Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31645345

RESUMO

"Mutational signatures" are patterns of mutations that report DNA damage and subsequent repair processes that have occurred. Whole-genome sequencing (WGS) can provide additional information to standard diagnostic techniques and can identify therapeutic targets. A 32-yr-old male with xeroderma pigmentosum developed metastatic angiosarcoma that was unresponsive to three lines of conventional sarcoma therapies. WGS was performed on his primary cancer revealing a hypermutated tumor, including clonal ultraviolet radiation-induced mutational patterns (Signature 7) and subclonal signatures of mutated DNA polymerase epsilon (POLE) (Signature 10). These signatures are associated with response to immune checkpoint blockade. Immunohistochemistry confirmed high PD-L1 expression in metastatic deposits. The anti-PD-1 monoclonal antibody pembrolizumab was commenced off-label given the POLE mutation and high mutational load. After four cycles, there was a significant reduction in his disease with almost complete resolution of the metastatic deposits. This case highlights the importance of WGS in the analysis, interpretation, and treatment of cancers. We anticipate that as WGS becomes integral to the cancer diagnostic pathway, treatments will be stratified to the individual based on their unique genomic and/or transcriptomic profile, enhancing classical approaches of histologically driven treatment decisions.

2.
Nat Med ; 25(10): 1526-1533, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31570822

RESUMO

Whole-genome sequencing (WGS) brings comprehensive insights to cancer genome interpretation. To explore the clinical value of WGS, we sequenced 254 triple-negative breast cancers (TNBCs) for which associated treatment and outcome data were collected between 2010 and 2015 via the population-based Sweden Cancerome Analysis Network-Breast (SCAN-B) project (ClinicalTrials.gov ID:NCT02306096). Applying the HRDetect mutational-signature-based algorithm to classify tumors, 59% were predicted to have homologous-recombination-repair deficiency (HRDetect-high): 67% explained by germline/somatic mutations of BRCA1/BRCA2, BRCA1 promoter hypermethylation, RAD51C hypermethylation or biallelic loss of PALB2. A novel mechanism of BRCA1 abrogation was discovered via germline SINE-VNTR-Alu retrotransposition. HRDetect provided independent prognostic information, with HRDetect-high patients having better outcome on adjuvant chemotherapy for invasive disease-free survival (hazard ratio (HR) = 0.42; 95% confidence interval (CI) = 0.2-0.87) and distant relapse-free interval (HR = 0.31, CI = 0.13-0.76) compared to HRDetect-low, regardless of whether a genetic/epigenetic cause was identified. HRDetect-intermediate, some possessing potentially targetable biological abnormalities, had the poorest outcomes. HRDetect-low cancers also had inadequate outcomes: ~4.7% were mismatch-repair-deficient (another targetable defect, not typically sought) and they were enriched for (but not restricted to) PIK3CA/AKT1 pathway abnormalities. New treatment options need to be considered for now-discernible HRDetect-intermediate and HRDetect-low categories. This population-based study advocates for WGS of TNBC to better inform trial stratification and improve clinical decision-making.


Assuntos
Recidiva Local de Neoplasia/genética , Prognóstico , Neoplasias de Mama Triplo Negativas/genética , Sequenciamento Completo do Genoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Metilação de DNA/genética , Intervalo Livre de Doença , Feminino , Genética Populacional , Mutação em Linhagem Germinativa/genética , Humanos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/patologia , Regiões Promotoras Genéticas , Neoplasias de Mama Triplo Negativas/epidemiologia , Neoplasias de Mama Triplo Negativas/patologia
4.
Nat Commun ; 10(1): 2969, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278357

RESUMO

Analysis of mutational signatures is becoming routine in cancer genomics, with implications for pathogenesis, classification, prognosis, and even treatment decisions. However, the field lacks a consensus on analysis and result interpretation. Using whole-genome sequencing of multiple myeloma (MM), chronic lymphocytic leukemia (CLL) and acute myeloid leukemia, we compare the performance of public signature analysis tools. We describe caveats and pitfalls of de novo signature extraction and fitting approaches, reporting on common inaccuracies: erroneous signature assignment, identification of localized hyper-mutational processes, overcalling of signatures. We provide reproducible solutions to solve these issues and use orthogonal approaches to validate our results. We show how a comprehensive mutational signature analysis may provide relevant biological insights, reporting evidence of c-AID activity among unmutated CLL cases or the absence of BRCA1/BRCA2-mediated homologous recombination deficiency in a MM cohort. Finally, we propose a general analysis framework to ensure production of accurate and reproducible mutational signature data.


Assuntos
Análise Mutacional de DNA/normas , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Mieloide Aguda/genética , Mieloma Múltiplo/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Biologia Computacional/métodos , Biologia Computacional/normas , Análise Mutacional de DNA/métodos , Conjuntos de Dados como Assunto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Mutação , Guias de Prática Clínica como Assunto , Sequenciamento Completo do Genoma/métodos , Sequenciamento Completo do Genoma/normas
5.
Cell ; 177(4): 821-836.e16, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982602

RESUMO

Whole-genome-sequencing (WGS) of human tumors has revealed distinct mutation patterns that hint at the causative origins of cancer. We examined mutational signatures in 324 WGS human-induced pluripotent stem cells exposed to 79 known or suspected environmental carcinogens. Forty-one yielded characteristic substitution mutational signatures. Some were similar to signatures found in human tumors. Additionally, six agents produced double-substitution signatures and eight produced indel signatures. Investigating mutation asymmetries across genome topography revealed fully functional mismatch and transcription-coupled repair pathways. DNA damage induced by environmental mutagens can be resolved by disparate repair and/or replicative pathways, resulting in an assortment of signature outcomes even for a single agent. This compendium of experimentally induced mutational signatures permits further exploration of roles of environmental agents in cancer etiology and underscores how human stem cell DNA is directly vulnerable to environmental agents. VIDEO ABSTRACT.

6.
NPJ Syst Biol Appl ; 3: 20, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28804640

RESUMO

Mathematical modelling of signalling pathways aids experimental investigation in system and synthetic biology. Ever increasing data availability prompts the development of large dynamic models with numerous parameters. In this paper, we investigate how the number of unknown parameters affects the convergence of three frequently used optimisation algorithms and four objective functions. We compare objective functions that use data-driven normalisation of the simulations with those that use scaling factors. The data-driven normalisation of the simulation approach implies that simulations are normalised in the same way as the data, making both directly comparable. The scaling factor approach, which is commonly used for parameter estimation in dynamic systems, introduces scaling factors that multiply the simulations to convert them to the scale of the data. Here we show that the scaling factor approach increases, compared to data-driven normalisation of the simulations, the degree of practical non-identifiability, defined as the number of directions in the parameter space, along which parameters are not identifiable. Further, the results indicate that data-driven normalisation of the simulations greatly improve the speed of convergence of all tested algorithms when the overall number of unknown parameters is relatively large (74 parameters in our test problems). Data-driven normalisation of the simulations also markedly improve the performance of the non-gradient-based algorithm tested even when the number of unknown parameters is relatively small (10 parameters in our test problems). As the models and the unknown parameters increase in size, the data-driven normalisation of the simulation approach can be the preferred option, because it does not aggravate non-identifiability and allows for obtaining parameter estimates in a reasonable amount of time.

7.
Cell Syst ; 2(1): 38-48, 2016 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-27136688

RESUMO

Dynamic interactions between RhoA and Rac1, members of the Rho small GTPase family, play a vital role in the control of cell migration. Using predictive mathematical modeling, mass spectrometry-based quantitation of network components, and experimental validation in MDA-MB-231 mesenchymal breast cancer cells, we show that a network containing Rac1, RhoA, and PAK family kinases can produce bistable, switch-like responses to a graded PAK inhibition. Using a small chemical inhibitor of PAK, we demonstrate that cellular RhoA and Rac1 activation levels respond in a history-dependent, bistable manner to PAK inhibition. Consequently, we show that downstream signaling, actin dynamics, and cell migration also behave in a bistable fashion, displaying switches and hysteresis in response to PAK inhibition. Our results demonstrate that PAK is a critical component in the Rac1-RhoA inhibitory crosstalk that governs bistable GTPase activity, cell morphology, and cell migration switches.


Assuntos
Citoesqueleto de Actina , Actinas , Linhagem Celular Tumoral , Movimento Celular , Citoesqueleto , Humanos , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP , Proteína rhoA de Ligação ao GTP
8.
Sci Rep ; 5: 12569, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26220783

RESUMO

Biochemical networks are dynamic and multi-dimensional systems, consisting of tens or hundreds of molecular components. Diseases such as cancer commonly arise due to changes in the dynamics of signalling and gene regulatory networks caused by genetic alternations. Elucidating the network dynamics in health and disease is crucial to better understand the disease mechanisms and derive effective therapeutic strategies. However, current approaches to analyse and visualise systems dynamics can often provide only low-dimensional projections of the network dynamics, which often does not present the multi-dimensional picture of the system behaviour. More efficient and reliable methods for multi-dimensional systems analysis and visualisation are thus required. To address this issue, we here present an integrated analysis and visualisation framework for high-dimensional network behaviour which exploits the advantages provided by parallel coordinates graphs. We demonstrate the applicability of the framework, named "Dynamics Visualisation based on Parallel Coordinates" (DYVIPAC), to a variety of signalling networks ranging in topological wirings and dynamic properties. The framework was proved useful in acquiring an integrated understanding of systems behaviour.


Assuntos
Redes Reguladoras de Genes/genética , Transdução de Sinais/genética , Humanos , Modelos Biológicos
9.
PLoS One ; 9(1): e87293, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24475266

RESUMO

Western blot data are widely used in quantitative applications such as statistical testing and mathematical modelling. To ensure accurate quantitation and comparability between experiments, Western blot replicates must be normalised, but it is unclear how the available methods affect statistical properties of the data. Here we evaluate three commonly used normalisation strategies: (i) by fixed normalisation point or control; (ii) by sum of all data points in a replicate; and (iii) by optimal alignment of the replicates. We consider how these different strategies affect the coefficient of variation (CV) and the results of hypothesis testing with the normalised data. Normalisation by fixed point tends to increase the mean CV of normalised data in a manner that naturally depends on the choice of the normalisation point. Thus, in the context of hypothesis testing, normalisation by fixed point reduces false positives and increases false negatives. Analysis of published experimental data shows that choosing normalisation points with low quantified intensities results in a high normalised data CV and should thus be avoided. Normalisation by sum or by optimal alignment redistributes the raw data uncertainty in a mean-dependent manner, reducing the CV of high intensity points and increasing the CV of low intensity points. This causes the effect of normalisations by sum or optimal alignment on hypothesis testing to depend on the mean of the data tested; for high intensity points, false positives are increased and false negatives are decreased, while for low intensity points, false positives are decreased and false negatives are increased. These results will aid users of Western blotting to choose a suitable normalisation strategy and also understand the implications of this normalisation for subsequent hypothesis testing.


Assuntos
Western Blotting/métodos , Projetos de Pesquisa , Interpretação Estatística de Dados , Eletroforese em Gel de Poliacrilamida , Humanos , Processamento de Imagem Assistida por Computador , Células MCF-7
10.
Clin Sci (Lond) ; 124(6): 403-11, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23057846

RESUMO

The aim of the present study was to determine whether the endothelial dysfunction associated with CAD (coronary artery disease) and T2D (Type 2 diabetes mellitus) is concomitant with elevated mtROS (mitochondrial reactive oxygen species) production in the endothelium and establish if this, in turn, regulates the activity of endothelial AMPK (AMP-activated protein kinase). We investigated endothelial function, mtROS production and AMPK activation in saphenous veins from patients with advanced CAD. Endothelium-dependent vasodilation was impaired in patients with CAD and T2D relative to those with CAD alone. Levels of mitochondrial H(2)O(2) and activity of AMPK were significantly elevated in primary HSVECs (human saphenous vein endothelial cells) from patients with CAD and T2D compared with those from patients with CAD alone. Incubation with the mitochondria-targeted antioxidant, MitoQ(10) significantly reduced AMPK activity in HSVECs from patients with CAD and T2D but not in cells from patients with CAD alone. Elevated mtROS production in the endothelium of patients with CAD and T2D increases AMPK activation, supporting a role for the kinase in defence against oxidative stress. Further investigation is required to determine whether pharmacological activators of AMPK will prove beneficial in the attenuation of endothelial dysfunction in patients with CAD and T2D.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Endotélio Vascular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Idoso , Doença da Artéria Coronariana/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Vasodilatação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA