Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
3.
Cochrane Database Syst Rev ; 9: CD013639, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32997361

RESUMO

BACKGROUND: The diagnosis of infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents major challenges. Reverse transcriptase polymerase chain reaction (RT-PCR) testing is used to diagnose a current infection, but its utility as a reference standard is constrained by sampling errors, limited sensitivity (71% to 98%), and dependence on the timing of specimen collection. Chest imaging tests are being used in the diagnosis of COVID-19 disease, or when RT-PCR testing is unavailable. OBJECTIVES: To determine the diagnostic accuracy of chest imaging (computed tomography (CT), X-ray and ultrasound) in people with suspected or confirmed COVID-19. SEARCH METHODS: We searched the COVID-19 Living Evidence Database from the University of Bern, the Cochrane COVID-19 Study Register, and The Stephen B. Thacker CDC Library. In addition, we checked repositories of COVID-19 publications. We did not apply any language restrictions. We conducted searches for this review iteration up to 5 May 2020. SELECTION CRITERIA: We included studies of all designs that produce estimates of test accuracy or provide data from which estimates can be computed. We included two types of cross-sectional designs: a) where all patients suspected of the target condition enter the study through the same route and b) where it is not clear up front who has and who does not have the target condition, or where the patients with the target condition are recruited in a different way or from a different population from the patients without the target condition. When studies used a variety of reference standards, we included all of them. DATA COLLECTION AND ANALYSIS: We screened studies and extracted data independently, in duplicate. We also assessed the risk of bias and applicability concerns independently, in duplicate, using the QUADAS-2 checklist and presented the results of estimated sensitivity and specificity, using paired forest plots, and summarised in tables. We used a hierarchical meta-analysis model where appropriate. We presented uncertainty of the accuracy estimates using 95% confidence intervals (CIs). MAIN RESULTS: We included 84 studies, falling into two categories: studies with participants with confirmed diagnoses of COVID-19 at the time of recruitment (71 studies with 6331 participants) and studies with participants suspected of COVID-19 (13 studies with 1948 participants, including three case-control studies with 549 cases and controls). Chest CT was evaluated in 78 studies (8105 participants), chest X-ray in nine studies (682 COVID-19 cases), and chest ultrasound in two studies (32 COVID-19 cases). All evaluations of chest X-ray and ultrasound were conducted in studies with confirmed diagnoses only. Twenty-five per cent (21/84) of all studies were available only as preprints, 15/71 studies in the confirmed cases group and 6/13 of the studies in the suspected group. Among 71 studies that included confirmed cases, 41 studies had included symptomatic cases only, 25 studies had included cases regardless of their symptoms, five studies had included asymptomatic cases only, three of which included a combination of confirmed and suspected cases. Seventy studies were conducted in Asia, 2 in Europe, 2 in North America and one in South America. Fifty-one studies included inpatients while the remaining 24 studies were conducted in mixed or unclear settings. Risk of bias was high in most studies, mainly due to concerns about selection of participants and applicability. Among the 13 studies that included suspected cases, nine studies were conducted in Asia, and one in Europe. Seven studies included inpatients while the remaining three studies were conducted in mixed or unclear settings. In studies that included confirmed cases the pooled sensitivity of chest CT was 93.1% (95%CI: 90.2 - 95.0 (65 studies, 5759 cases); and for X-ray 82.1% (95%CI: 62.5 to 92.7 (9 studies, 682 cases). Heterogeneity judged by visual assessment of the ROC plots was considerable. Two studies evaluated the diagnostic accuracy of point-of-care ultrasound and both reported zero false negatives (with 10 and 22 participants having undergone ultrasound, respectively). These studies only reported True Positive and False Negative data, therefore it was not possible to pool and derive estimates of specificity. In studies that included suspected cases, the pooled sensitivity of CT was 86.2% (95%CI: 71.9 to 93.8 (13 studies, 2346 participants) and specificity was 18.1% (95%CI: 3.71 to 55.8). Heterogeneity judged by visual assessment of the forest plots was high. Chest CT may give approximately the same proportion of positive results for patients with and without a SARS-CoV-2 infection: the chances of getting a positive CT result are 86% (95% CI: 72 to 94) in patient with a SARS-CoV-2 infection and 82% (95% CI: 44 to 96) in patients without. AUTHORS' CONCLUSIONS: The uncertainty resulting from the poor study quality and the heterogeneity of included studies limit our ability to confidently draw conclusions based on our results. Our findings indicate that chest CT is sensitive but not specific for the diagnosis of COVID-19 in suspected patients, meaning that CT may not be capable of differentiating SARS-CoV-2 infection from other causes of respiratory illness. This low specificity could also be the result of the poor sensitivity of the reference standard (RT-PCR), as CT could potentially be more sensitive than RT-PCR in some cases. Because of limited data, accuracy estimates of chest X-ray and ultrasound of the lungs for the diagnosis of COVID-19 should be carefully interpreted. Future diagnostic accuracy studies should avoid cases-only studies and pre-define positive imaging findings. Planned updates of this review will aim to: increase precision around the accuracy estimates for CT (ideally with low risk of bias studies); obtain further data to inform accuracy of chest X rays and ultrasound; and continue to search for studies that fulfil secondary objectives to inform the utility of imaging along different diagnostic pathways.


Assuntos
Betacoronavirus , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico por imagem , Pneumonia Viral/diagnóstico por imagem , Adulto , Criança , Infecções por Coronavirus/diagnóstico , Humanos , Pulmão/diagnóstico por imagem , Pandemias , Radiografia Torácica/estatística & dados numéricos , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/estatística & dados numéricos , Ultrassonografia/estatística & dados numéricos
5.
Cochrane Database Syst Rev ; 8: CD013705, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32845525

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resulting COVID-19 pandemic present important diagnostic challenges. Several diagnostic strategies are available to identify or rule out current infection, identify people in need of care escalation, or to test for past infection and immune response. Point-of-care antigen and molecular tests to detect current SARS-CoV-2 infection have the potential to allow earlier detection and isolation of confirmed cases compared to laboratory-based diagnostic methods, with the aim of reducing household and community transmission. OBJECTIVES: To assess the diagnostic accuracy of point-of-care antigen and molecular-based tests to determine if a person presenting in the community or in primary or secondary care has current SARS-CoV-2 infection. SEARCH METHODS: On 25 May 2020 we undertook electronic searches in the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern, which is updated daily with published articles from PubMed and Embase and with preprints from medRxiv and bioRxiv. In addition, we checked repositories of COVID-19 publications. We did not apply any language restrictions. SELECTION CRITERIA: We included studies of people with suspected current SARS-CoV-2 infection, known to have, or not to have SARS-CoV-2 infection, or where tests were used to screen for infection. We included test accuracy studies of any design that evaluated antigen or molecular tests suitable for a point-of-care setting (minimal equipment, sample preparation, and biosafety requirements, with results available within two hours of sample collection). We included all reference standards to define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction (RT-PCR) tests and established clinical diagnostic criteria). DATA COLLECTION AND ANALYSIS: Two review authors independently screened studies and resolved any disagreements by discussion with a third review author. One review author independently extracted study characteristics, which were checked by a second review author. Two review authors independently extracted 2x2 contingency table data and assessed risk of bias and applicability of the studies using the QUADAS-2 tool. We present sensitivity and specificity, with 95% confidence intervals (CIs), for each test using paired forest plots. We pooled data using the bivariate hierarchical model separately for antigen and molecular-based tests, with simplifications when few studies were available. We tabulated available data by test manufacturer. MAIN RESULTS: We included 22 publications reporting on a total of 18 study cohorts with 3198 unique samples, of which 1775 had confirmed SARS-CoV-2 infection. Ten studies took place in North America, two in South America, four in Europe, one in China and one was conducted internationally. We identified data for eight commercial tests (four antigen and four molecular) and one in-house antigen test. Five of the studies included were only available as preprints. We did not find any studies at low risk of bias for all quality domains and had concerns about applicability of results across all studies. We judged patient selection to be at high risk of bias in 50% of the studies because of deliberate over-sampling of samples with confirmed COVID-19 infection and unclear in seven out of 18 studies because of poor reporting. Sixteen (89%) studies used only a single, negative RT-PCR to confirm the absence of COVID-19 infection, risking missing infection. There was a lack of information on blinding of index test (n = 11), and around participant exclusions from analyses (n = 10). We did not observe differences in methodological quality between antigen and molecular test evaluations. Antigen tests Sensitivity varied considerably across studies (from 0% to 94%): the average sensitivity was 56.2% (95% CI 29.5 to 79.8%) and average specificity was 99.5% (95% CI 98.1% to 99.9%; based on 8 evaluations in 5 studies on 943 samples). Data for individual antigen tests were limited with no more than two studies for any test. Rapid molecular assays Sensitivity showed less variation compared to antigen tests (from 68% to 100%), average sensitivity was 95.2% (95% CI 86.7% to 98.3%) and specificity 98.9% (95% CI 97.3% to 99.5%) based on 13 evaluations in 11 studies of on 2255 samples. Predicted values based on a hypothetical cohort of 1000 people with suspected COVID-19 infection (with a prevalence of 10%) result in 105 positive test results including 10 false positives (positive predictive value 90%), and 895 negative results including 5 false negatives (negative predictive value 99%). Individual tests We calculated pooled results of individual tests for ID NOW (Abbott Laboratories) (5 evaluations) and Xpert Xpress (Cepheid Inc) (6 evaluations). Summary sensitivity for the Xpert Xpress assay (99.4%, 95% CI 98.0% to 99.8%) was 22.6 (95% CI 18.8 to 26.3) percentage points higher than that of ID NOW (76.8%, (95% CI 72.9% to 80.3%), whilst the specificity of Xpert Xpress (96.8%, 95% CI 90.6% to 99.0%) was marginally lower than ID NOW (99.6%, 95% CI 98.4% to 99.9%; a difference of -2.8% (95% CI -6.4 to 0.8)) AUTHORS' CONCLUSIONS: This review identifies early-stage evaluations of point-of-care tests for detecting SARS-CoV-2 infection, largely based on remnant laboratory samples. The findings currently have limited applicability, as we are uncertain whether tests will perform in the same way in clinical practice, and according to symptoms of COVID-19, duration of symptoms, or in asymptomatic people. Rapid tests have the potential to be used to inform triage of RT-PCR use, allowing earlier detection of those testing positive, but the evidence currently is not strong enough to determine how useful they are in clinical practice. Prospective and comparative evaluations of rapid tests for COVID-19 infection in clinically relevant settings are urgently needed. Studies should recruit consecutive series of eligible participants, including both those presenting for testing due to symptoms and asymptomatic people who may have come into contact with confirmed cases. Studies should clearly describe symptomatic status and document time from symptom onset or time since exposure. Point-of-care tests must be conducted on samples according to manufacturer instructions for use and be conducted at the point of care. Any future research study report should conform to the Standards for Reporting of Diagnostic Accuracy (STARD) guideline.


Assuntos
Betacoronavirus , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Antígenos Virais/análise , Infecções por Coronavirus/epidemiologia , Reações Falso-Negativas , Reações Falso-Positivas , Humanos , Pandemias , Pneumonia Viral/epidemiologia , Sensibilidade e Especificidade
6.
BMJ Open ; 10(6): e037634, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32606065

RESUMO

INTRODUCTION: Lower urinary tract symptoms (LUTS) is a bothersome condition affecting older men which can lead to poor quality of life. General practitioners (GPs) currently have no easily available assessment tools to help effectively diagnose causes of LUTS and aid discussion of treatment with patients. Men are frequently referred to urology specialists who often recommend treatments that could have been initiated in primary care. GP access to simple, accurate tests and clinician decision tools are needed to facilitate accurate and effective patient management of LUTS in primary care. METHODS AND ANALYSIS: PRImary care Management of lower Urinary tract Symptoms (PriMUS) is a prospective diagnostic accuracy study based in primary care. The study will determine which of a number of index tests used in combination best predict three urodynamic observations in men who present to their GP with LUTS. These are detrusor overactivity, bladder outlet obstruction and/or detrusor underactivity. Two cohorts of participants, one for development of the prototype diagnostic tool and other for validation, will undergo a series of simple index tests and the invasive reference standard (invasive urodynamics). We will develop and validate three diagnostic prediction models based on each condition and then combine them with management recommendations to form a clinical decision support tool. ETHICS AND DISSEMINATION: Ethics approval is from the Wales Research Ethics Committee 6. Findings will be disseminated through peer-reviewed journals and conferences, and results will be of interest to professional and patient stakeholders. TRIAL REGISTRATION NUMBER: ISRCTN10327305.

7.
Cochrane Database Syst Rev ; 7: CD013665, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32633856

RESUMO

BACKGROUND: Some people with SARS-CoV-2 infection remain asymptomatic, whilst in others the infection can cause mild to moderate COVID-19 disease and COVID-19 pneumonia, leading some patients to require intensive care support and, in some cases, to death, especially in older adults. Symptoms such as fever or cough, and signs such as oxygen saturation or lung auscultation findings, are the first and most readily available diagnostic information. Such information could be used to either rule out COVID-19 disease, or select patients for further diagnostic testing. OBJECTIVES: To assess the diagnostic accuracy of signs and symptoms to determine if a person presenting in primary care or to hospital outpatient settings, such as the emergency department or dedicated COVID-19 clinics, has COVID-19 disease or COVID-19 pneumonia. SEARCH METHODS: On 27 April 2020, we undertook electronic searches in the Cochrane COVID-19 Study Register and the University of Bern living search database, which is updated daily with published articles from PubMed and Embase and with preprints from medRxiv and bioRxiv. In addition, we checked repositories of COVID-19 publications. We did not apply any language restrictions. SELECTION CRITERIA: Studies were eligible if they included patients with suspected COVID-19 disease, or if they recruited known cases with COVID-19 disease and controls without COVID-19. Studies were eligible when they recruited patients presenting to primary care or hospital outpatient settings. Studies including patients who contracted SARS-CoV-2 infection while admitted to hospital were not eligible. The minimum eligible sample size of studies was 10 participants. All signs and symptoms were eligible for this review, including individual signs and symptoms or combinations. We accepted a range of reference standards including reverse transcription polymerase chain reaction (RT-PCR), clinical expertise, imaging, serology tests and World Health Organization (WHO) or other definitions of COVID-19. DATA COLLECTION AND ANALYSIS: Pairs of review authors independently selected all studies, at both title and abstract stage and full-text stage. They resolved any disagreements by discussion with a third review author. Two review authors independently extracted data and resolved disagreements by discussion with a third review author. Two review authors independently assessed risk of bias using the QUADAS-2 checklist. Analyses were descriptive, presenting sensitivity and specificity in paired forest plots, in ROC (receiver operating characteristic) space and in dumbbell plots. We did not attempt meta-analysis due to the small number of studies, heterogeneity across studies and the high risk of bias. MAIN RESULTS: We identified 16 studies including 7706 participants in total. Prevalence of COVID-19 disease varied from 5% to 38% with a median of 17%. There were no studies from primary care settings, although we did find seven studies in outpatient clinics (2172 participants), and four studies in the emergency department (1401 participants). We found data on 27 signs and symptoms, which fall into four different categories: systemic, respiratory, gastrointestinal and cardiovascular. No studies assessed combinations of different signs and symptoms and results were highly variable across studies. Most had very low sensitivity and high specificity; only six symptoms had a sensitivity of at least 50% in at least one study: cough, sore throat, fever, myalgia or arthralgia, fatigue, and headache. Of these, fever, myalgia or arthralgia, fatigue, and headache could be considered red flags (defined as having a positive likelihood ratio of at least 5) for COVID-19 as their specificity was above 90%, meaning that they substantially increase the likelihood of COVID-19 disease when present. Seven studies carried a high risk of bias for selection of participants because inclusion in the studies depended on the applicable testing and referral protocols, which included many of the signs and symptoms under study in this review. Five studies only included participants with pneumonia on imaging, suggesting that this is a highly selected population. In an additional four studies, we were unable to assess the risk for selection bias. These factors make it very difficult to determine the diagnostic properties of these signs and symptoms from the included studies. We also had concerns about the applicability of these results, since most studies included participants who were already admitted to hospital or presenting to hospital settings. This makes these findings less applicable to people presenting to primary care, who may have less severe illness and a lower prevalence of COVID-19 disease. None of the studies included any data on children, and only one focused specifically on older adults. We hope that future updates of this review will be able to provide more information about the diagnostic properties of signs and symptoms in different settings and age groups. AUTHORS' CONCLUSIONS: The individual signs and symptoms included in this review appear to have very poor diagnostic properties, although this should be interpreted in the context of selection bias and heterogeneity between studies. Based on currently available data, neither absence nor presence of signs or symptoms are accurate enough to rule in or rule out disease. Prospective studies in an unselected population presenting to primary care or hospital outpatient settings, examining combinations of signs and symptoms to evaluate the syndromic presentation of COVID-19 disease, are urgently needed. Results from such studies could inform subsequent management decisions such as self-isolation or selecting patients for further diagnostic testing. We also need data on potentially more specific symptoms such as loss of sense of smell. Studies in older adults are especially important.


Assuntos
Assistência Ambulatorial , Betacoronavirus , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Atenção Primária à Saúde , Avaliação de Sintomas , Artralgia/diagnóstico , Artralgia/etiologia , Infecções por Coronavirus/complicações , Infecções por Coronavirus/epidemiologia , Fadiga/diagnóstico , Fadiga/etiologia , Febre/diagnóstico , Febre/etiologia , Cefaleia/diagnóstico , Humanos , Mialgia/diagnóstico , Mialgia/etiologia , Ambulatório Hospitalar/estatística & dados numéricos , Pandemias , Exame Físico , Pneumonia Viral/complicações , Pneumonia Viral/epidemiologia , Viés de Seleção , Avaliação de Sintomas/classificação , Avaliação de Sintomas/estatística & dados numéricos
8.
Cochrane Database Syst Rev ; 6: CD013652, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32584464

RESUMO

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and resulting COVID-19 pandemic present important diagnostic challenges. Several diagnostic strategies are available to identify current infection, rule out infection, identify people in need of care escalation, or to test for past infection and immune response. Serology tests to detect the presence of antibodies to SARS-CoV-2 aim to identify previous SARS-CoV-2 infection, and may help to confirm the presence of current infection. OBJECTIVES: To assess the diagnostic accuracy of antibody tests to determine if a person presenting in the community or in primary or secondary care has SARS-CoV-2 infection, or has previously had SARS-CoV-2 infection, and the accuracy of antibody tests for use in seroprevalence surveys. SEARCH METHODS: We undertook electronic searches in the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern, which is updated daily with published articles from PubMed and Embase and with preprints from medRxiv and bioRxiv. In addition, we checked repositories of COVID-19 publications. We did not apply any language restrictions. We conducted searches for this review iteration up to 27 April 2020. SELECTION CRITERIA: We included test accuracy studies of any design that evaluated antibody tests (including enzyme-linked immunosorbent assays, chemiluminescence immunoassays, and lateral flow assays) in people suspected of current or previous SARS-CoV-2 infection, or where tests were used to screen for infection. We also included studies of people either known to have, or not to have SARS-CoV-2 infection. We included all reference standards to define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction tests (RT-PCR) and clinical diagnostic criteria). DATA COLLECTION AND ANALYSIS: We assessed possible bias and applicability of the studies using the QUADAS-2 tool. We extracted 2x2 contingency table data and present sensitivity and specificity for each antibody (or combination of antibodies) using paired forest plots. We pooled data using random-effects logistic regression where appropriate, stratifying by time since post-symptom onset. We tabulated available data by test manufacturer. We have presented uncertainty in estimates of sensitivity and specificity using 95% confidence intervals (CIs). MAIN RESULTS: We included 57 publications reporting on a total of 54 study cohorts with 15,976 samples, of which 8526 were from cases of SARS-CoV-2 infection. Studies were conducted in Asia (n = 38), Europe (n = 15), and the USA and China (n = 1). We identified data from 25 commercial tests and numerous in-house assays, a small fraction of the 279 antibody assays listed by the Foundation for Innovative Diagnostics. More than half (n = 28) of the studies included were only available as preprints. We had concerns about risk of bias and applicability. Common issues were use of multi-group designs (n = 29), inclusion of only COVID-19 cases (n = 19), lack of blinding of the index test (n = 49) and reference standard (n = 29), differential verification (n = 22), and the lack of clarity about participant numbers, characteristics and study exclusions (n = 47). Most studies (n = 44) only included people hospitalised due to suspected or confirmed COVID-19 infection. There were no studies exclusively in asymptomatic participants. Two-thirds of the studies (n = 33) defined COVID-19 cases based on RT-PCR results alone, ignoring the potential for false-negative RT-PCR results. We observed evidence of selective publication of study findings through omission of the identity of tests (n = 5). We observed substantial heterogeneity in sensitivities of IgA, IgM and IgG antibodies, or combinations thereof, for results aggregated across different time periods post-symptom onset (range 0% to 100% for all target antibodies). We thus based the main results of the review on the 38 studies that stratified results by time since symptom onset. The numbers of individuals contributing data within each study each week are small and are usually not based on tracking the same groups of patients over time. Pooled results for IgG, IgM, IgA, total antibodies and IgG/IgM all showed low sensitivity during the first week since onset of symptoms (all less than 30.1%), rising in the second week and reaching their highest values in the third week. The combination of IgG/IgM had a sensitivity of 30.1% (95% CI 21.4 to 40.7) for 1 to 7 days, 72.2% (95% CI 63.5 to 79.5) for 8 to 14 days, 91.4% (95% CI 87.0 to 94.4) for 15 to 21 days. Estimates of accuracy beyond three weeks are based on smaller sample sizes and fewer studies. For 21 to 35 days, pooled sensitivities for IgG/IgM were 96.0% (95% CI 90.6 to 98.3). There are insufficient studies to estimate sensitivity of tests beyond 35 days post-symptom onset. Summary specificities (provided in 35 studies) exceeded 98% for all target antibodies with confidence intervals no more than 2 percentage points wide. False-positive results were more common where COVID-19 had been suspected and ruled out, but numbers were small and the difference was within the range expected by chance. Assuming a prevalence of 50%, a value considered possible in healthcare workers who have suffered respiratory symptoms, we would anticipate that 43 (28 to 65) would be missed and 7 (3 to 14) would be falsely positive in 1000 people undergoing IgG/IgM testing at days 15 to 21 post-symptom onset. At a prevalence of 20%, a likely value in surveys in high-risk settings, 17 (11 to 26) would be missed per 1000 people tested and 10 (5 to 22) would be falsely positive. At a lower prevalence of 5%, a likely value in national surveys, 4 (3 to 7) would be missed per 1000 tested, and 12 (6 to 27) would be falsely positive. Analyses showed small differences in sensitivity between assay type, but methodological concerns and sparse data prevent comparisons between test brands. AUTHORS' CONCLUSIONS: The sensitivity of antibody tests is too low in the first week since symptom onset to have a primary role for the diagnosis of COVID-19, but they may still have a role complementing other testing in individuals presenting later, when RT-PCR tests are negative, or are not done. Antibody tests are likely to have a useful role for detecting previous SARS-CoV-2 infection if used 15 or more days after the onset of symptoms. However, the duration of antibody rises is currently unknown, and we found very little data beyond 35 days post-symptom onset. We are therefore uncertain about the utility of these tests for seroprevalence surveys for public health management purposes. Concerns about high risk of bias and applicability make it likely that the accuracy of tests when used in clinical care will be lower than reported in the included studies. Sensitivity has mainly been evaluated in hospitalised patients, so it is unclear whether the tests are able to detect lower antibody levels likely seen with milder and asymptomatic COVID-19 disease. The design, execution and reporting of studies of the accuracy of COVID-19 tests requires considerable improvement. Studies must report data on sensitivity disaggregated by time since onset of symptoms. COVID-19-positive cases who are RT-PCR-negative should be included as well as those confirmed RT-PCR, in accordance with the World Health Organization (WHO) and China National Health Commission of the People's Republic of China (CDC) case definitions. We were only able to obtain data from a small proportion of available tests, and action is needed to ensure that all results of test evaluations are available in the public domain to prevent selective reporting. This is a fast-moving field and we plan ongoing updates of this living systematic review.


Assuntos
Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/imunologia , Pneumonia Viral/diagnóstico , Pneumonia Viral/imunologia , Especificidade de Anticorpos , Infecções por Coronavirus/epidemiologia , Reações Falso-Negativas , Reações Falso-Positivas , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Pandemias , Pneumonia Viral/epidemiologia , Padrões de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/estatística & dados numéricos , Viés de Seleção , Sensibilidade e Especificidade , Testes Sorológicos/métodos , Testes Sorológicos/normas
9.
Europace ; 22(5): 748-760, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32227238

RESUMO

AIMS: We assessed the performance of modelsf (risk scores) for predicting recurrence of atrial fibrillation (AF) in patients who have undergone catheter ablation. METHODS AND RESULTS: Systematic searches of bibliographic databases were conducted (November 2018). Studies were eligible for inclusion if they reported the development, validation, or impact assessment of a model for predicting AF recurrence after ablation. Model performance (discrimination and calibration) measures were extracted. The Prediction Study Risk of Bias Assessment Tool (PROBAST) was used to assess risk of bias. Meta-analysis was not feasible due to clinical and methodological differences between studies, but c-statistics were presented in forest plots. Thirty-three studies developing or validating 13 models were included; eight studies compared two or more models. Common model variables were left atrial parameters, type of AF, and age. Model discriminatory ability was highly variable and no model had consistently poor or good performance. Most studies did not assess model calibration. The main risk of bias concern was the lack of internal validation which may have resulted in overly optimistic and/or biased model performance estimates. No model impact studies were identified. CONCLUSION: Our systematic review suggests that clinical risk prediction of AF after ablation has potential, but there remains a need for robust evaluation of risk factors and development of risk scores.

10.
BMJ ; 368: m127, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041693

RESUMO

OBJECTIVE: To examine the validity and findings of studies that examine the accuracy of algorithm based smartphone applications ("apps") to assess risk of skin cancer in suspicious skin lesions. DESIGN: Systematic review of diagnostic accuracy studies. DATA SOURCES: Cochrane Central Register of Controlled Trials, MEDLINE, Embase, CINAHL, CPCI, Zetoc, Science Citation Index, and online trial registers (from database inception to 10 April 2019). ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Studies of any design that evaluated algorithm based smartphone apps to assess images of skin lesions suspicious for skin cancer. Reference standards included histological diagnosis or follow-up, and expert recommendation for further investigation or intervention. Two authors independently extracted data and assessed validity using QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2 tool). Estimates of sensitivity and specificity were reported for each app. RESULTS: Nine studies that evaluated six different identifiable smartphone apps were included. Six verified results by using histology or follow-up (n=725 lesions), and three verified results by using expert recommendations (n=407 lesions). Studies were small and of poor methodological quality, with selective recruitment, high rates of unevaluable images, and differential verification. Lesion selection and image acquisition were performed by clinicians rather than smartphone users. Two CE (Conformit Europenne) marked apps are available for download. SkinScan was evaluated in a single study (n=15, five melanomas) with 0% sensitivity and 100% specificity for the detection of melanoma. SkinVision was evaluated in two studies (n=252, 61 malignant or premalignant lesions) and achieved a sensitivity of 80% (95% confidence interval 63% to 92%) and a specificity of 78% (67% to 87%) for the detection of malignant or premalignant lesions. Accuracy of the SkinVision app verified against expert recommendations was poor (three studies). CONCLUSIONS: Current algorithm based smartphone apps cannot be relied on to detect all cases of melanoma or other skin cancers. Test performance is likely to be poorer than reported here when used in clinically relevant populations and by the intended users of the apps. The current regulatory process for awarding the CE marking for algorithm based apps does not provide adequate protection to the public. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42016033595.


Assuntos
Dermoscopia/métodos , Melanoma/diagnóstico , Aplicativos Móveis , Neoplasias Cutâneas/diagnóstico , Smartphone , Algoritmos , Biópsia , Dermoscopia/instrumentação , Reações Falso-Negativas , Reações Falso-Positivas , Humanos , Melanoma/patologia , Reprodutibilidade dos Testes , Medição de Risco/métodos , Pele/diagnóstico por imagem , Pele/patologia , Neoplasias Cutâneas/patologia
11.
Lancet Gastroenterol Hepatol ; 5(4): 362-373, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32027858

RESUMO

BACKGROUND: The burden of non-alcoholic fatty liver disease (NAFLD) is increasing globally, and a major priority is to identify patients with non-alcoholic steatohepatitis (NASH) who are at greater risk of progression to cirrhosis, and who will be candidates for clinical trials and emerging new pharmacotherapies. We aimed to develop a score to identify patients with NASH, elevated NAFLD activity score (NAS≥4), and advanced fibrosis (stage 2 or higher [F≥2]). METHODS: This prospective study included a derivation cohort before validation in multiple international cohorts. The derivation cohort was a cross-sectional, multicentre study of patients aged 18 years or older, scheduled to have a liver biopsy for suspicion of NAFLD at seven tertiary care liver centres in England. This was a prespecified secondary outcome of a study for which the primary endpoints have already been reported. Liver stiffness measurement (LSM) by vibration-controlled transient elastography and controlled attenuation parameter (CAP) measured by FibroScan device were combined with aspartate aminotransferase (AST), alanine aminotransferase (ALT), or AST:ALT ratio. To identify those patients with NASH, an elevated NAS, and significant fibrosis, the best fitting multivariable logistic regression model was identified and internally validated using boot-strapping. Score calibration and discrimination performance were determined in both the derivation dataset in England, and seven independent international (France, USA, China, Malaysia, Turkey) histologically confirmed cohorts of patients with NAFLD (external validation cohorts). This study is registered with ClinicalTrials.gov, number NCT01985009. FINDINGS: Between March 20, 2014, and Jan 17, 2017, 350 patients with suspected NAFLD attending liver clinics in England were prospectively enrolled in the derivation cohort. The most predictive model combined LSM, CAP, and AST, and was designated FAST (FibroScan-AST). Performance was satisfactory in the derivation dataset (C-statistic 0·80, 95% CI 0·76-0·85) and was well calibrated. In external validation cohorts, calibration of the score was satisfactory and discrimination was good across the full range of validation cohorts (C-statistic range 0·74-0·95, 0·85; 95% CI 0·83-0·87 in the pooled external validation patients' cohort; n=1026). Cutoff was 0·35 for sensitivity of 0·90 or greater and 0·67 for specificity of 0·90 or greater in the derivation cohort, leading to a positive predictive value (PPV) of 0·83 (84/101) and a negative predictive value (NPV) of 0·85 (93/110). In the external validation cohorts, PPV ranged from 0·33 to 0·81 and NPV from 0·73 to 1·0. INTERPRETATION: The FAST score provides an efficient way to non-invasively identify patients at risk of progressive NASH for clinical trials or treatments when they become available, and thereby reduce unnecessary liver biopsy in patients unlikely to have significant disease. FUNDING: Echosens and UK National Institute for Health Research.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Fibrose/patologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/patologia , Adulto , Alanina Transaminase/análise , Aspartato Aminotransferases/análise , Biópsia , China/epidemiologia , Estudos de Coortes , Estudos Transversais , Progressão da Doença , Inglaterra/epidemiologia , Feminino , Fibrose/classificação , França/epidemiologia , Humanos , Fígado/metabolismo , Cirrose Hepática/epidemiologia , Cirrose Hepática/etiologia , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Valor Preditivo dos Testes , Estudos Prospectivos , Sensibilidade e Especificidade , Turquia/epidemiologia , Estados Unidos/epidemiologia
12.
Vasc Endovascular Surg ; 54(2): 141-146, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31749415

RESUMO

OBJECTIVES: To compare outcomes in patients randomized to infrapopliteal (IP) plain balloon angioplasty (PBA) for chronic limb-threatening ischemia within the Bypass versus Angioplasty in Severe Ischemia of the Leg (BASIL)-1 trial between 1999 and 2004 with outcomes in consecutive patients undergoing IP PBA at an academic vascular unit a decade later (2009-2013, Contemporary series [CS]). METHODS: Individual patient data were obtained from prospective BASIL-1 (48 patients) and CS databases (73 patients). All had a minimum of 3-years of follow-up. Outcomes studied were amputation-free survival (AFS), overall survival (OS), major (above ankle) limb amputation, arterial reintervention, immediate technical success, and length of hospital stay for the index procedure and during the following 12-month period. Statistical analysis was performed using SAS version 9.4. RESULTS: The BASIL and CS cohorts were well matched for gender, age, diabetes, previous stroke, myocardial infarction and arterial intervention, and presence of tissue loss. More patients in BASIL-1 underwent concomitant treatment of the superficial femoral (60% vs 37%, P = .01) and above knee popliteal (60% vs 34%, P = .005) arteries. Immediate technical success increased from 73% in BASIL-1 to 90% in the CS (P = .01). Between the two cohorts, there were no differences in AFS (hazard ratio [HR] = 1.00, 95% confidence interval [CI]: 0.65-1.54, P = 1.0), OS (HR = 1.04, 95% CI: 0.66-1.62, P = .9), major amputation (HR = 0.86, 95% CI: 0.37-1.97, P = .7), or reintervention (HR = 0.61, 95% CI: 0.29-1.27, P = .2). Contemporary series patients spent significantly fewer days in hospital following the index procedure (P = .02) and also over the following 12 months (P = .002). CONCLUSIONS: Despite improvements in the immediate technical angiographic success of IP PBA between BASIL and the CS, there were no significant improvements in survival outcomes. Results from BASIL-2 and BEST-CLI are required in order to properly define the clinical and cost-effectiveness of endovascular treatment in such patients.


Assuntos
Angioplastia com Balão , Isquemia/terapia , Doença Arterial Periférica/terapia , Artéria Poplítea , Idoso , Idoso de 80 Anos ou mais , Amputação , Angioplastia com Balão/efeitos adversos , Doença Crônica , Bases de Dados Factuais , Feminino , Humanos , Isquemia/diagnóstico por imagem , Isquemia/fisiopatologia , Tempo de Internação , Masculino , Doença Arterial Periférica/diagnóstico por imagem , Doença Arterial Periférica/fisiopatologia , Artéria Poplítea/diagnóstico por imagem , Artéria Poplítea/fisiopatologia , Intervalo Livre de Progressão , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Risco , Fatores de Tempo , Grau de Desobstrução Vascular
13.
Am J Respir Crit Care Med ; 201(8): 984-991, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31825645

RESUMO

Rationale: Development of diagnostic tools with improved predictive value for tuberculosis (TB) is a global research priority.Objectives: We evaluated whether implementing higher diagnostic thresholds than currently recommended for QuantiFERON Gold-in-Tube (QFT-GIT), T-SPOT.TB, and the tuberculin skin test (TST) might improve prediction of incident TB.Methods: Follow-up of a UK cohort of 9,610 adult TB contacts and recent migrants was extended by relinkage to national TB surveillance records (median follow-up 4.7 yr). Incidence rates and rate ratios, sensitivities, specificities, and predictive values for incident TB were calculated according to ordinal strata for quantitative results of QFT-GIT, T-SPOT.TB, and TST (with adjustment for prior bacillus Calmette-Guérin [BCG] vaccination).Measurements and Main Results: For all tests, incidence rates and rate ratios increased with the magnitude of the test result (P < 0.0001). Over 3 years' follow-up, there was a modest increase in positive predictive value with the higher thresholds (3.0% for QFT-GIT ≥0.35 IU/ml vs. 3.6% for ≥4.00 IU/ml; 3.4% for T-SPOT.TB ≥5 spots vs. 5.0% for ≥50 spots; and 3.1% for BCG-adjusted TST ≥5 mm vs. 4.3% for ≥15 mm). As thresholds increased, sensitivity to detect incident TB waned for all tests (61.0% for QFT-GIT ≥0.35 IU/ml vs. 23.2% for ≥4.00 IU/ml; 65.4% for T-SPOT.TB ≥5 spots vs. 27.2% for ≥50 spots; 69.7% for BCG-adjusted TST ≥5 mm vs. 28.1% for ≥15 mm).Conclusions: Implementation of higher thresholds for QFT-GIT, T-SPOT.TB, and TST modestly increases positive predictive value for incident TB, but markedly reduces sensitivity. Novel biomarkers or validated multivariable risk algorithms are required to improve prediction of incident TB.

14.
J Clin Endocrinol Metab ; 105(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31665449

RESUMO

CONTEXT: Urine steroid metabolomics, combining mass spectrometry-based steroid profiling and machine learning, has been described as a novel diagnostic tool for detection of adrenocortical carcinoma (ACC). OBJECTIVE, DESIGN, SETTING: This proof-of-concept study evaluated the performance of urine steroid metabolomics as a tool for postoperative recurrence detection after microscopically complete (R0) resection of ACC. PATIENTS AND METHODS: 135 patients from 14 clinical centers provided postoperative urine samples, which were analyzed by gas chromatography-mass spectrometry. We assessed the utility of these urine steroid profiles in detecting ACC recurrence, either when interpreted by expert clinicians or when analyzed by random forest, a machine learning-based classifier. Radiological recurrence detection served as the reference standard. RESULTS: Imaging detected recurrent disease in 42 of 135 patients; 32 had provided pre- and post-recurrence urine samples. 39 patients remained disease-free for ≥3 years. The urine "steroid fingerprint" at recurrence resembled that observed before R0 resection in the majority of cases. Review of longitudinally collected urine steroid profiles by 3 blinded experts detected recurrence by the time of radiological diagnosis in 50% to 72% of cases, improving to 69% to 92%, if a preoperative urine steroid result was available. Recurrence detection by steroid profiling preceded detection by imaging by more than 2 months in 22% to 39% of patients. Specificities varied considerably, ranging from 61% to 97%. The computational classifier detected ACC recurrence with superior accuracy (sensitivity = specificity = 81%). CONCLUSION: Urine steroid metabolomics is a promising tool for postoperative recurrence detection in ACC; availability of a preoperative urine considerably improves the ability to detect ACC recurrence.

15.
J Clin Epidemiol ; 121: 1-14, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31843693

RESUMO

OBJECTIVE: The objective of this study was to examine methodological and reporting characteristics of systematic reviews and meta-analyses which compare diagnostic test accuracy (DTA) of multiple index tests, identify good practice, and develop guidance for better reporting. STUDY DESIGN AND SETTING: Methodological survey of 127 comparative or multiple tests reviews published in 74 different general medical and specialist journals. We summarized methods and reporting characteristics that are likely to differ between reviews of a single test and comparative reviews. We then developed guidance to enhance reporting of test comparisons in DTA reviews. RESULTS: Of 127 reviews, 16 (13%) reviews restricted study selection and test comparisons to comparative accuracy studies while the remaining 111 (87%) reviews included any study type. Fifty-three reviews (42%) statistically compared test accuracy with only 18 (34%) of these using recommended methods. Reporting of several items-in particular the role of the index tests, test comparison strategy, and limitations of indirect comparisons (i.e., comparisons involving any study type)-was deficient in many reviews. Five reviews with exemplary methods and reporting were identified. CONCLUSION: Reporting quality of reviews which evaluate and compare multiple tests is poor. The guidance developed, complemented with the exemplars, can assist review authors in producing better quality comparative reviews.

16.
BMJ Open ; 9(9): e033013, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558464

RESUMO

INTRODUCTION: In the UK, about a quarter of women give birth by caesarean section (CS) and are offered prophylactic broad-spectrum antibiotics to reduce the risk of maternal postpartum infection. In 2011, national guidance was changed from recommending antibiotics after the umbilical cord was cut to giving antibiotics prior to skin incision based on evidence that earlier administration reduces maternal infectious morbidity. Although antibiotics cross the placenta, there are no known short-term harms to the baby. This study aims to address the research gap on longer term impact of these antibiotics on child health. METHODS AND ANALYSIS: A controlled interrupted time series study will use anonymised mother-baby linked routine electronic health records for children born during 2006-2018 recorded in UK primary care (The Health Improvement Network, THIN and Clinical Practice Research Datalink, CPRD) and secondary care (Hospital Episode Statistics, HES) databases. The primary outcomes of interest are asthma and eczema, two common allergy-related diseases in childhood. In-utero exposure to antibiotics immediately prior to CS will be compared with no exposure when given after cord clamping. The risk of outcomes in children delivered by CS will also be compared with a control cohort delivered vaginally to account for time effects. We will use all available data from THIN, CPRD and HES with estimated power of 80% and 90% to detect relative increase in risk of asthma of 16% and 18%, respectively at the 5% significance level. ETHICS AND DISSEMINATION: Ethical approval has been obtained from the University of Birmingham Ethical Review Committee with scientific approvals obtained from the independent scientific advisory committees from the Medicines and Healthcare products Regulatory Agency for CPRD and the data provider, IQVIA for THIN. The results will be published in peer-reviewed journals, presented at national and international conferences and disseminated to stakeholders.

17.
Syst Rev ; 8(1): 221, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462304

RESUMO

BACKGROUND: Atrial fibrillation (AF) is the arrhythmia most commonly diagnosed in clinical practice. It is associated with significant morbidity and mortality. Prevalence of AF and complications of AF, estimated by hospitalisations, have increased dramatically in the last decade. Being able to predict AF would allow tailoring of management strategies and a focus on primary or secondary prevention. Models predicting recurrent AF would have particular clinical use for the selection of rhythm control therapy. There are existing prognostic models which combine several predictors or risk factors to generate an individualised estimate of risk of AF. The aim of this systematic review is to summarise and compare model performance measures and predictive accuracy across different models and populations at risk of developing incident or recurrent AF. METHODS: Methods tailored to systematic reviews of prognostic models will be used for study identification, risk of bias assessment and synthesis. Studies will be eligible for inclusion where they report an internally or externally validated model. The quality of studies reporting a prognostic model will be assessed using the Prediction Study Risk Of Bias Assessment Tool (PROBAST). Studies will be narratively described and included variables and predictive accuracy compared across different models and populations. Meta-analysis of model performance measures for models validated in similar populations will be considered where possible. DISCUSSION: To the best of our knowledge, this will be the first systematic review to collate evidence from all studies reporting on validated prognostic models, or on the impact of such models, in any population at risk of incident or recurrent AF. The review may identify models which are suitable for impact assessment in clinical practice. Should gaps in the evidence be identified, research recommendations relating to model development, validation or impact assessment will be made. Findings will be considered in the context of any models already used in clinical practice, and the extent to which these have been validated. SYSTEMATIC REVIEW REGISTRATION: PROSPERO ( CRD42018111649 ).

18.
BMJ ; 365: l1800, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31335316

RESUMO

OBJECTIVE: To determine whether extending initial prednisolone treatment from eight to 16 weeks in children with idiopathic steroid sensitive nephrotic syndrome improves the pattern of disease relapse. DESIGN: Double blind, parallel group, phase III randomised placebo controlled trial, including a cost effectiveness analysis. SETTING: 125 UK National Health Service district general hospitals and tertiary paediatric nephrology centres. PARTICIPANTS: 237 children aged 1-14 years with a first episode of steroid sensitive nephrotic syndrome. INTERVENTIONS: Children were randomised to receive an extended 16 week course of prednisolone (total dose 3150 mg/m2) or a standard eight week course of prednisolone (total dose 2240 mg/m2). The drug was supplied as 5 mg tablets alongside matching placebo so that participants in both groups received the same number of tablets at any time point in the study. A minimisation algorithm ensured balanced treatment allocation by ethnicity (South Asian, white, or other) and age (5 years or less, 6 years or more). MAIN OUTCOME MEASURES: The primary outcome measure was time to first relapse over a minimum follow-up of 24 months. Secondary outcome measures were relapse rate, incidence of frequently relapsing nephrotic syndrome and steroid dependent nephrotic syndrome, use of alternative immunosuppressive treatment, rates of adverse events, behavioural change using the Achenbach child behaviour checklist, quality adjusted life years, and cost effectiveness from a healthcare perspective. Analysis was by intention to treat. RESULTS: No significant difference was found in time to first relapse (hazard ratio 0.87, 95% confidence interval 0.65 to 1.17, log rank P=0.28) or in the incidence of frequently relapsing nephrotic syndrome (extended course 60/114 (53%) v standard course 55/109 (50%), P=0.75), steroid dependent nephrotic syndrome (48/114 (42%) v 48/109 (44%), P=0.77), or requirement for alternative immunosuppressive treatment (62/114 (54%) v 61/109 (56%), P=0.81). Total prednisolone dose after completion of the trial drug was 6674 mg for the extended course versus 5475 mg for the standard course (P=0.07). There were no statistically significant differences in serious adverse event rates (extended course 19/114 (17%) v standard course 27/109 (25%), P=0.13) or adverse event rates, with the exception of behaviour, which was poorer in the standard course group. Scores on the Achenbach child behaviour checklist did not, however, differ. Extended course treatment was associated with a mean increase in generic quality of life (0.0162 additional quality adjusted life years, 95% confidence interval -0.005 to 0.037) and cost savings (difference -£1673 ($2160; €1930), 95% confidence interval -£3455 to £109). CONCLUSIONS: Clinical outcomes did not improve when the initial course of prednisolone treatment was extended from eight to 16 weeks in UK children with steroid sensitive nephrotic syndrome. However, evidence was found of a short term health economic benefit through reduced resource use and increased quality of life. TRIAL REGISTRATION: ISRCTN16645249; EudraCT 2010-022489-29.


Assuntos
Assistência de Longa Duração , Síndrome Nefrótica , Prednisolona , Qualidade de Vida , Prevenção Secundária , Adolescente , Criança , Pré-Escolar , Análise Custo-Benefício , Relação Dose-Resposta a Droga , Método Duplo-Cego , Esquema de Medicação , Monitoramento de Medicamentos/métodos , Feminino , Glucocorticoides/administração & dosagem , Glucocorticoides/efeitos adversos , Glucocorticoides/economia , Humanos , Imunossupressores/uso terapêutico , Lactente , Análise de Intenção de Tratamento , Assistência de Longa Duração/economia , Assistência de Longa Duração/métodos , Masculino , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/economia , Síndrome Nefrótica/psicologia , Prednisolona/administração & dosagem , Prednisolona/efeitos adversos , Prednisolona/economia , Prevenção Secundária/economia , Prevenção Secundária/métodos , Resultado do Tratamento
19.
Cochrane Database Syst Rev ; 7: CD012806, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31260100

RESUMO

BACKGROUND: Melanoma is one of the most aggressive forms of skin cancer, with the potential to metastasise to other parts of the body via the lymphatic system and the bloodstream. Melanoma accounts for a small percentage of skin cancer cases but is responsible for the majority of skin cancer deaths. Various imaging tests can be used with the aim of detecting metastatic spread of disease following a primary diagnosis of melanoma (primary staging) or on clinical suspicion of disease recurrence (re-staging). Accurate staging is crucial to ensuring that patients are directed to the most appropriate and effective treatment at different points on the clinical pathway. Establishing the comparative accuracy of ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET)-CT imaging for detection of nodal or distant metastases, or both, is critical to understanding if, how, and where on the pathway these tests might be used. OBJECTIVES: Primary objectivesWe estimated accuracy separately according to the point in the clinical pathway at which imaging tests were used. Our objectives were:• to determine the diagnostic accuracy of ultrasound or PET-CT for detection of nodal metastases before sentinel lymph node biopsy in adults with confirmed cutaneous invasive melanoma; and• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for whole body imaging in adults with cutaneous invasive melanoma:○ for detection of any metastasis in adults with a primary diagnosis of melanoma (i.e. primary staging at presentation); and○ for detection of any metastasis in adults undergoing staging of recurrence of melanoma (i.e. re-staging prompted by findings on routine follow-up).We undertook separate analyses according to whether accuracy data were reported per patient or per lesion.Secondary objectivesWe sought to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for whole body imaging (detection of any metastasis) in mixed or not clearly described populations of adults with cutaneous invasive melanoma.For study participants undergoing primary staging or re-staging (for possible recurrence), and for mixed or unclear populations, our objectives were:• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for detection of nodal metastases;• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for detection of distant metastases; and• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for detection of distant metastases according to metastatic site. SEARCH METHODS: We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists as well as published systematic review articles. SELECTION CRITERIA: We included studies of any design that evaluated ultrasound (with or without the use of fine needle aspiration cytology (FNAC)), CT, MRI, or PET-CT for staging of cutaneous melanoma in adults, compared with a reference standard of histological confirmation or imaging with clinical follow-up of at least three months' duration. We excluded studies reporting multiple applications of the same test in more than 10% of study participants. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2)). We estimated accuracy using the bivariate hierarchical method to produce summary sensitivities and specificities with 95% confidence and prediction regions. We undertook analysis of studies allowing direct and indirect comparison between tests. We examined heterogeneity between studies by visually inspecting the forest plots of sensitivity and specificity and summary receiver operating characteristic (ROC) plots. Numbers of identified studies were insufficient to allow formal investigation of potential sources of heterogeneity. MAIN RESULTS: We included a total of 39 publications reporting on 5204 study participants; 34 studies reporting data per patient included 4980 study participants with 1265 cases of metastatic disease, and seven studies reporting data per lesion included 417 study participants with 1846 potentially metastatic lesions, 1061 of which were confirmed metastases. The risk of bias was low or unclear for all domains apart from participant flow. Concerns regarding applicability of the evidence were high or unclear for almost all domains. Participant selection from mixed or not clearly defined populations and poorly described application and interpretation of index tests were particularly problematic.The accuracy of imaging for detection of regional nodal metastases before sentinel lymph node biopsy (SLNB) was evaluated in 18 studies. In 11 studies (2614 participants; 542 cases), the summary sensitivity of ultrasound alone was 35.4% (95% confidence interval (CI) 17.0% to 59.4%) and specificity was 93.9% (95% CI 86.1% to 97.5%). Combining pre-SLNB ultrasound with FNAC revealed summary sensitivity of 18.0% (95% CI 3.58% to 56.5%) and specificity of 99.8% (95% CI 99.1% to 99.9%) (1164 participants; 259 cases). Four studies demonstrated lower sensitivity (10.2%, 95% CI 4.31% to 22.3%) and specificity (96.5%,95% CI 87.1% to 99.1%) for PET-CT before SLNB (170 participants, 49 cases). When these data are translated to a hypothetical cohort of 1000 people eligible for SLNB, 237 of whom have nodal metastases (median prevalence), the combination of ultrasound with FNAC potentially allows 43 people with nodal metastases to be triaged directly to adjuvant therapy rather than having SLNB first, at a cost of two people with false positive results (who are incorrectly managed). Those with a false negative ultrasound will be identified on subsequent SLNB.Limited test accuracy data were available for whole body imaging via PET-CT for primary staging or re-staging for disease recurrence, and none evaluated MRI. Twenty-four studies evaluated whole body imaging. Six of these studies explored primary staging following a confirmed diagnosis of melanoma (492 participants), three evaluated re-staging of disease following some clinical indication of recurrence (589 participants), and 15 included mixed or not clearly described population groups comprising participants at a number of different points on the clinical pathway and at varying stages of disease (1265 participants). Results for whole body imaging could not be translated to a hypothetical cohort of people due to paucity of data.Most of the studies (6/9) of primary disease or re-staging of disease considered PET-CT, two in comparison to CT alone, and three studies examined the use of ultrasound. No eligible evaluations of MRI in these groups were identified. All studies used histological reference standards combined with follow-up, and two included FNAC for some participants. Observed accuracy for detection of any metastases for PET-CT was higher for re-staging of disease (summary sensitivity from two studies: 92.6%, 95% CI 85.3% to 96.4%; specificity: 89.7%, 95% CI 78.8% to 95.3%; 153 participants; 95 cases) compared to primary staging (sensitivities from individual studies ranged from 30% to 47% and specificities from 73% to 88%), and was more sensitive than CT alone in both population groups, but participant numbers were very small.No conclusions can be drawn regarding routine imaging of the brain via MRI or CT. AUTHORS' CONCLUSIONS: Review authors found a disappointing lack of evidence on the accuracy of imaging in people with a diagnosis of melanoma at different points on the clinical pathway. Studies were small and often reported data according to the number of lesions rather than the number of study participants. Imaging with ultrasound combined with FNAC before SLNB may identify around one-fifth of those with nodal disease, but confidence intervals are wide and further work is needed to establish cost-effectiveness. Much of the evidence for whole body imaging for primary staging or re-staging of disease is focused on PET-CT, and comparative data with CT or MRI are lacking. Future studies should go beyond diagnostic accuracy and consider the effects of different imaging tests on disease management. The increasing availability of adjuvant therapies for people with melanoma at high risk of disease spread at presentation will have a considerable impact on imaging services, yet evidence for the relative diagnostic accuracy of available tests is limited.


Assuntos
Melanoma/diagnóstico por imagem , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias Cutâneas/diagnóstico por imagem , Adulto , Diagnóstico por Computador/métodos , Humanos , Imagem por Ressonância Magnética , Recidiva Local de Neoplasia/diagnóstico por imagem , Tomografia Computadorizada com Tomografia por Emissão de Pósitrons , Ensaios Clínicos Controlados Aleatórios como Assunto , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X , Ultrassonografia
20.
J Clin Epidemiol ; 114: 38-48, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31150837

RESUMO

OBJECTIVE: Low disease prevalence poses challenges for diagnostic accuracy studies because of the large sample sizes that are required to obtain sufficient precision. The aim is to collate and discuss designs of diagnostic accuracy studies suited for use in low-prevalence situations. STUDY DESIGN AND SETTING: We conducted a literature search including backward citation tracking and expert consultation. Two reviewers independently selected studies on designs for estimating diagnostic accuracy in a low-prevalence situation. During a 1-day expert meeting, all designs were discussed and recommendations were formulated. RESULTS: We identified six designs for diagnostic accuracy studies that are suitable in low-prevalence situations because they reduced the total sample size or the number of patients undergoing the index test or reference standard depending on which poses the highest burden. We described the advantages and limitations of these designs and evaluated efficiencies in sample sizes, risk of bias, and alignment with the clinical pathway for applicability in routine care. CONCLUSION: Choosing a study design for diagnostic accuracy studies in low-prevalence situations should depend on whether the aim is to limit the number of patients undergoing the index test or reference standard, and the risk of bias associated with a particular design type.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA