Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 3669, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31413261

RESUMO

Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) ε4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE ε2) shows the opposite. Moreover, rs7676745, located near GPR78, associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity.

2.
Nat Commun ; 10(1): 3346, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31431621

RESUMO

Predicting longer-term mortality risk requires collection of clinical data, which is often cumbersome. Therefore, we use a well-standardized metabolomics platform to identify metabolic predictors of long-term mortality in the circulation of 44,168 individuals (age at baseline 18-109), of whom 5512 died during follow-up. We apply a stepwise (forward-backward) procedure based on meta-analysis results and identify 14 circulating biomarkers independently associating with all-cause mortality. Overall, these associations are similar in men and women and across different age strata. We subsequently show that the prediction accuracy of 5- and 10-year mortality based on a model containing the identified biomarkers and sex (C-statistic = 0.837 and 0.830, respectively) is better than that of a model containing conventional risk factors for mortality (C-statistic = 0.772 and 0.790, respectively). The use of the identified metabolic profile as a predictor of mortality or surrogate endpoint in clinical studies needs further investigation.

3.
Sci Rep ; 9(1): 11623, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406173

RESUMO

Telomere shortening has been associated with multiple age-related diseases such as cardiovascular disease, diabetes, and dementia. However, the biological mechanisms responsible for these associations remain largely unknown. In order to gain insight into the metabolic processes driving the association of leukocyte telomere length (LTL) with age-related diseases, we investigated the association between LTL and serum metabolite levels in 7,853 individuals from seven independent cohorts. LTL was determined by quantitative polymerase chain reaction and the levels of 131 serum metabolites were measured with mass spectrometry in biological samples from the same blood draw. With partial correlation analysis, we identified six metabolites that were significantly associated with LTL after adjustment for multiple testing: lysophosphatidylcholine acyl C17:0 (lysoPC a C17:0, p-value = 7.1 × 10-6), methionine (p-value = 9.2 × 10-5), tyrosine (p-value = 2.1 × 10-4), phosphatidylcholine diacyl C32:1 (PC aa C32:1, p-value = 2.4 × 10-4), hydroxypropionylcarnitine (C3-OH, p-value = 2.6 × 10-4), and phosphatidylcholine acyl-alkyl C38:4 (PC ae C38:4, p-value = 9.0 × 10-4). Pathway analysis showed that the three phosphatidylcholines and methionine are involved in homocysteine metabolism and we found supporting evidence for an association of lipid metabolism with LTL. In conclusion, we found longer LTL associated with higher levels of lysoPC a C17:0 and PC ae C38:4, and with lower levels of methionine, tyrosine, PC aa C32:1, and C3-OH. These metabolites have been implicated in inflammation, oxidative stress, homocysteine metabolism, and in cardiovascular disease and diabetes, two major drivers of morbidity and mortality.

4.
Am J Hum Genet ; 103(5): 691-706, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388399

RESUMO

C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade inflammation and is associated with multiple complex diseases. The genetic determinants of chronic inflammation remain largely unknown, and the causal role of CRP in several clinical outcomes is debated. We performed two genome-wide association studies (GWASs), on HapMap and 1000 Genomes imputed data, of circulating amounts of CRP by using data from 88 studies comprising 204,402 European individuals. Additionally, we performed in silico functional analyses and Mendelian randomization analyses with several clinical outcomes. The GWAS meta-analyses of CRP revealed 58 distinct genetic loci (p < 5 × 10-8). After adjustment for body mass index in the regression analysis, the associations at all except three loci remained. The lead variants at the distinct loci explained up to 7.0% of the variance in circulating amounts of CRP. We identified 66 gene sets that were organized in two substantially correlated clusters, one mainly composed of immune pathways and the other characterized by metabolic pathways in the liver. Mendelian randomization analyses revealed a causal protective effect of CRP on schizophrenia and a risk-increasing effect on bipolar disorder. Our findings provide further insights into the biology of inflammation and could lead to interventions for treating inflammation and its clinical consequences.

5.
Nat Commun ; 9(1): 4455, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367059

RESUMO

Thyroid dysfunction is an important public health problem, which affects 10% of the general population and increases the risk of cardiovascular morbidity and mortality. Many aspects of thyroid hormone regulation have only partly been elucidated, including its transport, metabolism, and genetic determinants. Here we report a large meta-analysis of genome-wide association studies for thyroid function and dysfunction, testing 8 million genetic variants in up to 72,167 individuals. One-hundred-and-nine independent genetic variants are associated with these traits. A genetic risk score, calculated to assess their combined effects on clinical end points, shows significant associations with increased risk of both overt (Graves' disease) and subclinical thyroid disease, as well as clinical complications. By functional follow-up on selected signals, we identify a novel thyroid hormone transporter (SLC17A4) and a metabolizing enzyme (AADAT). Together, these results provide new knowledge about thyroid hormone physiology and disease, opening new possibilities for therapeutic targets.

6.
JAMA Netw Open ; 1(4)2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30294719

RESUMO

IMPORTANCE: Sex differences in genetic associations with human longevity remain largely unknown; investigations on this topic are important for individualized health care. OBJECTIVE: To explore sex differences in genetic associations with longevity. DESIGN SETTING AND PARTICIPANTS: This population-based case-control study used sex-specific genome-wide association study and polygenic risk score (PRS) analyses to examine sex differences in genetic associations with longevity. Five hundred sixty-four male and 1614 female participants older than 100 years were compared with a control group of 773 male and 1526 female individuals aged 40 to 64 years. All were Chinese Longitudinal Healthy Longevity Study participants with Han ethnicity who were recruited in 1998 and 2008 to 2014. MAIN OUTCOMES AND MEASURES: Sex-specific loci and pathways associated with longevity and PRS measures of joint effects of sex-specific loci. RESULTS: Eleven male-specific and 11 female-specific longevity loci (P < 10-5) and 35 male-specific and 25 female-specific longevity loci (10-5 ≤ P < 10-4) were identified. Each of these loci's associations with longevity were replicated in north and south regions of China in one sex but were not significant in the other sex (P = .13-.97), and loci-sex interaction effects were significant (P < .05). The associations of loci rs60210535 of the LINC00871 gene with longevity were replicated in Chinese women (P = 9.0 × 10-5) and US women (P = 4.6 × 10-5) but not significant in Chinese and US men. The associations of the loci rs2622624 of the ABCG2 gene were replicated in Chinese women (P = 6.8 × 10-5) and European women (P = .003) but not significant in both Chinese and European men. Eleven male-specific pathways (inflammation and immunity genes) and 34 female-specific pathways (tryptophan metabolism and PGC-1α induced) were significantly associated with longevity (P < .005; false discovery rate < 0.05). The PRS analyses demonstrated that sex-specific associations with longevity of the 4 exclusive groups of 11 male-specific and 11 female-specific loci (P < 10-5) and 35 male-specific and 25 female-specific loci (10-5 ≤P < 10-4) were jointly replicated across north and south discovery and target samples. Analyses using the combined data set of north and south showed that these 4 groups of sex-specific loci were jointly and significantly associated with longevity in one sex (P = 2.9 × 10-70 to 1.3 × 10-39) but not jointly significant in the other sex (P = .11 to .70), while interaction effects between PRS and sex were significant (P = 4.8 × 10-50 to 1.2 × 10-16). CONCLUSION AND RELEVANCE: The sex differences in genetic associations with longevity are remarkable, but have been overlooked by previously published genome-wide association studies on longevity. This study contributes to filling this research gap and provides a scientific basis for further investigating effects of sex-specific genetic variants and their interactions with environment on healthy aging, which may substantially contribute to more effective and targeted individualized health care for male and female elderly individuals.

7.
Nature ; 561(7721): 45-56, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30185958

RESUMO

Longer human lives have led to a global burden of late-life disease. However, some older people experience little ill health, a trait that should be extended to the general population. Interventions into lifestyle, including increased exercise and reduction in food intake and obesity, can help to maintain healthspan. Altered gut microbiota, removal of senescent cells, blood factors obtained from young individuals and drugs can all improve late-life health in animals. Application to humans will require better biomarkers of disease risk and responses to interventions, closer alignment of work in animals and humans, and increased use of electronic health records, biobank resources and cohort studies.

8.
Front Immunol ; 9: 277, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29535710

RESUMO

Immunoglobulin G (IgG), a glycoprotein secreted by plasma B-cells, plays a major role in the human adaptive immune response and are associated with a wide range of diseases. Glycosylation of the Fc binding region of IgGs, responsible for the antibody's effector function, is essential for prompting a proper immune response. This study focuses on the general genetic impact on IgG glycosylation as well as corresponding subclass specificities. To identify genetic loci involved in IgG glycosylation, we performed a genome-wide association study (GWAS) on liquid chromatography electrospray mass spectrometry (LC-ESI-MS)-measured IgG glycopeptides of 1,823 individuals in the Cooperative Health Research in the Augsburg Region (KORA F4) study cohort. In addition, we performed GWAS on subclass-specific ratios of IgG glycans to gain power in identifying genetic factors underlying single enzymatic steps in the glycosylation pathways. We replicated our findings in 1,836 individuals from the Leiden Longevity Study (LLS). We were able to show subclass-specific genetic influences on single IgG glycan structures. The replicated results indicate that, in addition to genes encoding for glycosyltransferases (i.e., ST6GAL1, B4GALT1, FUT8, and MGAT3), other genetic loci have strong influences on the IgG glycosylation patterns. A novel locus on chromosome 1, harboring RUNX3, which encodes for a transcription factor of the runt domain-containing family, is associated with decreased galactosylation. Interestingly, members of the RUNX family are cross-regulated, and RUNX3 is involved in both IgA class switching and B-cell maturation as well as T-cell differentiation and apoptosis. Besides the involvement of glycosyltransferases in IgG glycosylation, we suggest that, due to the impact of variants within RUNX3, potentially mechanisms involved in B-cell activation and T-cell differentiation during the immune response as well as cell migration and invasion involve IgG glycosylation.

10.
PLoS One ; 13(1): e0189886, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29293525

RESUMO

Glucagon-like peptide 1 (GLP-1) stimulated insulin secretion has a considerable heritable component as estimated from twin studies, yet few genetic variants influencing this phenotype have been identified. We performed the first genome-wide association study (GWAS) of GLP-1 stimulated insulin secretion in non-diabetic individuals from the Netherlands Twin register (n = 126). This GWAS was enhanced using a tissue-specific protein-protein interaction network approach. We identified a beta-cell protein-protein interaction module that was significantly enriched for low gene scores based on the GWAS P-values and found support at the network level in an independent cohort from Tübingen, Germany (n = 100). Additionally, a polygenic risk score based on SNPs prioritized from the network was associated (P < 0.05) with glucose-stimulated insulin secretion phenotypes in up to 5,318 individuals in MAGIC cohorts. The network contains both known and novel genes in the context of insulin secretion and is enriched for members of the focal adhesion, extracellular-matrix receptor interaction, actin cytoskeleton regulation, Rap1 and PI3K-Akt signaling pathways. Adipose tissue is, like the beta-cell, one of the target tissues of GLP-1 and we thus hypothesized that similar networks might be functional in both tissues. In order to verify peripheral effects of GLP-1 stimulation, we compared the transcriptome profiling of ob/ob mice treated with liraglutide, a clinically used GLP-1 receptor agonist, versus baseline controls. Some of the upstream regulators of differentially expressed genes in the white adipose tissue of ob/ob mice were also detected in the human beta-cell network of genes associated with GLP-1 stimulated insulin secretion. The findings provide biological insight into the mechanisms through which the effects of GLP-1 may be modulated and highlight a potential role of the beta-cell expressed genes RYR2, GDI2, KIAA0232, COL4A1 and COL4A2 in GLP-1 stimulated insulin secretion.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insulina/metabolismo , Animais , Humanos , Camundongos
11.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt A): 2742-2751, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28951210

RESUMO

Human ageing is an extremely personal process leading across the life course of individuals to large population heterogeneity in the decline of functional capacity, health and lifespan. The extremes of this process are witnessed by the healthy vital 100-year-olds on one end and the 60-year-olds suffering from multiple morbid conditions on the other end of the spectrum. Molecular studies into the basis of this heterogeneity have focused on a range of endpoints and methodological approaches. The phenotype definitions most prominently investigated in these studies are either lifespan-related or biomarker based indices of the biological ageing rate of individuals and their tissues. Unlike for many complex, age-related diseases, consensus on the ultimate set of multi-biomarker ageing or lifespan-related phenotypes for genetic and genomic studies has not been reached yet. Comparable to animal models, hallmarks of age-related disease risk, healthy ageing and longevity include immune and metabolic pathways. Potentially novel genomic regions and pathways have been identified among many (epi)genomic studies into chronological age and studies into human lifespan regulation, with APOE and FOXO3A representing yet the most robust loci. Functional analysis of a handful of genes in cell-based and animal models is ongoing. The way forward in human ageing and longevity studies seems through improvements in the interpretation of the biology of the genome, in application of computational and systems biology, integration with animal models and by harmonization of repeated phenotypic and omics measures in longitudinal and intervention studies. This article is part of a Special Issue entitled: Model Systems of Aging - edited by "Houtkooper Riekelt".


Assuntos
Envelhecimento/genética , Biomarcadores , Genômica , Longevidade/genética , Fenótipo , Animais , Apolipoproteínas E/genética , Proteína Forkhead Box O3/genética , Heterogeneidade Genética , Loci Gênicos , Humanos , Metabolômica , Modelos Animais , Modelos Biológicos , Pesquisa
12.
Diabetologia ; 61(1): 117-129, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28936587

RESUMO

AIMS/HYPOTHESIS: Circulating metabolites have been shown to reflect metabolic changes during the development of type 2 diabetes. In this study we examined the association of metabolite levels and pairwise metabolite ratios with insulin responses after glucose, glucagon-like peptide-1 (GLP-1) and arginine stimulation. We then investigated if the identified metabolite ratios were associated with measures of OGTT-derived beta cell function and with prevalent and incident type 2 diabetes. METHODS: We measured the levels of 188 metabolites in plasma samples from 130 healthy members of twin families (from the Netherlands Twin Register) at five time points during a modified 3 h hyperglycaemic clamp with glucose, GLP-1 and arginine stimulation. We validated our results in cohorts with OGTT data (n = 340) and epidemiological case-control studies of prevalent (n = 4925) and incident (n = 4277) diabetes. The data were analysed using regression models with adjustment for potential confounders. RESULTS: There were dynamic changes in metabolite levels in response to the different secretagogues. Furthermore, several fasting pairwise metabolite ratios were associated with one or multiple clamp-derived measures of insulin secretion (all p < 9.2 × 10-7). These associations were significantly stronger compared with the individual metabolite components. One of the ratios, valine to phosphatidylcholine acyl-alkyl C32:2 (PC ae C32:2), in addition showed a directionally consistent positive association with OGTT-derived measures of insulin secretion and resistance (p ≤ 5.4 × 10-3) and prevalent type 2 diabetes (ORVal_PC ae C32:2 2.64 [ß 0.97 ± 0.09], p = 1.0 × 10-27). Furthermore, Val_PC ae C32:2 predicted incident diabetes independent of established risk factors in two epidemiological cohort studies (HRVal_PC ae C32:2 1.57 [ß 0.45 ± 0.06]; p = 1.3 × 10-15), leading to modest improvements in the receiver operating characteristics when added to a model containing a set of established risk factors in both cohorts (increases from 0.780 to 0.801 and from 0.862 to 0.865 respectively, when added to the model containing traditional risk factors + glucose). CONCLUSIONS/INTERPRETATION: In this study we have shown that the Val_PC ae C32:2 metabolite ratio is associated with an increased risk of type 2 diabetes and measures of insulin secretion and resistance. The observed effects were stronger than that of the individual metabolites and independent of known risk factors.


Assuntos
Biomarcadores/sangue , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Arginina/metabolismo , Glicemia/metabolismo , Feminino , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose , Humanos , Insulina/metabolismo , Masculino , Fatores de Risco
13.
Stat Methods Med Res ; 27(3): 933-954, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27177884

RESUMO

In the field of aging research, family-based sampling study designs are commonly used to study the lifespans of long-lived family members. However, the specific sampling procedure should be carefully taken into account in order to avoid biases. This work is motivated by the Leiden Longevity Study, a family-based cohort of long-lived siblings. Families were invited to participate in the study if at least two siblings were 'long-lived', where 'long-lived' meant being older than 89 years for men or older than 91 years for women. As a result, more than 400 families were included in the study and followed for around 10 years. For estimation of marker-specific survival probabilities and correlations among life times of family members, delayed entry due to outcome-dependent sampling mechanisms has to be taken into account. We consider shared frailty models to model left-truncated correlated survival data. The treatment of left truncation in shared frailty models is still an open issue and the literature on this topic is scarce. We show that the current approaches provide, in general, biased estimates and we propose a new method to tackle this selection problem by applying a correction on the likelihood estimation by means of inverse probability weighting at the family level.

14.
Biochim Biophys Acta Gen Subj ; 1862(3): 637-648, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29055820

RESUMO

BACKGROUND: Glycosylation is one of the most common post-translation modifications with large influences on protein structure and function. The effector function of immunoglobulin G (IgG) alters between pro- and anti-inflammatory, based on its glycosylation. IgG glycan synthesis is highly complex and dynamic. METHODS: With the use of two different analytical methods for assessing IgG glycosylation, we aim to elucidate the link between DNA methylation and glycosylation of IgG by means of epigenome-wide association studies. In total, 3000 individuals from 4 cohorts were analyzed. RESULTS: The overlap of the results from the two glycan measurement panels yielded DNA methylation of 7 CpG-sites on 5 genomic locations to be associated with IgG glycosylation: cg25189904 (chr.1, GNG12); cg05951221, cg21566642 and cg01940273 (chr.2, ALPPL2); cg05575921 (chr.5, AHRR); cg06126421 (6p21.33); and cg03636183 (chr.19, F2RL3). Mediation analyses with respect to smoking revealed that the effect of smoking on IgG glycosylation may be at least partially mediated via DNA methylation levels at these 7 CpG-sites. CONCLUSION: Our results suggest the presence of an indirect link between DNA methylation and IgG glycosylation that may in part capture environmental exposures. GENERAL SIGNIFICANCE: An epigenome-wide analysis conducted in four population-based cohorts revealed an association between DNA methylation and IgG glycosylation patterns. Presumably, DNA methylation mediates the effect of smoking on IgG glycosylation.


Assuntos
Metilação de DNA , Imunoglobulina G/química , Processamento de Proteína Pós-Traducional , Fumar/efeitos adversos , Mapeamento Cromossômico , Estudos de Coortes , Ilhas de CpG , Epigenômica/métodos , Europa (Continente) , Glicosilação , Humanos , Imunoglobulina G/metabolismo , Estudos Multicêntricos como Assunto , Polissacarídeos/análise , Estudos em Gêmeos como Assunto
15.
Metabolomics ; 13(11): 129, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28989335

RESUMO

INTRODUCTION: In systems biology, where a main goal is acquiring knowledge of biological systems, one of the challenges is inferring biochemical interactions from different molecular entities such as metabolites. In this area, the metabolome possesses a unique place for reflecting "true exposure" by being sensitive to variation coming from genetics, time, and environmental stimuli. While influenced by many different reactions, often the research interest needs to be focused on variation coming from a certain source, i.e. a certain covariable [Formula: see text]. OBJECTIVE: Here, we use network analysis methods to recover a set of metabolite relationships, by finding metabolites sharing a similar relation to [Formula: see text]. Metabolite values are based on information coming from individuals' [Formula: see text] status which might interact with other covariables. METHODS: Alternative to using the original metabolite values, the total information is decomposed by utilizing a linear regression model and the part relevant to [Formula: see text] is further used. For two datasets, two different network estimation methods are considered. The first is weighted gene co-expression network analysis based on correlation coefficients. The second method is graphical LASSO based on partial correlations. RESULTS: We observed that when using the parts related to the specific covariable of interest, resulting estimated networks display higher interconnectedness. Additionally, several groups of biologically associated metabolites (very large density lipoproteins, lipoproteins, etc.) were identified in the human data example. CONCLUSIONS: This work demonstrates how information on the study design can be incorporated to estimate metabolite networks. As a result, sets of interconnected metabolites can be clustered together with respect to their relation to a covariable of interest.

16.
Ann Rheum Dis ; 76(12): 2046-2053, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28855172

RESUMO

OBJECTIVE: Osteoarthritis (OA) is the most common form of arthritis and the leading cause of disability in the elderly. Of all the joints, genetic predisposition is strongest for OA of the hand; however, only few genetic risk loci for hand OA have been identified. Our aim was to identify novel genes associated with hand OA and examine the underlying mechanism. METHODS: We performed a genome-wide association study of a quantitative measure of hand OA in 12 784 individuals (discovery: 8743, replication: 4011). Genome-wide significant signals were followed up by analysing gene and allele-specific expression in a RNA sequencing dataset (n=96) of human articular cartilage. RESULTS: We found two significantly associated loci in the discovery set: at chr12 (p=3.5 × 10-10) near the matrix Gla protein (MGP) gene and at chr12 (p=6.1×10-9) near the CCDC91 gene. The DNA variant near the MGP gene was validated in three additional studies, which resulted in a highly significant association between the MGP variant and hand OA (rs4764133, Betameta=0.83, Pmeta=1.8*10-15). This variant is high linkage disequilibrium with a coding variant in MGP, a vitamin K-dependent inhibitor of cartilage calcification. Using RNA sequencing data from human primary cartilage tissue (n=96), we observed that the MGP RNA expression of the hand OA risk allele was significantly lowercompared with the MGP RNA expression of the reference allele (40.7%, p<5*10-16). CONCLUSIONS: Our results indicate that the association between the MGP variant and increased risk for hand OA is caused by a lower expression of MGP, which may increase the burden of hand OA by decreased inhibition of cartilage calcification.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cartilagem Articular/patologia , Proteínas da Matriz Extracelular/genética , Predisposição Genética para Doença/genética , Articulação da Mão/patologia , Osteoartrite/genética , Adulto , Idoso , Alelos , Calcinose/genética , Proteínas de Transporte/genética , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação/genética , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Análise de Sequência de RNA
18.
Diabetes ; 66(8): 2296-2309, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28490609

RESUMO

Understanding the physiological mechanisms by which common variants predispose to type 2 diabetes requires large studies with detailed measures of insulin secretion and sensitivity. Here we performed the largest genome-wide association study of first-phase insulin secretion, as measured by intravenous glucose tolerance tests, using up to 5,567 individuals without diabetes from 10 studies. We aimed to refine the mechanisms of 178 known associations between common variants and glycemic traits and identify new loci. Thirty type 2 diabetes or fasting glucose-raising alleles were associated with a measure of first-phase insulin secretion at P < 0.05 and provided new evidence, or the strongest evidence yet, that insulin secretion, intrinsic to the islet cells, is a key mechanism underlying the associations at the HNF1A, IGF2BP2, KCNQ1, HNF1B, VPS13C/C2CD4A, FAF1, PTPRD, AP3S2, KCNK16, MAEA, LPP, WFS1, and TMPRSS6 loci. The fasting glucose-raising allele near PDX1, a known key insulin transcription factor, was strongly associated with lower first-phase insulin secretion but has no evidence for an effect on type 2 diabetes risk. The diabetes risk allele at TCF7L2 was associated with a stronger effect on peak insulin response than on C-peptide-based insulin secretion rate, suggesting a possible additional role in hepatic insulin clearance or insulin processing. In summary, our study provides further insight into the mechanisms by which common genetic variation influences type 2 diabetes risk and glycemic traits.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Variação Genética/fisiologia , Insulina/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/fisiologia , Alelos , Peptídeo C/genética , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Variação Genética/genética , Estudo de Associação Genômica Ampla , Genótipo , Técnicas de Genotipagem , Teste de Tolerância a Glucose/métodos , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Modelos Lineares , Fígado/metabolismo
19.
Aging (Albany NY) ; 9(1): 209-246, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28077804

RESUMO

Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging.


Assuntos
Envelhecimento/genética , Marcha/genética , Polimorfismo de Nucleotídeo Único , Velocidade de Caminhada/genética , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Locos de Características Quantitativas , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Serina Endopeptidases/genética
20.
J Gerontol A Biol Sci Med Sci ; 72(8): 1015-1023, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27672102

RESUMO

Epigenetic remodeling is one of the major features of the aging process. We recently demonstrated that DNA methylation of ELOVL2 and FHL2 CpG islands is highly correlated with age in whole blood. Here we investigated several aspects of age-associated hypermethylation of ELOVL2 and FHL2. We showed that ELOVL2 methylation is significantly different in primary dermal fibroblast cultures from donors of different ages. Using epigenomic data from public resources, we demonstrated that most of the tissues show ELOVL2 and FHL2 hypermethylation with age. Interestingly, ELOVL2 hypermethylation was not found in tissues with very low replication rate. We demonstrated that ELOVL2 hypermethylation is associated with in vitro cell replication rather than with senescence. We confirmed intra-individual hypermethylation of ELOVL2 and FHL2 in longitudinally assessed participants from the Doetinchem Cohort Study. Finally we showed that, although the methylation of the two loci is not associated with longevity/mortality in the Leiden Longevity Study, ELOVL2 methylation is associated with cytomegalovirus status in nonagenarians, which could be informative of a higher number of replication events in a fraction of whole-blood cells. Collectively, these results indicate that ELOVL2 methylation is a marker of cell divisions occurring during human aging.


Assuntos
Acetiltransferases/metabolismo , Envelhecimento/fisiologia , Proliferação de Células/fisiologia , Metilação de DNA/fisiologia , Proteínas com Homeodomínio LIM/metabolismo , Proteínas Musculares/metabolismo , Fatores de Transcrição/metabolismo , Idoso , Células Cultivadas , Senescência Celular/fisiologia , Ilhas de CpG/fisiologia , Epigênese Genética , Feminino , Humanos , Longevidade/fisiologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA