2 is presented.

10.
Chemistry ; 25(39): 9197-9201, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31141619

RESUMO

The less polar phase of liquid-liquid extraction systems has been studied extensively for improving metal separations; however, the role of the more polar phase has been overlooked for far too long. Herein, we investigate the extraction of metals from a variety of polar solvents and demonstrate that, the influence of polar solvents on metal extraction is so significant that extraction of many metals can be largely tuned, and the metal separations can be significantly enhanced by selecting suitable polar solvents. Furthermore, a mechanism on how the polar solvents affect metal extraction is proposed based on comprehensive characterizations. The method of using suitable polar solvents in liquid-liquid extraction paves a new and versatile way to enhance metal separations.

11.
ChemistryOpen ; 8(4): 532-538, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31061778

RESUMO

Anodized aluminum oxides (AAOs) are synthesized and used as catalyst support in combination with Ru as metal in hydrogenation catalysis. SEM and TEM analysis of the as-synthesized AAOs reveal uniform, ordered nanotubes with pore diameters of 18 nm, which are further characterized with Kr physisorption, XRD and FTIR spectroscopy. After impregnation of the AAOs with Ru, the presence of Ru nanoparticles inside the tubular pores is evidenced clearly for the first time via HAADF-STEM-EDX. The Ru-AAOs have been tested for catalytic activity, which showed high conversion and selectivity for the hydrogenation of toluene and butanal.

12.
Angew Chem Int Ed Engl ; 58(27): 9160-9165, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31059170

RESUMO

While titanium-based metal-organic frameworks (MOFs) have been widely studied for their (photo)catalytic potential, only a few TiIV MOFs have been reported owing to the high reactivity of the employed titanium precursors. The synthesis of COK-47 is now presented, the first Ti carboxylate MOF based on sheets of TiIV O6 octahedra, which can be synthesized with a range of different linkers. COK-47 can be synthesized as an inherently defective nanoparticulate material, rendering it a highly efficient catalyst for the oxidation of thiophenes. Its structure was determined by continuous rotation electron diffraction and studied in depth by X-ray total scattering, EXAFS, and solid-state NMR. Furthermore, its photoactivity was investigated by electron paramagnetic resonance and demonstrated by catalytic photodegradation of rhodamine 6G.

13.
Angew Chem Int Ed Engl ; 58(32): 10995-11000, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31087755

RESUMO

Two new zirconium-based metal-organic frameworks with the composition [Zr6 O4 (OH)4 (OAc)6 (BDC)3 ] (CAU-26) and [Zr5 O4 (OH)4 (OAc)4 (BDC)2 ] (CAU-27) are reported, which were synthesized from acetic acid, a rarely utilized but green and sustainable solvent (BDC2- : 1,4-benzenedicarboxylate). Structure determination aided by automated electron diffraction tomography revealed that CAU-26 is composed of layers of well-known {Zr6 O8 } clusters interconnected by terephthalate ions. In contrast CAU-27 exhibits a three-dimensional structure with a so far unknown type of one-dimensional inorganic building unit (IBU), which can be rationalized as condensed polyhedron-sharing chains of {Zr6 O8 } clusters. CAU-26 occurs as an intermediate of the CAU-27 synthesis and can be isolated easily, when reaction temperature and time are decreased. We were also able to synthesize two isoreticular derivatives of CAU-27 with extended linker molecules by implementing 4,4'-biphenyldicarboxylic acid (H2 BPDC) and 5,5'-dicarboxy-2,2'-bipyridine (H2 BIPY). All materials show high thermal and chemical stability as well as permanent microporosity. The excellent stability of CAU-27-BIPY was exploited to synthesize a performant iridium-supported heterogeneous MOF-based catalyst for the direct C-H borylation of arenes.

14.
Chem Sci ; 10(12): 3616-3622, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30996954

RESUMO

C-H activation reactions are generally associated with relatively low turnover numbers (TONs) and high catalyst concentrations due to a combination of low catalyst stability and activity, highlighting the need for recyclable heterogeneous catalysts with stable single-atom active sites. In this work, several palladium loaded metal-organic frameworks (MOFs) were tested as single-site catalysts for the oxidative coupling of arenes (e.g. o-xylene) via C-H/C-H activation. Isolation of the palladium active sites on the MOF supports reduced Pd(0) aggregate formation and thus catalyst deactivation, resulting in higher turnover numbers (TONs) compared to the homogeneous benchmark reaction. Notably, a threefold higher TON could be achieved for palladium loaded MOF-808 due to increased catalyst stability and the heterogeneous catalyst could efficiently be reused, resulting in a cumulative TON of 1218 after three runs. Additionally, the palladium single-atom active sites on MOF-808 were successfully identified by Fourier transform infrared (FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopy.

15.
Chem Sci ; 10(5): 1322-1331, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30809347

RESUMO

Stoichiometric reduction reactions of two metal-organic frameworks (MOFs) by the solution reagents (M = Cr, Co) are described. The two MOFs contain clusters with Ti8O8 rings: Ti8O8(OH)4(bdc)6; bdc = terephthalate (MIL-125) and Ti8O8(OH)4(bdc-NH2)6; bdc-NH2 = 2-aminoterephthalate (NH2-MIL-125). The stoichiometry of the redox reactions was probed using solution NMR methods. The extent of reduction is greatly enhanced by the presence of Na+, which is incorporated into the bulk of the material. The roughly 1 : 1 stoichiometry of electrons and cations indicates that the storage of e- in the MOF is tightly coupled to a cation within the architecture, for charge balance.

16.
ChemSusChem ; 12(7): 1272-1303, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30667150

RESUMO

Protein-rich biomass provides a valuable feedstock for the chemical industry. This Review describes every process step in the value chain from protein waste to chemicals. The first part deals with the physicochemical extraction of proteins from biomass, hydrolytic degradation to peptides and amino acids, and separation of amino acid mixtures. The second part provides an overview of physical and (bio)chemical technologies for the production of polymers, commodity chemicals, pharmaceuticals, and other fine chemicals. This can be achieved by incorporation of oligopeptides into polymers, or by modification and defunctionalization of amino acids, for example, their reduction to amino alcohols, decarboxylation to amines, (cyclic) amides and nitriles, deamination to (di)carboxylic acids, and synthesis of fine chemicals and ionic liquids. Bio- and chemocatalytic approaches are compared in terms of scope, efficiency, and sustainability.

17.
J Am Chem Soc ; 140(47): 16184-16189, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30392350

RESUMO

Stoichiometric proton-coupled electron transfer (PCET) reactions of the metal-organic framework (MOF) MIL-125, Ti8O8(OH)4(bdc)6 (bdc = terephthalate), are described. In the presence of UV light and 2-propanol, MIL-125 was photoreduced to a maximum of 2( e-/H+) per Ti8 node. This stoichiometry was shown by subsequent titration of the photoreduced material with the 2,4,6-tri- tert-butylphenoxyl radical. This reaction occurred by PCET to give the corresponding phenol and the original, oxidized MOF. The high level of charging, and the independence of charging amount with particle size of the MOF samples, shows that the MOF was photocharged throughout the bulk and not only at the surface. NMR studies showed that the product phenol is too large to fit in the pores, so the phenoxyl reaction must have occurred at the surface. Attempts to oxidize photoreduced MIL-125 with pure electron acceptors resulted in multiple products, underscoring the importance of removing e- and H+ together. Our results require that the e- and H+ stored within the MOF architecture must both be mobile to transfer to the surface for reaction. Analogous studies on the soluble cluster Ti8O8(OOC tBu)16 support the notion that reduction occurs at the Ti8 MOF nodes and furthermore that this reduction occurs via e-/H+ (H-atom) equivalents. The soluble cluster also suggests degradation pathways for the MOFs under extended irradiation. The methods described are a facile characterization technique to study redox-active materials and should be broadly applicable to, for example, porous materials like MOFs.


Assuntos
Elétrons , Estruturas Metalorgânicas/química , Prótons , 2-Propanol/química , Catálise , Luz , Estruturas Metalorgânicas/efeitos da radiação , Oxirredução , Fenóis/química , Propriedades de Superfície
18.
Chemphyschem ; 19(4): 373-378, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29027736

RESUMO

The introduction of Ce4+ as a structural cation has been shown to be a promising route to redox active metal-organic frameworks (MOFs). However, the mechanism by which these MOFs act as redox catalysts remains unclear. Herein, we present a detailed study of the active site in [Ce6 O4 (OH)4 ]-based MOFs such as Ce-UiO-66, involved in the aerobic oxidation of benzyl alcohol, chosen as a model redox reaction. X-ray absorption spectroscopy (XAS) data confirm the reduction of up to one Ce4+ ion per Ce6 cluster with a corresponding outwards radial shift due to the larger radius of the Ce3+ cation, while not compromising the structural integrity of the framework, as evidenced by powder X-ray diffraction. This unambiguously demonstrates the involvement of the metal node in the catalytic cycle and explains the need for 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as a redox mediator to bridge the gap between the one-electron oxidation of the Ce4+ /Ce3+ couple and the two-electron alcohol oxidation. Finally, an improved catalytic system with Ce-MOF-808 and TEMPO was developed which outperformed all other tested Ce4+ -MOFs.

19.
Chem Commun (Camb) ; 54(8): 876-879, 2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29236104

RESUMO

A precursor method has been developed to synthesize Ce(iv) MOFs that could not be prepared directly from Ce(iv) salts. Starting from Ce6 clusters, two Ce-UiO-66 analogues and four tetracarboxylate-based Ce(iv) MOFs could be synthesized. The applied method facilitates framework formation by evading reactive individual Ce(iv)-ions thereby paving the way for further development of Ce-MOFs.

20.
J Phys Chem C Nanomater Interfaces ; 121(45): 25509-25519, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29170688

RESUMO

p-Nitroaniline presents the typical motif of a second-order nonlinear optically (NLO) active molecule. However, because of its crystallization in an antiparallel and hence centrosymmetric structure, the NLO activity is lost. In this contribution, the p-nitroaniline motif was built successfully into the MIL-53 metal-organic framework. More precisely, MIL-53 was synthesized with 2-amino-5-nitroterephthalate as organic linker, with Al3+, Ga3+, or In3+ as inorganic cation. The Al and Ga structures are polar, as confirmed by second-harmonic generation microscopy, yielding stable NLO materials. Indeed, they contain a 22-36% surplus of the dipolar 2-amino-5-nitro-terephthalate oriented in a parallel fashion. The indium compound was shown to be less crystalline and centrosymmetric. Ab initio modeling of the second-order NLO response shows that the Al and Ga materials show a response comparable to typical inorganic commercial NLO materials such as KDP. As a hybrid material, capable of low-temperature synthesis and processing and the ultrafast NLO responses associated with organic materials, this material can potentially provide an interesting venue for applications with respect to traditional inorganic NLO materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA