Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Nat Commun ; 10(1): 3095, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300640

RESUMO

The nasal cellular epigenome may serve as biomarker of airway disease and environmental response. Here we collect nasal swabs from the anterior nares of 547 children (mean-age 12.9 y), and measure DNA methylation (DNAm) with the Infinium MethylationEPIC BeadChip. We perform nasal Epigenome-Wide Association analyses (EWAS) of current asthma, allergen sensitization, allergic rhinitis, fractional exhaled nitric oxide (FeNO) and lung function. We find multiple differentially methylated CpGs (FDR < 0.05) and Regions (DMRs; ≥ 5-CpGs and FDR < 0.05) for asthma (285-CpGs), FeNO (8,372-CpGs; 191-DMRs), total IgE (3-CpGs; 3-DMRs), environment IgE (17-CpGs; 4-DMRs), allergic asthma (1,235-CpGs; 7-DMRs) and bronchodilator response (130-CpGs). Discovered DMRs annotated to genes implicated in allergic asthma, Th2 activation and eosinophilia (EPX, IL4, IL13) and genes previously associated with asthma and IgE in EWAS of blood (ACOT7, SLC25A25). Asthma, IgE and FeNO were associated with nasal epigenetic age acceleration. The nasal epigenome is a sensitive biomarker of asthma, allergy and airway inflammation.

2.
Aging (Albany NY) ; 11(14): 4970-4989, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31322503

RESUMO

Evidence indicates associations between higher optimism and reduced risk of age-related conditions and premature mortality. This suggests optimism is a positive health asset, but research identifying potential biological mechanisms underlying these associations remains limited. One potential pathway is slower cellular aging, which may delay age-related deterioration in health. Data were from the Women's Health Initiative (WHI) (N=3,298) and the Veterans Affairs Normative Aging Study (NAS) (N=514), and included dispositional and explanatory style optimism measures. We evaluated whether higher optimism was associated with metrics suggestive of less cellular aging, as indicated by two DNA methylation algorithms, intrinsic (IEAA) and extrinsic epigenetic age acceleration (EEAA); these algorithms represent accelerated biologic aging that exceeds chronological age. We used linear regression models to test our hypothesis while considering several covariates (sociodemographics, depressive symptoms, health behaviors). In both cohorts, we found consistently null associations of all measures of optimism with both measures of DNA methylation aging, regardless of covariates considered. For example, in fully-adjusted models, dispositional optimism was not associated with either IEAA (WHI:ß=0.02; 95% Confidence Interval [CI]:-0.15-0.20; NAS:ß=-0.06; 95% CI:-0.56-0.44) or EEAA (WHI:ß=-0.04; 95% CI: -0.26-0.17; NAS:ß=-0.17; 95% CI: -0.80-0.46). Higher optimism was not associated with reduced cellular aging as measured in this study.

3.
Environ Health Perspect ; 127(5): 57012, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31148503

RESUMO

BACKGROUND: Prenatal exposure to air pollution has been associated with childhood respiratory disease and other adverse outcomes. Epigenetics is a suggested link between exposures and health outcomes. OBJECTIVES: We aimed to investigate associations between prenatal exposure to particulate matter (PM) with diameter [Formula: see text] ([Formula: see text]) or [Formula: see text] ([Formula: see text]) and DNA methylation in newborns and children. METHODS: We meta-analyzed associations between exposure to [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]) at maternal home addresses during pregnancy and newborn DNA methylation assessed by Illumina Infinium HumanMethylation450K BeadChip in nine European and American studies, with replication in 688 independent newborns and look-up analyses in 2,118 older children. We used two approaches, one focusing on single cytosine-phosphate-guanine (CpG) sites and another on differentially methylated regions (DMRs). We also related PM exposures to blood mRNA expression. RESULTS: Six CpGs were significantly associated [false discovery rate (FDR) [Formula: see text]] with prenatal [Formula: see text] and 14 with [Formula: see text] exposure. Two of the [Formula: see text] CpGs mapped to FAM13A (cg00905156) and NOTCH4 (cg06849931) previously associated with lung function and asthma. Although these associations did not replicate in the smaller newborn sample, both CpGs were significant ([Formula: see text]) in 7- to 9-y-olds. For cg06849931, however, the direction of the association was inconsistent. Concurrent [Formula: see text] exposure was associated with a significantly higher NOTCH4 expression at age 16 y. We also identified several DMRs associated with either prenatal [Formula: see text] and or [Formula: see text] exposure, of which two [Formula: see text] DMRs, including H19 and MARCH11, replicated in newborns. CONCLUSIONS: Several differentially methylated CpGs and DMRs associated with prenatal PM exposure were identified in newborns, with annotation to genes previously implicated in lung-related outcomes. https://doi.org/10.1289/EHP4522.

4.
Hypertension ; 74(2): 375-383, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31230546

RESUMO

Hypertensive disorders of pregnancy (HDP) are associated with low birth weight, shorter gestational age, and increased risk of maternal and offspring cardiovascular diseases later in life. The mechanisms involved are poorly understood, but epigenetic regulation of gene expression may play a part. We performed meta-analyses in the Pregnancy and Childhood Epigenetics Consortium to test the association between either maternal HDP (10 cohorts; n=5242 [cases=476]) or preeclampsia (3 cohorts; n=2219 [cases=135]) and epigenome-wide DNA methylation in cord blood using the Illumina HumanMethylation450 BeadChip. In models adjusted for confounders, and with Bonferroni correction, HDP and preeclampsia were associated with DNA methylation at 43 and 26 CpG sites, respectively. HDP was associated with higher methylation at 27 (63%) of the 43 sites, and across all 43 sites, the mean absolute difference in methylation was between 0.6% and 2.6%. Epigenome-wide associations of HDP with offspring DNA methylation were modestly consistent with the equivalent epigenome-wide associations of preeclampsia with offspring DNA methylation (R2=0.26). In longitudinal analyses conducted in 1 study (n=108 HDP cases; 550 controls), there were similar changes in DNA methylation in offspring of those with and without HDP up to adolescence. Pathway analysis suggested that genes located at/near HDP-associated sites may be involved in developmental, embryogenesis, or neurological pathways. HDP is associated with offspring DNA methylation with potential relevance to development.

5.
Chest ; 156(2): 228-238, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31154041

RESUMO

The Genetic Epidemiology of COPD (COPDGene) study is a noninterventional, multicenter, longitudinal analysis of > 10,000 subjects, including smokers with a ≥ 10 pack-year history with and without COPD and healthy never smokers. The goal was to characterize disease-related phenotypes and explore associations with susceptibility genes. The subjects were extensively phenotyped with the use of comprehensive symptom and comorbidity questionnaires, spirometry, CT scans of the chest, and genetic and biomarker profiling. The objective of this review was to summarize the major advances in the clinical epidemiology of COPD from the first 10 years of the COPDGene study. We highlight the influence of age, sex, and race on the natural history of COPD, and the impact of comorbid conditions, chronic bronchitis, exacerbations, and asthma/COPD overlap.

6.
Clin Exp Allergy ; 49(9): 1225-1234, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31187518

RESUMO

BACKGROUND: Response to inhaled corticosteroids is highly variable, and the association between DNA methylation and treatment response is not known. OBJECTIVE: To examine the association between peripheral blood DNA methylation and inhaled corticosteroid response in children with persistent asthma. METHODS: Epigenome-wide DNA methylation was analysed in individuals on inhaled corticosteroids in three independent and ethnically diverse cohorts-Childhood Asthma Management Program (CAMP); Children, Allergy, Milieu, Stockholm, Epidemiology (BAMSE); and Genetic Epidemiology of Asthma in Costa Rica Study (GACRS). Treatment response was evaluated using two definitions, the absence of emergency department visits and/or hospitalizations and the absence oral corticosteroid use while on inhaled corticosteroid therapy. CpG sites meeting nominal significance (P < 0.05) for each outcome were combined in a three-cohort meta-analysis with adjustment for multiple testing. DNA methylation was correlated with gene expression using Pearson and partial correlations. RESULTS: In 154 subjects from CAMP, 72 from BAMSE, and 168 from GACRS, relative hypomethylation of cg00066816 (171 bases upstream of IL12B) was associated with the absence of emergency department visits and/or hospitalizations (Q = 0.03) in all cohorts and lower IL12B expression (ρ = 0.34, P = 0.01) in BAMSE. Relative hypermethylation of cg04256470 (688 bases upstream of CORT) was associated with the absence of oral corticosteroid use (Q = 0.04) in all cohorts and higher CORT expression (ρ = 0.20, P = 0.045) in CAMP. CONCLUSION AND CLINICAL RELEVANCE: Differential DNA methylation of IL12B and CORT are associated with inhaled corticosteroid treatment response in persistent childhood asthmatics. Pharmaco-methylation can identify novel markers of treatment sensitivity in asthma.

9.
Nat Commun ; 10(1): 1893, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015461

RESUMO

Birthweight is associated with health outcomes across the life course, DNA methylation may be an underlying mechanism. In this meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium, we find that DNA methylation in neonatal blood is associated with birthweight at 914 sites, with a difference in birthweight ranging from -183 to 178 grams per 10% increase in methylation (PBonferroni < 1.06 x 10-7). In additional analyses in 7,278 participants, <1.3% of birthweight-associated differential methylation is also observed in childhood and adolescence, but not adulthood. Birthweight-related CpGs overlap with some Bonferroni-significant CpGs that were previously reported to be related to maternal smoking (55/914, p = 6.12 x 10-74) and BMI in pregnancy (3/914, p = 1.13x10-3), but not with those related to folate levels in pregnancy. Whether the associations that we observe are causal or explained by confounding or fetal growth influencing DNA methylation (i.e. reverse causality) requires further research.


Assuntos
Peso ao Nascer/genética , DNA/metabolismo , Epigênese Genética , Genoma Humano , Adolescente , Adulto , Índice de Massa Corporal , Criança , Ilhas de CpG , DNA/genética , Metilação de DNA , Feminino , Desenvolvimento Fetal/genética , Feto , Ácido Fólico/sangue , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Fumar/efeitos adversos , Fumar/sangue , Fumar/genética
10.
Respir Res ; 20(1): 65, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940135

RESUMO

BACKGROUND: Multiple gene expression studies have been performed separately in peripheral blood, lung, and airway tissues to study COPD. We performed RNA-sequencing gene expression profiling of large-airway epithelium, alveolar macrophage and peripheral blood samples from the same subset of COPD cases and controls from the COPDGene study who underwent bronchoscopy at a single center. Using statistical and gene set enrichment approaches, we sought to improve the understanding of COPD by studying gene sets and pathways across these tissues, beyond the individual genomic determinants. METHODS: We performed differential expression analysis using RNA-seq data obtained from 63 samples from 21 COPD cases and controls (includes four non-smokers) via the R package DESeq2. We tested associations between gene expression and variables related to lung function, smoking history, and CT scan measures of emphysema and airway disease. We examined the correlation of differential gene expression across the tissues and phenotypes, hypothesizing that this would reveal preserved and private gene expression signatures. We performed gene set enrichment analyses using curated databases and findings from prior COPD studies to provide biological and disease relevance. RESULTS: The known smoking-related genes CYP1B1 and AHRR were among the top differential expression results for smoking status in the large-airway epithelium data. We observed a significant overlap of genes primarily across large-airway and macrophage results for smoking and airway disease phenotypes. We did not observe specific genes differentially expressed in all three tissues for any of the phenotypes. However, we did observe hemostasis and immune signaling pathways in the overlaps across all three tissues for emphysema, and amyloid and telomere-related pathways for smoking. In peripheral blood, the emphysema results were enriched for B cell related genes previously identified in lung tissue studies. CONCLUSIONS: Our integrative analyses across COPD-relevant tissues and prior studies revealed shared and tissue-specific disease biology. These replicated and novel findings in the airway and peripheral blood have highlighted candidate genes and pathways for COPD pathogenesis.


Assuntos
Perfilação da Expressão Gênica/métodos , Macrófagos Alveolares/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Mucosa Respiratória/metabolismo , Análise de Sequência de RNA/métodos , Estudos de Coortes , Seguimentos , Humanos , Estudos Longitudinais , Macrófagos Alveolares/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/patologia
11.
Epigenetics ; 14(5): 445-466, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30876376

RESUMO

Epigenetic mechanisms integrate both genetic variability and environmental exposures. However, comprehensive epigenome-wide analysis has not been performed across major childhood allergic phenotypes. We examined the association of epigenome-wide DNA methylation in mid-childhood peripheral blood (Illumina HumanMethyl450K) with mid-childhood atopic sensitization, environmental/inhalant and food allergen sensitization in 739 children in two birth cohorts (Project Viva-Boston, and the Generation R Study-Rotterdam). We performed covariate-adjusted epigenome-wide association meta-analysis and employed pathway and regional analyses of results. Seven-hundred and five methylation sites (505 genes) were significantly cross-sectionally associated with mid-childhood atopic sensitization, 1411 (905 genes) for environmental and 45 (36 genes) for food allergen sensitization (FDR<0.05). We observed differential methylation across multiple genes for all three phenotypes, including genes implicated previously in innate immunity (DICER1), eosinophilic esophagitis and sinusitis (SIGLEC8), the atopic march (AP5B1) and asthma (EPX, IL4, IL5RA, PRG2, SIGLEC8, CLU). In addition, most of the associated methylation marks for all three phenotypes occur in putative transcription factor binding motifs. Pathway analysis identified multiple methylation sites associated with atopic sensitization and environmental allergen sensitization located in/near genes involved in asthma, mTOR signaling, and inositol phosphate metabolism. We identified multiple differentially methylated regions associated with atopic sensitization (8 regions) and environmental allergen sensitization (26 regions). A number of nominally significant methylation sites in the cord blood analysis were epigenome-wide significant in the mid-childhood analysis, and we observed significant methylation - time interactions among a subset of sites examined. Our findings provide insights into epigenetic regulatory pathways as markers of childhood allergic sensitization.

12.
Sci Rep ; 9(1): 3499, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837613

RESUMO

The interplay among microRNAs (miRNAs) plays an important role in the developments of complex human diseases. Co-expression networks can characterize the interactions among miRNAs. Differential correlation network is a powerful tool to investigate the differences of co-expression networks between cases and controls. To construct a differential correlation network, the Fisher's Z-transformation test is usually used. However, the Fisher's Z-transformation test requires the normality assumption, the violation of which would result in inflated Type I error rate. Several bootstrapping-based improvements for Fisher's Z test have been proposed. However, these methods are too computationally intensive to be used to construct differential correlation networks for high-throughput genomic data. In this article, we proposed six novel robust equal-correlation tests that are computationally efficient. The systematic simulation studies and a real microRNA data analysis showed that one of the six proposed tests (ST5) overall performed better than other methods.

13.
Clin Epigenetics ; 11(1): 56, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30925934

RESUMO

BACKGROUND: Maternal mood disorders and their treatment during pregnancy may have effects on the offspring epigenome. We aim to evaluate associations of maternal prenatal antidepressant use, anxiety, and depression with cord blood DNA methylation across the genome at birth and test for persistence of associations in early and mid-childhood blood DNA. METHODS: A discovery phase was conducted in Project Viva, a prospective pre-birth cohort study with external replication in an independent cohort, the Generation R Study. In Project Viva, pregnant women were recruited between 1999 and 2002 in Eastern Massachusetts, USA. In the Generation R Study, pregnant women were recruited between 2002 and 2006 in Rotterdam, the Netherlands. In Project Viva, 479 infants had data on maternal antidepressant use, anxiety, depression, and cord blood DNA methylation, 120 children had DNA methylation measured in early childhood (~ 3 years), and 460 in mid-childhood (~ 7 years). In the Generation R Study, 999 infants had data on maternal antidepressants and cord blood DNA methylation. The prenatal antidepressant prescription was obtained from medical records. At-mid pregnancy, symptoms of anxiety and depression were assessed with the Pregnancy-Related Anxiety Scale and the Edinburgh Postnatal Depression Scale in Project Viva and with the Brief Symptom Inventory in the Generation R Study. Genome-wide DNA methylation was measured using the Infinium HumanMethylation450 BeadChip in both cohorts. RESULTS: In Project Viva, 2.9% (14/479) pregnant women were prescribed antidepressants, 9.0% (40/445) experienced high pregnancy-related anxiety, and 8.2% (33/402) reported symptoms consistent with depression. Newborns exposed to antidepressants in pregnancy had 7.2% lower DNA methylation (95% CI, - 10.4, - 4.1; P = 1.03 × 10-8) at cg22159528 located in the gene body of ZNF575, and this association replicated in the Generation R Study (ß = - 2.5%; 95% CI - 4.2, - 0.7; P = 0.006). In Project Viva, the association persisted in early (ß = - 6.2%; 95% CI - 10.7, - 1.6) but not mid-childhood. We observed cohort-specific associations for maternal anxiety and depression in Project Viva that did not replicate. CONCLUSIONS: The ZNF575 gene is involved in transcriptional regulation but specific functions are largely unknown. Given the widespread use of antidepressants in pregnancy, as well as the effects of exposure to anxiety and depression, implications of potential fetal epigenetic programming by these risk factors and their impacts on development merit further investigation.

14.
Artigo em Inglês | MEDLINE | ID: mdl-30908940

RESUMO

Chronic obstructive pulmonary disease (COPD) is a common and progressive disease that is influenced by both genetic and environmental factors. For many years, knowledge of the genetic basis of COPD was limited to Mendelian syndromes, such as alpha-1 antitrypsin deficiency and cutis laxa, caused by rare genetic variants. Fortunately, over the past decade, the proliferation of genome-wide association studies (GWAS), the accessibility of whole genome sequencing, and the development of novel methods for analyzing genetic variation data have led to a substantial increase in our understanding of genetic variants that play a role in COPD susceptibility and COPD-related phenotypes. COPDGene, a multicenter, longitudinal study of over 10,000 current and former cigarette smokers, has been pivotal to these breakthroughs in understanding the genetic basis of COPD. To date, over 20 genetic loci have been convincingly associated with COPD affection status, with additional loci demonstrating association with COPD-related phenotypes such as emphysema, chronic bronchitis, and hypoxemia. In this review, we discuss the contributions of the COPDGene study to the discovery of these genetic associations as well as the ongoing genetic investigations of COPD subtypes, protein biomarkers, and post-GWAS analysis.

15.
Am J Respir Cell Mol Biol ; 61(2): 143-149, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30874442

RESUMO

There is an unmet need for blood biomarkers in diagnosis and prognosis of chronic obstructive pulmonary disease (COPD). The search for these biomarkers has been revolutionized by high-throughput sequencing techniques and multiplex platforms that can measure thousands of gene transcripts, proteins, or metabolites. We review COPDGene (Genetic Epidemiology of COPD) project publications that include DNA methylation, transcriptomic, proteomic, and metabolomic blood biomarkers and discuss their impact on COPD. Key contributions from COPDGene include identification of DNA methylation effects from smoking and genetic variation, new transcriptomic signatures in the blood, identification of protein biomarkers associated with severity and progression (e.g., sRAGE [soluble receptor for advanced glycosylation end products], inflammatory cytokines IL-6 and IL-8), and identification of small molecules (ceramides and sphingomyelin) that may be pathogenic. COPDGene studies have revealed that some of the COPD genome-wide association study polymorphisms are strongly associated with blood biomarkers (e.g., rs2070600 in AGER is a pQTL [protein quantitative trait locus] for sRAGE), underscoring the importance of combining omics results. Investigators have developed molecular networks identifying lower CD4+ resting memory cells associated with COPD. Genes, proteins, and metabolite networks are particularly important because the explanatory value of any single molecule is small (1-10%) compared with panels of multiple markers. COPDGene has been a useful resource in the identification and validation of multiple biomarkers for COPD. These biomarkers, either combined in multiple biomarker panels or integrated with other omics data types, may lead to novel diagnostic and prognostic tests for COPD phenotypes and may be relevant for assessing novel therapies.

16.
Eur Respir J ; 53(4)2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30765504

RESUMO

RATIONALE: We aimed to identify differentially methylated regions (DMRs) in cord blood DNA associated with childhood lung function, asthma and chronic obstructive pulmonary disease (COPD) across the life course. METHODS: We meta-analysed epigenome-wide data of 1688 children from five cohorts to identify cord blood DMRs and their annotated genes, in relation to forced expiratory volume in 1 s (FEV1), FEV1/forced vital capacity (FVC) ratio and forced expiratory flow at 75% of FVC at ages 7-13 years. Identified DMRs were explored for associations with childhood asthma, adult lung function and COPD, gene expression and involvement in biological processes. RESULTS: We identified 59 DMRs associated with childhood lung function, of which 18 were associated with childhood asthma and nine with COPD in adulthood. Genes annotated to the top 10 identified DMRs were HOXA5, PAOX, LINC00602, ABCA7, PER3, CLCA1, VENTX, NUDT12, PTPRN2 and TCL1A. Differential gene expression in blood was observed for 32 DMRs in childhood and 18 in adulthood. Genes related with 16 identified DMRs were associated with respiratory developmental or pathogenic pathways. INTERPRETATION: Our findings suggest that the epigenetic status of the newborn affects respiratory health and disease across the life course.

17.
J Allergy Clin Immunol ; 143(6): 2263-2270.e14, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30738172

RESUMO

BACKGROUND: Epigenetic clocks have been suggested to capture one feature of the complexity between aging and the epigenome. However, little is known about the epigenetic clock in childhood allergy and asthma. OBJECTIVE: We sought to examine associations of DNA methylation age (DNAmAge) and epigenetic age acceleration with childhood allergy and asthma. METHODS: We calculated DNAmAge and age acceleration at birth, early childhood, and midchildhood based on the IlluminaHumanMethylation450BeadChip in Project Viva. We evaluated epigenetic clock associations with allergy and asthma using covariate-adjusted linear and logistic regressions. We attempted to replicate our findings in the Genetics of Asthma in Costa Rica Study. RESULTS: At midchildhood (mean age, 7.8 years) in Project Viva, DNAmAge and age acceleration were cross-sectionally associated with greater total serum IgE levels and greater odds of atopic sensitization. Every 1-year increase in intrinsic epigenetic age acceleration was associated with a 1.22 (95% CI, 1.07-1.39), 1.17 (95% CI, 1.03-1.34), and 1.29 (95% CI, 1.12-1.49) greater odds of atopic sensitization and environmental and food allergen sensitization. DNAmAge and extrinsic epigenetic age acceleration were also cross-sectionally associated with current asthma at midchildhood. DNAmAge and age acceleration at birth and early childhood were not associated with midchildhood allergy or asthma. The midchildhood association between age acceleration and atopic sensitization were replicated in an independent data set. CONCLUSIONS: Because the epigenetic clock might reflect immune and developmental components of biological aging, our study suggests pathways through which molecular epigenetic mechanisms of immunity, development, and maturation can interact along the age axis and associate with childhood allergy and asthma by midchildhood.

18.
Nat Genet ; 51(3): 481-493, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804560

RESUMO

Reduced lung function predicts mortality and is key to the diagnosis of chronic obstructive pulmonary disease (COPD). In a genome-wide association study in 400,102 individuals of European ancestry, we define 279 lung function signals, 139 of which are new. In combination, these variants strongly predict COPD in independent populations. Furthermore, the combined effect of these variants showed generalizability across smokers and never smokers, and across ancestral groups. We highlight biological pathways, known and potential drug targets for COPD and, in phenome-wide association studies, autoimmune-related and other pleiotropic effects of lung function-associated variants. This new genetic evidence has potential to improve future preventive and therapeutic strategies for COPD.


Assuntos
Predisposição Genética para Doença/genética , Pulmão/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Fumar/genética
19.
Nat Genet ; 51(3): 494-505, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804561

RESUMO

Chronic obstructive pulmonary disease (COPD) is the leading cause of respiratory mortality worldwide. Genetic risk loci provide new insights into disease pathogenesis. We performed a genome-wide association study in 35,735 cases and 222,076 controls from the UK Biobank and additional studies from the International COPD Genetics Consortium. We identified 82 loci associated with P < 5 × 10-8; 47 of these were previously described in association with either COPD or population-based measures of lung function. Of the remaining 35 new loci, 13 were associated with lung function in 79,055 individuals from the SpiroMeta consortium. Using gene expression and regulation data, we identified functional enrichment of COPD risk loci in lung tissue, smooth muscle, and several lung cell types. We found 14 COPD loci shared with either asthma or pulmonary fibrosis. COPD genetic risk loci clustered into groups based on associations with quantitative imaging features and comorbidities. Our analyses provide further support for the genetic susceptibility and heterogeneity of COPD.


Assuntos
Predisposição Genética para Doença/genética , Doença Pulmonar Obstrutiva Crônica/genética , Adulto , Idoso , Asma/genética , Estudos de Casos e Controles , Feminino , Expressão Gênica/genética , Loci Gênicos/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Fibrose Pulmonar/genética , Fumar/genética
20.
Pharmacogenet Genomics ; 29(3): 65-68, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30640894

RESUMO

Asthma is the most common chronic disease in children. Inhaled corticosteroids (ICS) are the first-line treatment for asthma control, but up to one-third of children have a poor treatment response. The mechanism of ICS resistance is poorly understood, and the role of DNA methylation in ICS treatment response is not known. We examined the association between peripheral blood DNA methylation and ICS treatment response in 152 pediatric persistent asthmatics from the Childhood Asthma Management Program. Response to ICS was measured by the percentage change in forced expiratory volume in 1 s (FEV1) 8 weeks after treatment initiation. The top CpG sites with a nominal P value less than 0.001 were correlated with gene expression using Pearson's and partial correlations. In 152 participants, mean±SD age was 9.8±2.0 years and median change in FEV1 after ICS initiation was 4.6% (interquartile range: 10.4%). A total of 545 CpG sites were differentially methylated (nominal P<0.05), and seven CpG sites had a nominal P value less than 0.001. Relative hypermethylation of cg20434811, cg02822723, cg14066280, cg27254601, and cg23913400 and relative hypomethylation of cg24937126 and cg24711626 were associated with an increase in FEV1 on ICS treatment. One CpG site was associated with gene expression. Relative hypermethylation of cg27254601 was associated with both an increase in FEV1 and BOLA2 expression (ρ=0.25, P=0.02). We identified a novel association between BOLA2 methylation, gene expression, and ICS response as measured by lung function. Pharmacoepigenetics has the potential to detect treatment sensitivity in persistent childhood asthma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA