Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 10: 878, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105700

RESUMO

Common Variable Immunodeficiency (CVID) is characterized by impaired antibody production and poor terminal differentiation of the B cell compartment, yet its pathogenesis is still poorly understood. We first reported the occurrence of epigenetic alterations in CVID by high-throughput methylation analysis in CVID-discordant monozygotic twins. Data from a recent whole DNA methylome analysis throughout different stages of normal B cell differentiation allowed us to design a new experimental approach. We selected CpG sites for analysis based on two criteria: one, CpGs with potential association with the transcriptional status of relevant genes for B cell activation and differentiation; and two, CpGs that undergo significant demethylation from naïve to memory B cells in healthy individuals. DNA methylation was analyzed by bisulfite pyrosequencing of specific CpG sites in sorted naïve and memory B cell subsets from CVID patients and healthy donors. We observed impaired demethylation in two thirds of the selected CpGs in CVID memory B cells, in genes that govern B cell-specific processes or participate in B cell signaling. The degree of demethylation impairment associated with the extent of the memory B cell reduction. The impaired demethylation in such functionally relevant genes as AICDA in switched memory B cells correlated with a lower proliferative rate. Our new results reinforce the hypothesis of altered demethylation during B cell differentiation as a contributing pathogenic mechanism to the impairment of B cell function and maturation in CVID. In particular, deregulated epigenetic control of AICDA could play a role in the defective establishment of a post-germinal center B cell compartment in CVID.

2.
J Allergy Clin Immunol ; 144(3): 809-824, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30826363

RESUMO

BACKGROUND: Predominantly antibody deficiencies (PADs) are the most prevalent primary immunodeficiencies, but their B-cell defects and underlying genetic alterations remain largely unknown. OBJECTIVE: We investigated patients with PADs for the distribution of 41 blood B-cell and plasma cell (PC) subsets, including subsets defined by expression of distinct immunoglobulin heavy chain subclasses. METHODS: Blood samples from 139 patients with PADs, 61 patients with common variable immunodeficiency (CVID), 68 patients with selective IgA deficiency (IgAdef), 10 patients with IgG subclass deficiency with IgA deficiency, and 223 age-matched control subjects were studied by using flow cytometry with EuroFlow immunoglobulin isotype staining. Patients were classified according to their B-cell and PC immune profile, and the obtained patient clusters were correlated with clinical manifestations of PADs. RESULTS: Decreased counts of blood PCs, memory B cells (MBCs), or both expressing distinct IgA and IgG subclasses were identified in all patients with PADs. In patients with IgAdef, B-cell defects were mainly restricted to surface membrane (sm)IgA+ PCs and MBCs, with 2 clear subgroups showing strongly decreased numbers of smIgA+ PCs with mild versus severe smIgA+ MBC defects and higher frequencies of nonrespiratory tract infections, autoimmunity, and affected family members. Patients with IgG subclass deficiency with IgA deficiency and those with CVID showed defects in both smIgA+ and smIgG+ MBCs and PCs. Reduced numbers of switched PCs were systematically found in patients with CVID (absent in 98%), with 6 different defective MBC (and clinical) profiles: (1) profound decrease in MBC numbers; (2) defective CD27+ MBCs with almost normal IgG3+ MBCs; (3) absence of switched MBCs; and (4) presence of both unswitched and switched MBCs without and; (5) with IgG2+ MBCs; and (6) with IgA1+ MBCs. CONCLUSION: Distinct PAD defective B-cell patterns were identified that are associated with unique clinical profiles.

3.
Clin Immunol ; 200: 39-42, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30690192

RESUMO

Good syndrome is an immunodeficiency presenting with thymoma, hypogammaglobulinemia and almost absent B cells. To investigate the origin of the B-cell lymphopenia in these patients, we studied B cell differentiation in the bone marrow of Good syndrome patients. We found very low numbers of precursor B cells in bone marrow of Good syndrome patients and a differentiation arrest after the pro-B-cell stage; this is different from other agammaglobulinemia patients with a defect in pre B-cell receptor signaling.

4.
Trends Immunol ; 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30509895

RESUMO

Primary immunodeficiencies (PIDs) are immune disorders resulting from defects in genes involved in immune regulation, and manifesting as an increased susceptibility to infections, autoimmunity, and cancer. However, the molecular basis of some prevalent entities remains poorly understood. Epigenetic control is essential for immune functions, and epigenetic alterations have been identified in different PIDs, including syndromes such as immunodeficiency-centromeric-instability-facial-anomalies, Kabuki, or Wolf-Hirschhorn, among others. Although the epigenetic changes may differ among these PIDs, the reversibility of epigenetic modifications suggests that they might become potential therapeutic targets. Here, we review recent mechanistic advances in our understanding of epigenetic alterations associated with certain PIDs, propose that a fully epigenetically driven mechanism might underlie some PIDs, and discuss the possible prophylactic and therapeutic implications.

5.
Front Immunol ; 9: 636, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867916

RESUMO

Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immunodeficiency characterized by recurrent infections, hypogammaglobulinemia and poor response to vaccines. Its diagnosis is made based on clinical and immunological criteria, after exclusion of other diseases that can cause similar phenotypes. Currently, less than 20% of cases of CVID have a known underlying genetic cause. We have analyzed whole-exome sequencing and copy number variants data of 36 children and adolescents diagnosed with CVID and healthy relatives to estimate the proportion of monogenic cases. We have replicated an association of CVID to p.C104R in TNFRSF13B and reported the second case of homozygous patient to date. Our results also identify five causative genetic variants in LRBA, CTLA4, NFKB1, and PIK3R1, as well as other very likely causative variants in PRKCD, MAPK8, or DOCK8 among others. We experimentally validate the effect of the LRBA stop-gain mutation which abolishes protein production and downregulates the expression of CTLA4, and of the frameshift indel in CTLA4 producing expression downregulation of the protein. Our results indicate a monogenic origin of at least 15-24% of the CVID cases included in the study. The proportion of monogenic patients seems to be lower in CVID than in other PID that have also been analyzed by whole exome or targeted gene panels sequencing. Regardless of the exact proportion of CVID monogenic cases, other genetic models have to be considered for CVID. We propose that because of its prevalence and other features as intermediate penetrancies and phenotypic variation within families, CVID could fit with other more complex genetic scenarios. In particular, in this work, we explore the possibility of CVID being originated by an oligogenic model with the presence of heterozygous mutations in interacting proteins or by the accumulation of detrimental variants in particular immunological pathways, as well as perform association tests to detect association with rare genetic functional variation in the CVID cohort compared to healthy controls.

7.
J Clin Immunol ; 36 Suppl 1: 48-56, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26984849

RESUMO

Primary antibody deficiencies (PADs), the most prevalent inherited primary immunodeficiencies (PIDs), are associated with a wide range of genetic alterations (both monogenic or polygenic) in B cell-specific genes. However, correlations between the genotype and clinical manifestations are not evident in all cases indicating that genetic interactions, environmental and epigenetic factors may have a role in PAD pathogenesis. The recent identification of key defects in DNA methylation in common variable immunodeficiency as well as the multiple evidences on the role of epigenetic control during B cell differentiation, activation and during antibody formation highlight the importance of investing research efforts in dissecting the participation of epigenetic defects in this group of diseases. This review focuses on the role of epigenetic control in B cell biology which can provide clues for the study of potential novel pathogenic defects involved in PADs.


Assuntos
Agamaglobulinemia/genética , Agamaglobulinemia/imunologia , Epigênese Genética , Regulação da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Agamaglobulinemia/metabolismo , Animais , Afinidade de Anticorpos/genética , Afinidade de Anticorpos/imunologia , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Metilação de DNA , Histonas/metabolismo , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Mutação , Plasmócitos/citologia , Plasmócitos/imunologia , Plasmócitos/metabolismo
8.
Nat Commun ; 6: 7335, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26081581

RESUMO

Common variable immunodeficiency (CVID), the most frequent primary immunodeficiency characterized by loss of B-cell function, depends partly on genetic defects, and epigenetic changes are thought to contribute to its aetiology. Here we perform a high-throughput DNA methylation analysis of this disorder using a pair of CVID-discordant MZ twins and show predominant gain of DNA methylation in CVID B cells with respect to those from the healthy sibling in critical B lymphocyte genes, such as PIK3CD, BCL2L1, RPS6KB2, TCF3 and KCNN4. Individual analysis confirms hypermethylation of these genes. Analysis in naive, unswitched and switched memory B cells in a CVID patient cohort shows impaired ability to demethylate and upregulate these genes in transitioning from naive to memory cells in CVID. Our results not only indicate a role for epigenetic alterations in CVID but also identify relevant DNA methylation changes in B cells that could explain the clinical manifestations of CVID individuals.


Assuntos
Linfócitos B/metabolismo , Imunodeficiência de Variável Comum/metabolismo , Metilação de DNA , Memória Imunológica , Estudos de Casos e Controles , Regulação da Expressão Gênica , Humanos , Gêmeos Monozigóticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA