Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Int J Epidemiol ; 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31562522

RESUMO

BACKGROUND: There is evidence that education protects against cardiovascular disease. However, it is not known whether such an effect is independent of cognition. METHODS: We performed two-sample Mendelian randomization (MR) analyses to investigate the effect of education and cognition, respectively, on risk of CHD and ischaemic stroke. Additionally, we used multivariable MR to adjust for the effects of cognition and education in the respective analyses to measure the effects of these traits independently of each other. RESULTS: In unadjusted MR, there was evidence that education is causally associated with both CHD and stroke risk [CHD: odds ratio (OR) 0.65 per 1-standard deviation (SD; 3.6 years) increase in education; 95% confidence interval (CI) 0.61-0.70, stroke: OR 0.77; 95% CI 0.69-0.86]. This effect persisted after adjusting for cognition in multivariable MR (CHD: OR 0.76; 95% CI 0.65-0.89, stroke OR 0.74; 95% CI 0.59-0.92). Cognition had an apparent effect on CHD risk in unadjusted MR (OR per 1-SD increase 0.80; 95% CI 0.74-0.85), however after adjusting for education this was no longer observed (OR 1.03; 95% CI 0.86-1.25). Cognition did not have any notable effect on the risk of developing ischaemic stroke, with (OR 0.97; 95% CI 0.87-1.08) or without adjustment for education (OR 1.04; 95% CI 0.79-1.36). CONCLUSIONS: This study provides evidence to support that education protects against CHD and ischaemic stroke risk independently of cognition, but does not provide evidence to support that cognition protects against CHD and stroke risk independently of education. These findings could have implications for education and health policy.

2.
Nat Commun ; 10(1): 3653, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409800

RESUMO

Urinary sodium and potassium excretion are associated with blood pressure (BP) and cardiovascular disease (CVD). The exact biological link between these traits is yet to be elucidated. Here, we identify 50 loci for sodium and 13 for potassium excretion in a large-scale genome-wide association study (GWAS) on urinary sodium and potassium excretion using data from 446,237 individuals of European descent from the UK Biobank study. We extensively interrogate the results using multiple analyses such as Mendelian randomization, functional assessment, co localization, genetic risk score, and pathway analyses. We identify a shared genetic component between urinary sodium and potassium expression and cardiovascular traits. Ingenuity pathway analysis shows that urinary sodium and potassium excretion loci are over-represented in behavioural response to stimuli. Our study highlights pathways that are shared between urinary sodium and potassium excretion and cardiovascular traits.

3.
Mol Nutr Food Res ; : e1900226, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31432628

RESUMO

SCOPE: Insulin resistance (IR) and inflammation are hallmarks of type 2 diabetes (T2D). The nod-like receptor pyrin domain containing-3 (NLRP3) inflammasome is a metabolic sensor activated by saturated fatty acids (SFA) initiating IL-1ß inflammation and IR. Interactions between SFA intake and NLRP3-related genetic variants may alter T2D risk factors. METHODS: Meta-analyses of six Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (n = 19 005) tested interactions between SFA and NLRP3-related single-nucleotide polymorphisms (SNPs) and modulation of fasting insulin, fasting glucose, and homeostasis model assessment of insulin resistance. RESULTS: SFA interacted with rs12143966, wherein each 1% increase in SFA intake increased insulin by 0.0063 IU mL-1 (SE ± 0.002, p = 0.001) per each major (G) allele copy. rs4925663, interacted with SFA (ß ± SE = -0.0058 ± 0.002, p = 0.004) to increase insulin by 0.0058 IU mL-1 , per additional copy of the major (C) allele. Both associations are close to the significance threshold (p < 0.0001). rs4925663 causes a missense mutation affecting NLRP3 expression. CONCLUSION: Two NLRP3-related SNPs showed potential interaction with SFA to modulate fasting insulin. Greater dietary SFA intake accentuates T2D risk, which, subject to functional validation, may be further elaborated depending on NLRP3-related genetic variants.

4.
Circulation ; 140(8): 645-657, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31424985

RESUMO

BACKGROUND: DNA methylation is implicated in coronary heart disease (CHD), but current evidence is based on small, cross-sectional studies. We examined blood DNA methylation in relation to incident CHD across multiple prospective cohorts. METHODS: Nine population-based cohorts from the United States and Europe profiled epigenome-wide blood leukocyte DNA methylation using the Illumina Infinium 450k microarray, and prospectively ascertained CHD events including coronary insufficiency/unstable angina, recognized myocardial infarction, coronary revascularization, and coronary death. Cohorts conducted race-specific analyses adjusted for age, sex, smoking, education, body mass index, blood cell type proportions, and technical variables. We conducted fixed-effect meta-analyses across cohorts. RESULTS: Among 11 461 individuals (mean age 64 years, 67% women, 35% African American) free of CHD at baseline, 1895 developed CHD during a mean follow-up of 11.2 years. Methylation levels at 52 CpG (cytosine-phosphate-guanine) sites were associated with incident CHD or myocardial infarction (false discovery rate<0.05). These CpGs map to genes with key roles in calcium regulation (ATP2B2, CASR, GUCA1B, HPCAL1), and genes identified in genome- and epigenome-wide studies of serum calcium (CASR), serum calcium-related risk of CHD (CASR), coronary artery calcified plaque (PTPRN2), and kidney function (CDH23, HPCAL1), among others. Mendelian randomization analyses supported a causal effect of DNA methylation on incident CHD; these CpGs map to active regulatory regions proximal to long non-coding RNA transcripts. CONCLUSION: Methylation of blood-derived DNA is associated with risk of future CHD across diverse populations and may serve as an informative tool for gaining further insight on the development of CHD.

5.
J Am Heart Assoc ; 8(15): e012994, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31310728

RESUMO

Background Systemic iron status has been implicated in atherosclerosis and thrombosis. The aim of this study was to investigate the effect of genetically determined iron status on carotid intima-media thickness, carotid plaque, and venous thromboembolism using Mendelian randomization. Methods and Results Genetic instrumental variables for iron status were selected from a genome-wide meta-analysis of 48 972 subjects. Genetic association estimates for carotid intima-media thickness and carotid plaque were obtained using data from 71 128 and 48 434 participants, respectively, and estimates for venous thromboembolism were obtained using data from a study incorporating 7507 cases and 52 632 controls. Conventional 2-sample summary data Mendelian randomization was performed for the main analysis. Higher genetically determined iron status was associated with increased risk of venous thromboembolism. Odds ratios per SD increase in biomarker levels were 1.37 (95% CI 1.14-1.66) for serum iron, 1.25 (1.09-1.43) for transferrin saturation, 1.92 (1.28-2.88) for ferritin, and 0.76 (0.63-0.92) for serum transferrin (with higher transferrin levels representing lower iron status). In contrast, higher iron status was associated with lower risk of carotid plaque. Corresponding odds ratios were 0.85 (0.73-0.99) for serum iron and 0.89 (0.80-1.00) for transferrin saturation, with concordant trends for serum transferrin and ferritin that did not reach statistical significance. There was no Mendelian randomization evidence of an effect of iron status on carotid intima-media thickness. Conclusions These findings support previous work to suggest that higher genetically determined iron status is protective against some forms of atherosclerotic disease but increases the risk of thrombosis related to stasis of blood.

6.
Nat Commun ; 10(1): 2581, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197173

RESUMO

Despite existing reports on differential DNA methylation in type 2 diabetes (T2D) and obesity, our understanding of its functional relevance remains limited. Here we show the effect of differential methylation in the early phases of T2D pathology by a blood-based epigenome-wide association study of 4808 non-diabetic Europeans in the discovery phase and 11,750 individuals in the replication. We identify CpGs in LETM1, RBM20, IRS2, MAN2A2 and the 1q25.3 region associated with fasting insulin, and in FCRL6, SLAMF1, APOBEC3H and the 15q26.1 region with fasting glucose. In silico cross-omics analyses highlight the role of differential methylation in the crosstalk between the adaptive immune system and glucose homeostasis. The differential methylation explains at least 16.9% of the association between obesity and insulin. Our study sheds light on the biological interactions between genetic variants driving differential methylation and gene expression in the early pathogenesis of T2D.


Assuntos
Metilação de DNA/fisiologia , Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Insulina/metabolismo , Obesidade/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Simulação por Computador , Ilhas de CpG/genética , Diabetes Mellitus Tipo 2/metabolismo , Epigênese Genética/fisiologia , Epigenômica/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla/métodos , Homeostase/genética , Humanos , Masculino , Redes e Vias Metabólicas/genética , Pessoa de Meia-Idade , Obesidade/metabolismo , Polimorfismo de Nucleotídeo Único/fisiologia , Adulto Jovem
7.
Diabetologia ; 62(9): 1581-1590, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31183505

RESUMO

AIMS/HYPOTHESIS: Both visceral and truncal fat have been associated with metabolic disturbances. We aimed to investigate the associations of several novel metabolic indices, combining anthropometric and lipid measures, and dual-energy x-ray absorptiometry (DXA) measurements of body fat, with incident type 2 diabetes among women and men from the large population-based Rotterdam Study. METHODS: Cox proportional hazards models were used to investigate associations of visceral adiposity index (VAI), lipid accumulation product (LAP), the product of triacylglycerol and glucose (TyG), their formula components and DXA measures with incident type 2 diabetes. Associations were adjusted for traditional diabetes risk factors. RESULTS: Among 5576 women and 3988 men free of diabetes, 511 women and 388 men developed type 2 diabetes during a median follow-up of 6.5 years. In adjusted models, the three metabolic indices VAI (per 1 SD naturally log-transformed HR; 95% CI) (1.49; 1.36, 1.65 in women; 1.37; 1.22, 1.53 in men), LAP (1.35; 1.16, 1.56 in women; 1.19; 1.01, 1.42 in men) and TyG (1.73; 1.52, 1.98 in women; 1.43; 1.26, 1.62 in men), gynoid fat mass (0.63; 0.45, 0.89) and android to gynoid fat ratio (1.51; 1.16, 1.97) in women were associated with incident type 2 diabetes. BMI (1.45; 1.28, 1.65) was the strongest predictor of type 2 diabetes in men. CONCLUSIONS/INTERPRETATION: Among women, novel combined metabolic indices were stronger risk markers for type 2 diabetes than the traditional anthropometric and laboratory measures and were comparable with DXA measures. Neither combined metabolic indices nor DXA measures were superior to traditional anthropometric and lipid measures in association with type 2 diabetes among men.

8.
Am J Epidemiol ; 188(6): 991-1012, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31155658

RESUMO

The Consortium of Metabolomics Studies (COMETS) was established in 2014 to facilitate large-scale collaborative research on the human metabolome and its relationship with disease etiology, diagnosis, and prognosis. COMETS comprises 47 cohorts from Asia, Europe, North America, and South America that together include more than 136,000 participants with blood metabolomics data on samples collected from 1985 to 2017. Metabolomics data were provided by 17 different platforms, with the most frequently used labs being Metabolon, Inc. (14 cohorts), the Broad Institute (15 cohorts), and Nightingale Health (11 cohorts). Participants have been followed for a median of 23 years for health outcomes including death, cancer, cardiovascular disease, diabetes, and others; many of the studies are ongoing. Available exposure-related data include common clinical measurements and behavioral factors, as well as genome-wide genotype data. Two feasibility studies were conducted to evaluate the comparability of metabolomics platforms used by COMETS cohorts. The first study showed that the overlap between any 2 different laboratories ranged from 6 to 121 metabolites at 5 leading laboratories. The second study showed that the median Spearman correlation comparing 111 overlapping metabolites captured by Metabolon and the Broad Institute was 0.79 (interquartile range, 0.56-0.89).

9.
Circulation ; 140(4): 270-279, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31234639

RESUMO

BACKGROUND: Drug effects can be investigated through natural variation in the genes for their protein targets. The present study aimed to use this approach to explore the potential side effects and repurposing potential of antihypertensive drugs, which are among the most commonly used medications worldwide. METHODS: Genetic proxies for the effect of antihypertensive drug classes were identified as variants in the genes for the corresponding targets that associated with systolic blood pressure at genome-wide significance. Mendelian randomization estimates for drug effects on coronary heart disease and stroke risk were compared with randomized, controlled trial results. A phenome-wide association study in the UK Biobank was performed to identify potential side effects and repurposing opportunities, with findings investigated in the Vanderbilt University biobank (BioVU) and in observational analysis of the UK Biobank. RESULTS: Suitable genetic proxies for angiotensin-converting enzyme inhibitors, ß-blockers, and calcium channel blockers (CCBs) were identified. Mendelian randomization estimates for their effect on coronary heart disease and stroke risk, respectively, were comparable to results from randomized, controlled trials against placebo. A phenome-wide association study in the UK Biobank identified an association of the CCB standardized genetic risk score with increased risk of diverticulosis (odds ratio, 1.02 per standard deviation increase; 95% CI, 1.01-1.04), with a consistent estimate found in BioVU (odds ratio, 1.01; 95% CI, 1.00-1.02). Cox regression analysis of drug use in the UK Biobank suggested that this association was specific to nondihydropyridine CCBs (hazard ratio 1.49 considering thiazide diuretic agents as a comparator; 95% CI, 1.04-2.14) but not dihydropyridine CCBs (hazard ratio, 1.04; 95% CI, 0.83-1.32). CONCLUSIONS: Genetic variants can be used to explore the efficacy and side effects of antihypertensive medications. The identified potential effect of nondihydropyridine CCBs on diverticulosis risk could have clinical implications and warrants further investigation.

10.
PLoS Med ; 16(6): e1002833, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31220083

RESUMO

BACKGROUND: Iron is integral to many physiological processes, and variations in its levels, even within the normal range, can have implications for health. The objective of this study was to explore the broad clinical effects of varying iron status. METHODS AND FINDINGS: Genome-wide association study (GWAS) summary data obtained from 48,972 European individuals (55% female) across 19 cohorts in the Genetics of Iron Status Consortium were used to identify 3 genetic variants (rs1800562 and rs1799945 in the hemochromatosis gene [HFE] and rs855791 in the transmembrane protease serine 6 gene [TMPRSS6]) that associate with increased serum iron, ferritin, and transferrin saturation and decreased transferrin levels, thus serving as instruments for systemic iron status. Phenome-wide association study (PheWAS) of these instruments was performed on 424,439 European individuals (54% female) in the UK Biobank who were aged 40-69 years when recruited from 2006 to 2010, with their genetic data linked to Hospital Episode Statistics (HES) from April, 1995 to March, 2016. Two-sample summary data mendelian randomization (MR) analysis was performed to investigate the effect of varying iron status on outcomes across the human phenome. MR-PheWAS analysis for the 3 iron status genetic instruments was performed separately and then pooled by meta-analysis. Correction was made for testing of multiple correlated phenotypes using a 5% false discovery rate (FDR) threshold. Heterogeneity between MR estimates for different instruments was used to indicate possible bias due to effects of the genetic variants through pathways unrelated to iron status. There were 904 distinct phenotypes included in the MR-PheWAS analyses. After correcting for multiple testing, the 3 genetic instruments for systemic iron status demonstrated consistent evidence of a causal effect of higher iron status on decreasing risk of traits related to anemia (iron deficiency anemia: odds ratio [OR] scaled to a standard deviation [SD] increase in genetically determined serum iron levels 0.72, 95% confidence interval [CI] 0.64-0.81, P = 4 × 10-8) and hypercholesterolemia (hypercholesterolemia: OR 0.88, 95% CI 0.83-0.93, P = 2 × 10-5) and increasing risk of traits related to infection of the skin and related structures (cellulitis and abscess of the leg: OR 1.25, 95% CI 1.10-1.42, P = 6 × 10-4). The main limitations of this study relate to possible bias from pleiotropic effects of the considered genetic variants and misclassification of diagnoses in the HES data. Furthermore, this work only investigated participants with European ancestry, and the findings may not be applicable to other ethnic groups. CONCLUSIONS: Our findings offer novel, to our knowledge, insight into previously unreported effects of iron status, highlighting a potential protective effect of higher iron status on hypercholesterolemia and a detrimental role on risk of skin and skin structure infections. Given the modifiable and variable nature of iron status, these findings warrant further investigation.

11.
Eur Heart J ; 40(34): 2883-2896, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31102408

RESUMO

AIMS: To characterize serum metabolic signatures associated with atherosclerosis in the coronary or carotid arteries and subsequently their association with incident cardiovascular disease (CVD). METHODS AND RESULTS: We used untargeted one-dimensional (1D) serum metabolic profiling by proton nuclear magnetic resonance spectroscopy (1H NMR) among 3867 participants from the Multi-Ethnic Study of Atherosclerosis (MESA), with replication among 3569 participants from the Rotterdam and LOLIPOP studies. Atherosclerosis was assessed by coronary artery calcium (CAC) and carotid intima-media thickness (IMT). We used multivariable linear regression to evaluate associations between NMR features and atherosclerosis accounting for multiplicity of comparisons. We then examined associations between metabolites associated with atherosclerosis and incident CVD available in MESA and Rotterdam and explored molecular networks through bioinformatics analyses. Overall, 30 1H NMR measured metabolites were associated with CAC and/or IMT, P = 1.3 × 10-14 to 1.0 × 10-6 (discovery) and P = 5.6 × 10-10 to 1.1 × 10-2 (replication). These associations were substantially attenuated after adjustment for conventional cardiovascular risk factors. Metabolites associated with atherosclerosis revealed disturbances in lipid and carbohydrate metabolism, branched chain, and aromatic amino acid metabolism, as well as oxidative stress and inflammatory pathways. Analyses of incident CVD events showed inverse associations with creatine, creatinine, and phenylalanine, and direct associations with mannose, acetaminophen-glucuronide, and lactate as well as apolipoprotein B (P < 0.05). CONCLUSION: Metabolites associated with atherosclerosis were largely consistent between the two vascular beds (coronary and carotid arteries) and predominantly tag pathways that overlap with the known cardiovascular risk factors. We present an integrated systems network that highlights a series of inter-connected pathways underlying atherosclerosis.

12.
BMJ ; 365: l1855, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31122926

RESUMO

OBJECTIVES: To investigate the role of body mass index (BMI), systolic blood pressure, and smoking behaviour in explaining the effect of education on the risk of cardiovascular disease outcomes. DESIGN: Mendelian randomisation study. SETTING: UK Biobank and international genome-wide association study data. PARTICIPANTS: Predominantly participants of European ancestry. EXPOSURE: Educational attainment, BMI, systolic blood pressure, and smoking behaviour in observational analysis, and randomly allocated genetic variants to instrument these traits in mendelian randomisation. MAIN OUTCOMES MEASURE: The risk of coronary heart disease, stroke, myocardial infarction, and cardiovascular disease (all subtypes; all measured in odds ratio), and the degree to which this is mediated through BMI, systolic blood pressure, and smoking behaviour respectively. RESULTS: Each additional standard deviation of education (3.6 years) was associated with a 13% lower risk of coronary heart disease (odds ratio 0.86, 95% confidence interval 0.84 to 0.89) in observational analysis and a 37% lower risk (0.63, 0.60 to 0.67) in mendelian randomisation analysis. As a proportion of the total risk reduction, BMI was estimated to mediate 15% (95% confidence interval 13% to 17%) and 18% (14% to 23%) in the observational and mendelian randomisation estimates, respectively. Corresponding estimates were 11% (9% to 13%) and 21% (15% to 27%) for systolic blood pressure and 19% (15% to 22%) and 34% (17% to 50%) for smoking behaviour. All three risk factors combined were estimated to mediate 42% (36% to 48%) and 36% (5% to 68%) of the effect of education on coronary heart disease in observational and mendelian randomisation analyses, respectively. Similar results were obtained when investigating the risk of stroke, myocardial infarction, and cardiovascular disease. CONCLUSIONS: BMI, systolic blood pressure, and smoking behaviour mediate a substantial proportion of the protective effect of education on the risk of cardiovascular outcomes and intervening on these would lead to reductions in cases of cardiovascular disease attributable to lower levels of education. However, more than half of the protective effect of education remains unexplained and requires further investigation.


Assuntos
Doenças Cardiovasculares/etiologia , Escolaridade , Adulto , Idoso , Pressão Sanguínea , Índice de Massa Corporal , Feminino , Humanos , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Análise Multivariada , Razão de Chances , Fatores de Risco , Fumar/efeitos adversos , Fatores Socioeconômicos , Reino Unido
13.
Diabetes ; 68(5): 1073-1083, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936141

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes (T2D). We aimed to identify the peripheral blood DNA methylation signature of hepatic fat. We conducted epigenome-wide association studies of hepatic fat in 3,400 European ancestry (EA) participants and in 401 Hispanic ancestry and 724 African ancestry participants from four population-based cohort studies. Hepatic fat was measured using computed tomography or ultrasound imaging and DNA methylation was assessed at >400,000 cytosine-guanine dinucleotides (CpGs) in whole blood or CD14+ monocytes using a commercial array. We identified 22 CpGs associated with hepatic fat in EA participants at a false discovery rate <0.05 (corresponding P = 6.9 × 10-6) with replication at Bonferroni-corrected P < 8.6 × 10-4 Mendelian randomization analyses supported the association of hypomethylation of cg08309687 (LINC00649) with NAFLD (P = 2.5 × 10-4). Hypomethylation of the same CpG was also associated with risk for new-onset T2D (P = 0.005). Our study demonstrates that a peripheral blood-derived DNA methylation signature is robustly associated with hepatic fat accumulation. The hepatic fat-associated CpGs may represent attractive biomarkers for T2D. Future studies are warranted to explore mechanisms and to examine DNA methylation signatures of NAFLD across racial/ethnic groups.

14.
PLoS One ; 14(3): e0214137, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30908504

RESUMO

Autophagy is involved in cellular homeostasis and maintenance and may play a role in cardiometabolic health. We aimed to elucidate the role of autophagy in cardiometabolic traits by investigating genetic variants and DNA methylation in autophagy-related genes in relation to cardiovascular diseases and related traits. To address this research question, we implemented a multidirectional approach using several molecular epidemiology tools, including genetic association analysis with genome wide association studies data and exome sequencing data and differential DNA methylation analysis. We investigated the 21 autophagy-related genes in relation to coronary artery disease and a number of cardiometabolic traits (blood lipids, blood pressure, glycemic traits, type 2 diabetes). We used data from the largest genome wide association studies as well as DNA methylation and exome sequencing data from the Rotterdam Study. Single-nucleotide polymorphism rs110389913 in AMBRA1 (p-value = 4.9×10-18) was associated with blood proinsulin levels, whereas rs6587988 in ATG4C and rs10439163 in ATG4D with lipid traits (ATG4C: p-value = 2.5×10-15 for total cholesterol and p-value = 3.1×10-18 for triglycerides, ATG4D: p-value = 9.9×10-12 for LDL and p-value = 1.3×10-10 for total cholesterol). Moreover, rs7635838 in ATG7 was associated with HDL (p-value = 1.9×10-9). Rs2447607 located in ATG7 showed association with systolic blood pressure and pulse pressure. Rs2424994 in MAP1LC3A was associated with coronary artery disease (p-value = 5.8×10-6). Furthermore, we identified association of an exonic variant located in ATG3 with diastolic blood pressure (p-value = 6.75×10-6). Using DNA methylation data, two CpGs located in ULK1 (p-values = 4.5×10-7 and 1×10-6) and two located in ATG4B (2×10-13 and 1.48×10-7) were significantly associated with both systolic and diastolic blood pressure. In addition one CpG in ATG4D was associated with HDL (p-value = 3.21×10-5). Our findings provide support for the role of autophagy in glucose and lipid metabolism, as well as blood pressure regulation.

15.
Blood ; 133(9): 967-977, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30642921

RESUMO

Factor VII (FVII) is an important component of the coagulation cascade. Few genetic loci regulating FVII activity and/or levels have been discovered to date. We conducted a meta-analysis of 9 genome-wide association studies of plasma FVII levels (7 FVII activity and 2 FVII antigen) among 27 495 participants of European and African ancestry. Each study performed ancestry-specific association analyses. Inverse variance weighted meta-analysis was performed within each ancestry group and then combined for a trans-ancestry meta-analysis. Our primary analysis included the 7 studies that measured FVII activity, and a secondary analysis included all 9 studies. We provided functional genomic validation for newly identified significant loci by silencing candidate genes in a human liver cell line (HuH7) using small-interfering RNA and then measuring F7 messenger RNA and FVII protein expression. Lastly, we used meta-analysis results to perform Mendelian randomization analysis to estimate the causal effect of FVII activity on coronary artery disease, ischemic stroke (IS), and venous thromboembolism. We identified 2 novel (REEP3 and JAZF1-AS1) and 6 known loci associated with FVII activity, explaining 19.0% of the phenotypic variance. Adding FVII antigen data to the meta-analysis did not result in the discovery of further loci. Silencing REEP3 in HuH7 cells upregulated FVII, whereas silencing JAZF1 downregulated FVII. Mendelian randomization analyses suggest that FVII activity has a positive causal effect on the risk of IS. Variants at REEP3 and JAZF1 contribute to FVII activity by regulating F7 expression levels. FVII activity appears to contribute to the etiology of IS in the general population.

16.
Stroke ; 49(12): 2815-2821, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30571402

RESUMO

Background and Purpose- Both iron deficiency and excess have been associated with stroke risk in observational studies. However, such associations may be attributable to confounding from environmental factors. This study uses the Mendelian randomization technique to overcome these limitations by investigating the association between genetic variants related to iron status and stroke risk. Methods- A study of 48 972 subjects performed by the Genetics of Iron Status consortium identified genetic variants with concordant relations to 4 biomarkers of iron status (serum iron, transferrin saturation, ferritin, and transferrin) that supported their use as instruments for overall iron status. Genetic estimates from the MEGASTROKE consortium were used to investigate the association between the same genetic variants and stroke risk. The 2-sample ratio method Mendelian randomization approach was used for the main analysis, with the MR-Egger and weighted median techniques used in sensitivity analyses. Results- The main results, reported as odds ratio (OR) of stroke per SD unit increase in genetically determined iron status biomarker, showed a detrimental effect of increased iron status on stroke risk (serum iron OR, 1.07; 95% CI, 1.01-1.14; [log-transformed] ferritin OR, 1.18; 95% CI, 1.02-1.36; and transferrin saturation OR, 1.06; 95% CI, 1.01-1.11). A higher transferrin, indicative of lower iron status, was also associated with decreased stroke risk (OR, 0.92; 95% CI, 0.86-0.99). Examining ischemic stroke subtypes, we found the detrimental effect of iron status to be driven by cardioembolic stroke. These results were supported in statistical sensitivity analyses more robust to the inclusion of pleiotropic variants. Conclusions- This study provides Mendelian randomization evidence that higher iron status is associated with increased stroke risk and, in particular, cardioembolic stroke. Further work is required to investigate the underlying mechanism and whether this can be targeted in preventative strategies.


Assuntos
Ferritinas/metabolismo , Ferro/metabolismo , Acidente Vascular Cerebral/genética , Transferrina/metabolismo , Humanos , Análise da Randomização Mendeliana , Razão de Chances , Polimorfismo de Nucleotídeo Único , Acidente Vascular Cerebral/metabolismo
18.
Int J Mol Sci ; 19(11)2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463316

RESUMO

MicroRNAs (miRNAs) regulate the expression of the majority of genes. However, it is not known whether they regulate genes in random or are organized according to their function. To this end, we chose cardiometabolic disorders as an example and investigated whether genes associated with cardiometabolic disorders are regulated by a random set of miRNAs or a limited number of them. Single-nucleotide polymorphisms (SNPs) reaching genome-wide level significance were retrieved from most recent genome-wide association studies on cardiometabolic traits, which were cross-referenced with Ensembl to identify related genes and combined with miRNA target prediction databases (TargetScan, miRTarBase, or miRecords) to identify miRNAs that regulate them. We retrieved 520 SNPs, of which 355 were intragenic, corresponding to 304 genes. While we found a higher proportion of genes reported from all GWAS that were predicted targets for miRNAs in comparison to all protein-coding genes (75.1%), the proportion was even higher for cardiometabolic genes (80.6%). Enrichment analysis was performed within each database. We found that cardiometabolic genes were over-represented in target genes for 29 miRNAs (based on TargetScan) and 3 miRNAs (miR-181a, miR-302d and miR-372) (based on miRecords) after Benjamini-Hochberg correction for multiple testing. Our work provides evidence for non-random assignment of genes to miRNAs and supports the idea that miRNAs regulate sets of genes that are functionally related.

19.
Am J Med Genet B Neuropsychiatr Genet ; 177(7): 641-657, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30325587

RESUMO

Individuals with psychiatric disorders have elevated rates of autoimmune comorbidity and altered immune signaling. It is unclear whether these altered immunological states have a shared genetic basis with those psychiatric disorders. The present study sought to use existing summary-level data from previous genome-wide association studies to determine if commonly varying single nucleotide polymorphisms are shared between psychiatric and immune-related phenotypes. We estimated heritability and examined pair-wise genetic correlations using the linkage disequilibrium score regression (LDSC) and heritability estimation from summary statistics methods. Using LDSC, we observed significant genetic correlations between immune-related disorders and several psychiatric disorders, including anorexia nervosa, attention deficit-hyperactivity disorder, bipolar disorder, major depression, obsessive compulsive disorder, schizophrenia, smoking behavior, and Tourette syndrome. Loci significantly mediating genetic correlations were identified for schizophrenia when analytically paired with Crohn's disease, primary biliary cirrhosis, systemic lupus erythematosus, and ulcerative colitis. We report significantly correlated loci and highlight those containing genome-wide associations and candidate genes for respective disorders. We also used the LDSC method to characterize genetic correlations among the immune-related phenotypes. We discuss our findings in the context of relevant genetic and epidemiological literature, as well as the limitations and caveats of the study.

20.
Nat Commun ; 9(1): 4228, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30315176

RESUMO

Elevated serum urate levels can cause gout, an excruciating disease with suboptimal treatment. Previous GWAS identified common variants with modest effects on serum urate. Here we report large-scale whole-exome sequencing association studies of serum urate and kidney function among ≤19,517 European ancestry and African-American individuals. We identify aggregate associations of low-frequency damaging variants in the urate transporters SLC22A12 (URAT1; p = 1.3 × 10-56) and SLC2A9 (p = 4.5 × 10-7). Gout risk in rare SLC22A12 variant carriers is halved (OR = 0.5, p = 4.9 × 10-3). Selected rare variants in SLC22A12 are validated in transport studies, confirming three as loss-of-function (R325W, R405C, and T467M) and illustrating the therapeutic potential of the new URAT1-blocker lesinurad. In SLC2A9, mapping of rare variants of large effects onto the predicted protein structure reveals new residues that may affect urate binding. These findings provide new insights into the genetic architecture of serum urate, and highlight molecular targets in SLC22A12 and SLC2A9 for lowering serum urate and preventing gout.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA