Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Talanta ; 249: 123695, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35728453

RESUMO

According to the World Health Organization, about 422 million people worldwide have diabetes, with 1.5 million deaths directly attributed each year. Therefore, there is still a need to effectively monitor glucose in diabetic patients for proper management. Recently, wearable patches based on microneedle (MN) sensors provide minimally invasive analysis of glucose through the interstitial fluid (ISF) while exhibiting excellent correlation with blood glucose. Despite many advances in wearable electrochemical sensors, long-term stability and continuous monitoring remain unsolved challenges. Herein, we present a highly stable electrochemical biosensor based on a redox mediator bilayer consisting of Prussian blue and iron-nickel hexacyanoferrate to increase the long-term stability of the readout coupled with a hollow MN array as a sampling unit for ISF uptake. First, the enzymatic biosensor is developed by using affordable screen-printed electrodes (SPE) and optimized for long-term stability fitting the physiological range of glucose in ISF (i.e., 2.5-22.5 mM). In parallel, the MN array is assessed for minimally invasive piercing of the skin. Subsequently, the biosensor is integrated with the MN array leaving a microfluidic spacer that works as the electrochemical cell. Interestingly, a microfluidic channel connects the cell with an external syringe to actively and rapidly withdraw ISF toward the cell. Finally, the robust MN sensing patch is characterized during in vitro and ex vivo tests. Overall, affordable wearable MN-based patches for the continuous monitoring of glucose in ISF are providing an advent in wearable devices for rapid and life-threatening decision-making processes.

2.
Drug Test Anal ; 14(8): 1471-1481, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35460207

RESUMO

This work presents the results of a novel application for the fast on-site screening of cocaine and its main cutting agents in suspicious and confiscated samples. The methodology behind the novel application consists of portable electrochemical detection coupled with a peak recognition algorithm for automated result output generation, validated both in laboratory and field settings. Currently used field tests, predominantly colorimetric tests, are lacking accuracy, often giving false positive or negative results. This presses the need for alternative approaches to field testing. By combining portable electrochemical approaches with peak recognition algorithms, an accuracy of 98.4% concerning the detection of cocaine was achieved on a set of 374 powder samples. In addition, the approach was tested on multiple "smuggled," colored cocaine powders and cocaine mixtures in solid and liquid states, typically in matrices such as charcoal, syrup, and clothing. Despite these attempts to hide cocaine, our approach succeeded in detecting cocaine during on-site screening scenarios. This feature presents an advantage over colorimetric and optical detection techniques, which can fail with colored sample matrices. This enhanced accuracy on smuggled samples will lead to increased efficiency in confiscation procedures in the field, thus significantly reducing societal economic and safety concerns and highlighting the potential for electrochemical approaches in on-the-spot identification of drugs of abuse.


Assuntos
Cocaína , Algoritmos , Colorimetria , Pós
3.
Anal Chim Acta ; 1206: 339732, 2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35473869

RESUMO

The high toxicity, endocrine-disrupting effects and low (bio)degradability commonly attributed to phenolic compounds have promoted their recognition as priority toxic pollutants. For this reason, the monitoring of these compounds in industrial, domestic and agricultural streams is crucial to prevent and decrease their toxicity in our daily life. To confront this relevant environmental issue, we propose the use of a combi-electrosensor which combines singlet oxygen (1O2)-based photoelectrochemistry (PEC) with square wave voltammetry (SWV). The high sensitivity of the PEC sensor (being a faster alternative for traditional chemical oxygen demand-COD-measurements) ensures the detection of nmol L-1 levels of phenolic compounds while the SWV measurements (being faster than the color test kits) allow the differentiation between phenolic compounds. Herein, we report on the development of such a combi-electrosensor for the sensitive and selective detection of phenol (PHOH) in the presence of related phenolic compounds such as hydroquinone (HQ), bisphenol A (BPA), resorcinol (RC) and catechol (CC). The PEC sensor was able to determine the concentration of PHOH in spiked river samples containing only PHOH with a recovery between 96% and 111%. The SWV measurements elucidated the presence of PHOH, HQ and CC in the spiked samples containing multiple phenol compounds. Finally, the practicality of the combi-electrosensor set-up with a dual SPE containing two working electrodes and shared reference and counter electrodes was demonstrated. As a result, the combination of the two techniques is a powerful and valuable tool in the analysis of phenolic samples, since each technique improves the general performance by overcoming the inherent drawbacks that they display independently.


Assuntos
Poluentes Ambientais , Fenol , Eletrodos , Poluentes Ambientais/análise , Fenol/análise , Fenóis/análise
4.
Anal Chim Acta ; 1204: 339740, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35397910

RESUMO

There is an urgent need for sensing strategies to screen perfluoroalkyl substances (PFAS) in aqueous matrices. These strategies must be applicable in large-scale monitoring plans to face the ubiquitous use of PFAS, their wide global spread, and their fast evolution towards short-chain, branched molecules. To this aim, the changes in fluorinated self-assembled monolayers (SAM) with different architectures (pinholes/defects-free and with randomized pinholes/defects) were studied upon exposure to both long and short-chain PFAS. The applicability of fluorinated SAM in PFAS sensing was evaluated. Changes in the SAM structures were characterised combining electrochemical impedance spectroscopy and voltammetric techniques. The experimental data interpretation was supported by molecular dynamics simulations to gain a more in-depth understanding of the interaction mechanisms involved. Pinhole/defect-free fluorinated SAM were found to be applicable to long-chain PFAS screening within switch-on sensing strategy, while a switch-off sensing strategy was reported for screening of both short/long-chain PFAS. These strategies confirmed the possibility to play on fluorophilic interactions when designing PFAS screening methods.


Assuntos
Ácidos Alcanossulfônicos , Fluorcarbonetos , Fluorcarbonetos/química
5.
Sci Adv ; 8(9): eabl6769, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245121

RESUMO

Optical photothermal infrared (O-PTIR) is a recently developed molecular spectroscopy technique that allows to noninvasively obtain chemical information on organic and inorganic samples at a submicrometric scale. The high spatial resolution (≈450 nm), lack of sample preparation, and comparability of the spectral results to traditional Fourier transform infrared spectroscopy make it a promising candidate for the analysis of cultural heritage. In this work, the potential of O-PTIR for the noninvasive characterization of small heritage objects (few cubic centimeters) is demonstrated on a series of degraded 16th century brass and glass decorative elements. These small and challenging samples, typically encountering limitations with existing noninvasive methods such as macroscopic x-ray powder diffraction and µRaman, were successfully characterized by O-PTIR, ultimately identifying the markers of glass-induced metal corrosion processes. The results clearly demonstrate how O-PTIR can be easily implemented in a noninvasive multianalytical strategy for the study of heritage materials, making it a fundamental tool for cultural heritage analyses.

6.
Anal Chem ; 94(13): 5221-5230, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35316027

RESUMO

Electron-withdrawing perfluoroalkyl peripheral groups grafted on phthalocyanine (Pc) macrocycles improve their single-site isolation, solubility, and resistance to self-oxidation, all beneficial features for catalytic applications. A high degree of fluorination also enhances the reducibility of Pcs and could alter their singlet oxygen (1O2) photoproduction. The ethanol/toluene 20:80 vol % solvent mixture was found to dissolve perfluorinated FnPcZn complexes, n = 16, 52, and 64, and minimize the aggregation of the sterically unencumbered F16PcZn. The 1O2 production ability of FnPcZn complexes was examined using 9,10-dimethylanthracene (DMA) and 2,2,6,6-tetramethylpiperidine (TEMP) in combination with UV-vis and electron paramagnetic resonance (EPR) spectroscopy, respectively. While the photoreduction of F52PcZn and F64PcZn in the presence of redox-active TEMP lowered 1O2 production, DMA was a suitable 1O2 trap for ranking the complexes. The solution reactivity was complemented by solid-state studies via the construction of photoelectrochemical sensors based on TiO2-supported FnPcZn, FnPcZn|TiO2. Phenol photo-oxidation by 1O2, followed by its electrochemical reduction, defines a redox cycle, the 1O2 production having been found to depend on the value of n and structural features of the supported complexes. Consistent with solution studies, F52PcZn was found to be the most efficient 1O2 generator. The insights on reactivity testing and structural-activity relationships obtained may be useful for designing efficient and robust sensors and for other 1O2-related applications of FnPcZn.


Assuntos
Fenol , Oxigênio Singlete , Halogenação , Isoindóis , Compostos Organometálicos , Oxigênio/química , Oxigênio Singlete/química , Compostos de Zinco
7.
Sci Rep ; 12(1): 133, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997002

RESUMO

Artemisinin (ART) is a vital medicinal compound that is used alone or as part of a combination therapy against malaria. ART is thought to function by attaching to heme covalently and alkylating a range of proteins. Using a combination of biophysical methods, we demonstrate that ART is bound by three-way junction and duplex containing DNA molecules. Binding of ART by DNA is first shown for the cocaine-binding DNA aptamer and extensively studied using this DNA molecule. Isothermal titration calorimetry methods show that the binding of ART is both entropically and enthalpically driven at physiological NaCl concentration. Native mass spectrometry methods confirm DNA binding and show that a non-covalent complex is formed. Nuclear magnetic resonance spectroscopy shows that ART binds at the three-way junction of the cocaine-binding aptamer, and that binding results in the folding of the structure-switching variant of this aptamer. This structure-switching ability was exploited using the photochrome aptamer switch assay to demonstrate that ART can be detected using this biosensing assay. This study is the first to demonstrate the DNA binding ability of ART and should lay the foundation for further work to study implications of DNA binding for the antimalarial activity of ART.


Assuntos
Antimaláricos/metabolismo , Aptâmeros de Nucleotídeos/metabolismo , Artemisininas/metabolismo , Antimaláricos/química , Aptâmeros de Nucleotídeos/química , Artemisininas/química , Ligação Competitiva , Técnicas Biossensoriais , Conformação de Ácido Nucleico , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade
8.
Talanta ; 239: 123121, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942485

RESUMO

This work presents a proof-of-concept assay for the detection and quantification of small molecules based on aptamer recognition and electrochemiluminescence (ECL) readout. The testosterone-binding (TESS.1) aptamer was used to demonstrate the novel methodology. Upon binding of the target, the TESS.1 aptamer is released from its complementary capture probe - previously immobilized at the surface of the electrode - producing a decrease in the ECL signal after a washing step removing the released (labeled) TESS.1 aptamer. The analytical capability of the ECL assay towards testosterone detection was investigated displaying a linear range from 0.39 to 1.56 µM with a limit of detection of 0.29 µM. The selectivity of the proposed assay was assessed by performing two different negative control experiments; i) detection of testosterone with a randomized ssDNA sequence and ii) detection of two other steroids, i.e. deoxycholic acid and hydrocortisone with the TESS.1 aptamer. In parallel, complementary analytical techniques were employed to confirm the suggested mechanism: i) native nano-electrospray ionization mass spectrometry (native nESI-MS) was used to determine the stoichiometry of the binding, and to characterize aptamer-target interactions; and, ii) isothermal titration calorimetry (ITC) was carried out to elucidate the dissociation constant (Kd) of the complex of testosterone and the TESS.1 aptamer. The combination of these techniques provided a complete understanding of the aptamer performance, the binding mechanism, affinity and selectivity. Furthermore, this important characterization carried out in parallel validates the real functionality of the aptamer (TESS.1) ensuring its use towards selective testosterone binding in further biosensors. This research will pave the way for the development of new aptamer-based assays coupled with ECL sensing for the detection of relevant small molecules.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Eletrodos , Medições Luminescentes , Testosterona
9.
Biosens Bioelectron ; 197: 113764, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34753096

RESUMO

Wearable electrochemical sensors are driven by the user-friendly capability of on-site detection of key biomarkers for health management. Despite the advances in biomolecule monitoring such as glucose, still, several unmet clinical challenges need to be addressed. For example, patients suffering from phenylketonuria (PKU) should be able to monitor their phenylalanine (PHE) level in a rapid, decentralized, and affordable manner to avoid high levels of PHE in the body which can lead to a profound and irreversible mental disability. Herein, we report a wearable wristband electrochemical sensor for the monitoring of PHE tackling the necessity of controlling PHE levels in PHE hydroxylase deficiency patients. The proposed electrochemical sensor is based on a screen-printed electrode (SPE) modified with a membrane consisting of Nafion, to avoid interferences in biofluids. The membrane also consists of sodium 1,2-naphthoquinone-4-sulphonate for the in situ derivatization of PHE into an electroactive product, allowing its electrochemical oxidation at the surface of the SPE in alkaline conditions. Importantly, the electrochemical sensor is integrated into a wristband configuration to enhance user interaction and engage the patient with PHE self-monitoring. Besides, a paper-based sampling strategy is designed to alkalinize the real sample without the need for sample pretreatment, and thus simplify the analytical process. Finally, the wearable device is tested for the determination of PHE in saliva and blood serum. The proposed wristband-based sensor is expected to impact the PKU self-monitoring, facilitating the daily lives of PKU patients toward optimal therapy and disease management.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Eletrodos , Humanos , Fenilalanina , Saliva
10.
Biosens Bioelectron ; 195: 113652, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34583105

RESUMO

The current work, designed for the photoelectrochemical detection of DNA, evaluates light-responsive DNA probes carrying molecular photosensitizers generating singlet oxygen (1O2). We take advantage of their chromophore's ability to produce 1O2 upon photoexcitation and subsequent photocurrent response. Type I, fluorescent and type II photosensitizers were studied using diode lasers at 406 nm blue, 532 nm green and 659 nm red lasers in the presensce and absence of a redox reporter, hydroquinone (HQ). Only type II photosensitizers (producing 1O2) resulted in a noticeable photocurrent in 1-4 nA range upon illumination, in particular, dissolved DNA probes labeled with chlorin e6 and erythrosine were found to give a well-detectable photocurrent response in the presence of HQ. Whereas, Type I photosensitizers and fluorescent chromophores generate negligible photocurrents (<0.15 nA). The analytical performance of the sensing system was evaluated using a magnetic beads-based DNA assay on disposable electrode platforms, with a focus to enhance the sensitivity and robustness of the technique in detecting complementary DNA targets. Amplified photocurrent responses in the range of 70-100 nA were obtained and detection limits of 17 pM and 10 pM were achieved using magnetic beads-captured chlorin e6 and erythrosine labeled DNA probes respectively. The presented novel photoelectrochemical detection can further be optimized and employed in applications for which enzymatic amplification such as polymerase chain reaction (PCR) is not applicable owing to their limitations and as an effective alternative to colorimetric detection when rapid detection of specific nucleic acid targets is required.


Assuntos
Técnicas Biossensoriais , Oxigênio Singlete , DNA/genética , Técnicas Eletroquímicas , Eletrodos
11.
Anal Chem ; 93(40): 13606-13614, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34585567

RESUMO

Detection of antigenic biomarkers present in trace amounts is of crucial importance for medical diagnosis. A parasitic disease, human toxocariasis, lacks an adequate diagnostic method despite its worldwide occurrence. The currently used serology tests may stay positive even years after a possibly unnoticed infection, whereas the direct detection of a re-infection or a still active infection remains a diagnostic challenge due to the low concentration of circulating parasitic antigens. We report a time-efficient sandwich immunosensor using small recombinant single-domain antibodies (nanobodies) derived from camelid heavy-chain antibodies specific to Toxocara canis antigens. An enhanced sensitivity to pg/mL levels is achieved by using a redox cycle consisting of a photocatalytic oxidation and electrochemical reduction steps. The photocatalytic oxidation is achieved by a photosensitizer generating singlet oxygen (1O2) that, in turn, readily reacts with p-nitrophenol enzymatically produced under alkaline conditions. The photooxidation produces benzoquinone that is electrochemically reduced to hydroquinone, generating an amperometric response. The light-driven process could be easily separated from the background, thus making amperometric detection more reliable. The proposed method for detection of the toxocariasis antigen marker shows superior performances compared to other detection schemes with the same nanobodies and outperforms by at least two orders of magnitude the assays based on regular antibodies, thus suggesting new opportunities for electrochemical immunoassays of challenging low levels of antigens.


Assuntos
Técnicas Biossensoriais , Toxocara canis , Toxocaríase , Animais , Técnicas Eletroquímicas , Humanos , Imunoensaio , Limite de Detecção , Oxirredução
12.
Polymers (Basel) ; 13(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34451194

RESUMO

Polymeric materials have been used by painting conservator-restorers as consolidants and/or varnishes for wall paintings. The application of these materials is carried out when confronting loose paint layers or as a protective coating. However, these materials deteriorate and cause physiochemical alterations to the treated surface. In the past, the monumental neo-gothic wall painting 'The Last Judgment' in the chapel of Sint-Jan Berchmanscollege in Antwerp, Belgium was treated with a synthetic polymeric material. This varnish deteriorated significantly and turned brown, obscuring the paint layers. Given also that the varnish was applied to some parts of the wall painting and did not cover the entire surface, it was necessary to remove it in order to restore the original appearance of the wall painting. Previous attempts carried out by conservator-restorers made use of traditional cleaning methods, which led to damage of the fragile paint layers. Therefore, gel cleaning was proposed as a less invasive and more controllable method for gently softening and removing the varnish. The work started by identifying the paint stratigraphy and the deteriorated varnish via optical microscopy (OM), scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectroscopy. A polyvinyl alcohol-borax/agarose (PVA-B/AG) hydrogel loaded with a number of solvents/solvent mixtures was employed in a series of tests to select the most suitable hydrogel composite. By means of the hydrogel composite loaded with 10% propylene carbonate, it was possible to safely remove the brown varnish layer. The results were verified by visual examinations (under visible light 'VIS' and ultraviolet light 'UV') as well as OM and FTIR spectroscopy.

13.
Talanta ; 233: 122605, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34215092

RESUMO

Bridging the gap between complex signal data output and clear interpretation by non-expert end-users is a major challenge many scientists face when converting their scientific technology into a real-life application. Currently, pattern recognition algorithms are the most frequently encountered signal data interpretation algorithms to close this gap, not in the least because of their straight-forward implementation via convenient software packages. Paradoxically, just because their implementation is so straight-forward, it becomes cumbersome to integrate the expert's domain-specific knowledge. In this work, a novel signal data interpretation approach is presented that uses this domain-specific knowledge as its fundament, thereby fully exploiting the unique expertise of the scientist. The new approach applies data preprocessing in an innovative way that transcends its usual purpose and is easy to translate into a software application. Multiple case studies illustrate the straight-forward application of the novel approach. Ultimately, the approach is highly suited for integration in various (bio)analytical applications that require interpretation of signal data.


Assuntos
Algoritmos , Software
14.
Angew Chem Int Ed Engl ; 60(42): 22753-22760, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34165241

RESUMO

Optical-photothermal infrared (O-PTIR) spectroscopy is a recently developed technique that provides spectra comparable to traditional transmission FTIR spectroscopy with nanometric spatial resolution. Hence, O-PTIR is a promising candidate for the analysis of historical paintings, as well as other cultural heritage objects, but its potential has not yet been evaluated. This work presents the first application of O-PTIR to the analysis of cultural heritage, and in particular to an extremely small fragment from Van Gogh's painting L'Arlésienne (portrait of Madame Ginoux). The striking results obtained, including the detection of geranium lake pigments as well as the complete analysis of the stratigraphy, failed with other state-of-the-art techniques, highlight the potential of this method. The integration of O-PTIR to the study of cultural heritage opens to the possibility of decreasing the amount of sample extracted, therefore contributing to the preservation of the integrity of artworks while providing a complete characterization of the materials.

15.
Chemistry ; 27(35): 9011-9021, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33880788

RESUMO

The functionalization of photocatalytic metal oxide nanoparticles of TiO2 , ZnO, WO3 and CuO with amine-terminated (oleylamine) and thiol-terminated (dodecane-1-thiol) alkyl-chain ligands was studied under ambient conditions. A high selectivity was observed in the binding specificity of a ligand towards nanoparticles of these different oxides. It was observed that oleylamine binds stably to only TiO2 and WO3 , whereas dodecane-1-thiol binds stably only to ZnO and CuO. Similarly, polar-to-nonpolar solvent phase transfer of TiO2 and WO3 nanoparticles could be achieved by using oleylamine, but not dodecane-1-thiol, whereas the opposite holds for ZnO and CuO. The surface chemistry of ligand-functionalized nanoparticles was probed by attenuated total reflectance (ATR)-FTIR spectroscopy, which enabled the occupation of the ligands at the active sites to be elucidated. The photostability of the ligands on the nanoparticle surface was determined by the photocatalytic self-cleaning properties of the material. Although TiO2 and WO3 degrade the ligands within 24 h under both UV and visible light, ligands on ZnO and CuO remain unaffected. The gathered insights are also highly relevant from an application point of view. As an example, because the ligand-functionalized nanoparticles are hydrophobic in nature, they can be self-assembled at the air-water interface to give nanoparticle films with demonstrated photocatalytic as well as anti-fogging properties.

16.
Dalton Trans ; 50(18): 6245-6255, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33876177

RESUMO

Reaction of (2,3,9,10,16,17,23,24-octabutylphthalocyaninato)lanthanide(iii) acetylacetonates (BuPcLn(acac), 1a-c, Ln = Lu (a), Eu (b), La (c)) with a tetrakis(5,7-bis(4-tert-butylphenyl)-6H-1,4-diazepino)[2,3-b,g,l,q]porphyrazine ligand (tBuPhDzPzH2, 2) produced sandwich compounds (tBuPhDzPz)Ln(BuPc) (3a-c), which represent the first heteroleptic double-deckers incorporating both Pc and DzPz decks. A combination of high-resolution mass spectrometry, UV-Vis/NIR, MCD, and 1H NMR spectroscopy, and square-wave voltammetry provided unambiguous characterization of target complexes 3 indicating that their spectral and electrochemical properties are generally intermediate with respect to their homoleptic relatives. Based on the data of solution-state 1H-1H NMR (COSY, NOESY) correlation spectroscopy supported by DFT calculations, a dimerization tendency of compounds 3 proportional to the Ln(iii) ion size was found. The spectroelectrochemical study of 3 and the corresponding homoleptic double-deckers revealed a pronounced tendency to aggregation of the one-electron oxidized forms of DzPz-containing double-decker complexes compared to homoleptic Pc2Ln compounds.

17.
Front Chem ; 9: 641147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796506

RESUMO

Illicit drugs use and abuse remains an increasing challenge for worldwide authorities and, therefore, it is important to have accurate methods to detect them in seized samples, biological fluids and wastewaters. They are recently classified as the latest group of emerging pollutants as their consumption increased tremendously in recent years. Nanomaterials have gained much attention over the last decade in the development of sensors for a myriad of applications. The applicability of these nanomaterials, functionalized or not, significantly increases and it is therefore highly suitable for use in the detection of illicit drugs. We have assessed the suitability of various nanoplatforms, such as graphene (GPH), multi-walled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs) and platinum nanoparticles (PtNPs) for the electrochemical detection of illicit drugs. GPH and MWCNTs were chosen as the most suitable platforms and cocaine, 3,4-methylendioxymethamfetamine (MDMA), 3-methylmethcathinone (MMC) and α-pyrrolidinovalerophenone (PVP) were tested. Due to the hydrophobicity of the nanomaterials-based platforms which led to low signals, two strategies were followed namely, pretreatment of the electrodes in sulfuric acid by cyclic voltammetry and addition of Tween 20 to the detection buffer. Both strategies led to an increase in the oxidation signal of illicit drugs. Binary mixtures of illicit drugs with common adulterants found in street samples were also investigated. The proposed strategies allowed the sensitive detection of illicit drugs in the presence of most adulterants. The suitability of the proposed sensors for the detection of illicit drugs in spiked wastewaters was finally assessed.

18.
Talanta ; 226: 122005, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33676638

RESUMO

The illicit consumption of heroin is an increasing concern in our society. For this reason, rapid analytical methods to seize heroin samples in the field are of paramount importance to hinder drug trafficking, and thus prevent the availability of heroin in the drug market. The present work reports on the enriched electrochemical fingerprint of heroin, allowing its selective detection in street samples, based on the use of electrochemical pretreated screen printed electrodes (p-SPE). The voltammetric identification is built on two oxidation peaks of both heroin and its degradation product 6-monoacetylmorphine (6-MAM), generated in alkaline conditions. Interestingly, an anodic pretreatment of the screen printed electrodes (SPE) shifts the peak potential of paracetamol (the most encountered cutting agent in heroin seizures), allowing the detection of 6-MAM peak, overlapping with the paracetamol signal in the case of untreated SPE. Subsequently, the characterization of the p-SPE with scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, Raman and Fourier transform infrared (FTIR) spectroscopy is provided to demonstrate local changes on the surface of the electrode. From an analytical perspective, p-SPE provide higher sensitivity (0.019 µA µM-1), excellent reproducibility (6-MAM, RSD = 2.85%, and heroin RSD = 0.91%, n = 5) and lower limits of detection (LOD) (5.2 µM) in comparison to untreated SPE. The proposed protocol which integrates a tailor-made script is interrogated against common cutting agents, and finally, validated with the screening of 14 street samples, also analyzed by standard methods. Besides, a comparison with portable spectroscopic techniques on the confiscated samples shows the better performance of the electrochemical strategy. Overall, this sensing approach offers promising results for the rapid on-site profiling of suspicious heroin samples, also in the presence of paracetamol.


Assuntos
Técnicas Eletroquímicas , Heroína , Eletrodos , Limite de Detecção , Derivados da Morfina , Reprodutibilidade dos Testes
19.
Analyst ; 146(6): 2065-2073, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33538714

RESUMO

Biosensing platforms are answering the increasing demand for analytical tools for environmental monitoring of small molecules, such as per- and polyfluoroalkyl substances (PFAS). By transferring toxicological findings in bioreceptor design we can develop innovative pathways for biosensor design. Indeed, toxicological studies provide fundamental information about PFAS-biomolecule complexes that can help evaluate the applicability of the latter as bioreceptors. The toolbox of native mass spectrometry (MS) can support this evaluation, as shown by the two case studies reported in this work. The analysis of model proteins' (i.e. albumin, haemoglobin, cytochrome c and neuroglobin) interactions with well-known PFAS, such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), demonstrated the potential of this native MS screening approach. In the first case study, untreated albumin and delipidated albumin were compared in the presence and absence of PFOA confirming that the delipidation step increases albumin affinity for PFOA without affecting protein stability. In the second case study, the applicability of our methodology to identify potential bioreceptors for PFOS/PFOA was extended to other proteins. Structurally related haemoglobin and neuroglobin revealed a 1 : 1 complex, whereas no binding was observed for cytochrome c. These studies have value as a proof-of-concept for a general application of native MS to identify bioreceptors for toxic compounds.


Assuntos
Fluorcarbonetos , Albuminas , Fluorcarbonetos/toxicidade , Espectrometria de Massas
20.
Protein Sci ; 30(4): 830-841, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33550662

RESUMO

Perfluorooctanoic acid (PFOA) is a toxic compound that is absorbed and distributed throughout the body by noncovalent binding to serum proteins such as human serum albumin (hSA). Though the interaction between PFOA and hSA has been already assessed using various analytical techniques, a high resolution and detailed analysis of the binding mode is still lacking. We report here the crystal structure of hSA in complex with PFOA and a medium-chain saturated fatty acid (FA). A total of eight distinct binding sites, four occupied by PFOAs and four by FAs, have been identified. In solution binding studies confirmed the 4:1 PFOA-hSA stoichiometry and revealed the presence of one high and three low affinity binding sites. Competition experiments with known hSA-binding drugs allowed locating the high affinity binding site in sub-domain IIIA. The elucidation of the molecular basis of the interaction between PFOA and hSA might provide not only a better assessment of the absorption and elimination mechanisms of these compounds in vivo but also have implications for the development of novel molecular receptors for diagnostic and biotechnological applications.


Assuntos
Caprilatos/química , Fluorcarbonetos/química , Modelos Moleculares , Albumina Sérica Humana/química , Cristalografia por Raios X , Humanos , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...