Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924881

RESUMO

Biallelic germline mismatch repair (MMR) gene (MLH1, MSH2, MSH6, and PMS2) mutations are an extremely rare event that causes constitutional mismatch repair deficiency (CMMRD) syndrome. CMMRD is underdiagnosed and often debuts with pediatric malignant brain tumors. A high degree of clinical awareness of the CMMRD phenotype is needed to identify new cases. Immunohistochemical (IHC) assessment of MMR protein expression and analysis of microsatellite instability (MSI) are the first tools with which to initiate the study of this syndrome in solid malignancies. MMR IHC shows a hallmark pattern with absence of staining in both neoplastic and non-neoplastic cells for the biallelic mutated gene. However, MSI often fails in brain malignancies. The aim of this report is to draw attention to the peculiar IHC profile that characterizes CMMRD syndrome and to review the difficulties in reaching an accurate diagnosis by describing the case of two siblings with biallelic MSH6 germline mutations and brain tumors. Given the difficulties involved in early diagnosis of CMMRD we propose the use of the IHC of MMR proteins in all malignant brain tumors diagnosed in individuals younger than 25 years-old to facilitate the diagnosis of CMMRD and to select those neoplasms that will benefit from immunotherapy treatment.

3.
Genes (Basel) ; 12(2)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498765

RESUMO

Only a small fraction of hereditary breast and/or ovarian cancer (HBOC) cases are caused by germline variants in the high-penetrance breast cancer 1 and 2 genes (BRCA1 and BRCA2). BRCA1-associated ring domain 1 (BARD1), nuclear partner of BRCA1, has been suggested as a potential HBOC risk gene, although its prevalence and penetrance are variable according to populations and type of tumor. We aimed to investigate the prevalence of BARD1 truncating variants in a cohort of patients with clinical suspicion of HBOC. A comprehensive BARD1 screening by multigene panel analysis was performed in 4015 unrelated patients according to our regional guidelines for genetic testing in hereditary cancer. In addition, 51,202 Genome Aggregation Database (gnomAD) non-Finnish, non-cancer European individuals were used as a control population. In our patient cohort, we identified 19 patients with heterozygous BARD1 truncating variants (0.47%), whereas the frequency observed in the gnomAD controls was 0.12%. We found a statistically significant association of truncating BARD1 variants with overall risk (odds ratio (OR) = 3.78; CI = 2.10-6.48; p = 1.16 × 10-5). This association remained significant in the hereditary breast cancer (HBC) group (OR = 4.18; CI = 2.10-7.70; p = 5.45 × 10-5). Furthermore, deleterious BARD1 variants were enriched among triple-negative BC patients (OR = 5.40; CI = 1.77-18.15; p = 0.001) compared to other BC subtypes. Our results support the role of BARD1 as a moderate penetrance BC predisposing gene and highlight a stronger association with triple-negative tumors.

4.
J Med Genet ; 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219106

RESUMO

INTRODUCTION: Germline CNVs are important contributors to hereditary cancer. In genetic diagnostics, multiplex ligation-dependent probe amplification (MLPA) is commonly used to identify them. However, MLPA is time-consuming and expensive if applied to many genes, hence many routine laboratories test only a subset of genes of interest. METHODS AND RESULTS: We evaluated a next-generation sequencing (NGS)-based CNV detection tool (DECoN) as first-tier screening to decrease costs and turnaround time and expand CNV analysis to all genes of clinical interest in our diagnostics routine. We used DECoN in a retrospective cohort of 1860 patients where a limited number of genes were previously analysed by MLPA, and in a prospective cohort of 2041 patients, without MLPA analysis. In the retrospective cohort, 6 new CNVs were identified and confirmed by MLPA. In the prospective cohort, 19 CNVs were identified and confirmed by MLPA, 8 of these would have been lost in our previous MLPA-restricted detection strategy. Also, the number of genes tested by MLPA across all samples decreased by 93.0% in the prospective cohort. CONCLUSION: Including an in silico germline NGS CNV detection tool improved our genetic diagnostics strategy in hereditary cancer, both increasing the number of CNVs detected and reducing turnaround time and costs.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33185660

RESUMO

CONTEXT: Lynch syndrome (LS) is the most common inherited colorectal and endometrial cancer syndrome, caused by germline mutations in DNA mismatch repair (MMR) genes. It is also characterized by an increased risk of other tumours with lower prevalence, such as adrenal cortical carcinoma (ACC), an endocrine tumour with an incidence of < two cases/million individuals/year. Most ACC developed during childhood are associated with hereditary syndromes. In adults this association is not as well established as in children. Previous studies showed a 3.2% prevalence of LS among patients with ACC. EVIDENCE ADQUISITION: The objective of this study is to determine the prevalence of ACC in a Spanish LS cohort and their molecular and histological characteristics. This retrospective study includes 634 patients from 220 LS families registered between 1999 and 2018. EVIDENCE SYNTHESIS: During the follow-up three patients were diagnosed with ACC (0.47%), all were carriers of a MSH2 germline mutation. The three ACC patients presented loss of expression of MSH2 and MSH6 proteins. One tumour analysis showed loss of heterozygosity of the MSH2 wildtype allele. Our findings support previous data which considered ACC as a LS spectrum tumour. CONCLUSION: MMR protein immunohistochemistry screening could be an efficient strategy to detect LS in patients with ACC.

6.
J Mol Diagn ; 22(12): 1453-1468, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33011440

RESUMO

RNA analyses are a potent tool to identify spliceogenic effects of DNA variants, although they are time-consuming and cannot always be performed. We present splicing assays of 20 variants that represent a variety of mutation types in 10 hereditary cancer genes and attempt to incorporate these results into American College of Medical Genetics and Genomics (ACMG) classification guidelines. Sixteen single-nucleotide variants, 3 exon duplications, and 1 single-exon deletion were selected and prioritized by in silico algorithms. RNA was extracted from short-term lymphocyte cultures to perform RT-PCR and Sanger sequencing, and allele-specific expression was assessed whenever possible. Aberrant transcripts were detected in 14 variants (70%). Variant interpretation was difficult, especially comparing old classification standards to generic ACMG guidelines and a proposal was devised to weigh functional analyses at RNA level. According to the ACMG guidelines, only 12 variants were reclassified as pathogenic/likely pathogenic because the other two variants did not gather enough evidence. This study highlights the importance of RNA studies to improve variant classification. However, it also indicates the challenge of incorporating these results into generic ACMG guidelines and the need to refine these criteria gene specifically. Nevertheless, 60% of variants were reclassified, thus improving genetic counseling and surveillance for carriers of these variants.

7.
Eur J Cancer ; 141: 1-8, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33125943

RESUMO

BACKGROUND: Hereditary breast and ovarian cancer syndrome (HBOC) is an inherited disorder with an increased risk of breast cancer (BC) and ovarian cancers (OC). Mutations in BRCA1-BRCA2 explains less than a half of cases. In the last decade several genes with different penetrance have been associated with an increased risk of BC or OC. A recurrent heterozygous ERCC3 truncating mutation increases the risk for breast cancer in patients with Ashkenazi Jewish ancestry. Our study aimed to investigate the role of ERCC3 truncating variants in a cohort of patients with suspicion of HBOC. PATIENTS AND METHODS: ERCC3 screening by multigene-panel analysis in 1311 unrelated patients after our regional consensus for genetic testing in hereditary cancer was done. In addition, 453 Spanish cancer-free individuals and 51,343 GnomAD non-Finnish, non-cancer European individuals were used as control populations. RESULTS: We identified 13 patients with heterozygous ERCC3 truncating variants (0.99%). Five of them also carried a mutation in a high- /moderate-penetrance HBOC gene (BRCA1, BRCA2, CHEK2, and TP53) being Multilocus Inherited Neoplasia Alleles syndrome (MINAS) patients. The frequency in 453 Spanish controls was of 0.22%; similar to that observed in 51,343 non-Finnish European GnomAD population (0.24%). We found an almost statistically significant association of truncating ERCC3 variants with BC (odds ratio [OR] = 2.25, confidence interval [CI] = 0.6-5.93, P = 0.11), and we observed for the first time a significant association with OC (OR = 4.74, CI = 1-14.34, P = 0.028), that holds even after removing MINAS cases. CONCLUSIONS: To our knowledge, this is the largest HBOC series comprehensively analysed for ERCC3 mutations, and the first study identifying ERCC3 as a cancer risk for OC.

8.
Hum Mutat ; 41(12): 2128-2142, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32906215

RESUMO

CHEK2 variants are associated with intermediate breast cancer risk, among other cancers. We aimed to comprehensively describe CHEK2 variants in a Spanish hereditary cancer (HC) cohort and adjust the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP) guidelines for their classification. First, three CHEK2 frequent variants were screened in a retrospective Hereditary Breast and Ovarian Cancer cohort of 516 patients. After, the whole CHEK2 coding region was analyzed by next-generation sequencing in 1848 prospective patients with HC suspicion. We refined ACMG-AMP criteria and applied different combined rules to classify CHEK2 variants and define risk alleles. We identified 10 CHEK2 null variants, 6 missense variants with discordant interpretation in ClinVar database, and 35 additional variants of unknown significance. Twelve variants were classified as (likely)-pathogenic; two can also be considered "established risk-alleles" and one as "likely risk-allele." The prevalence of (likely)-pathogenic variants in the HC cohort was 0.8% (1.3% in breast cancer patients and 1.0% in hereditary nonpolyposis colorectal cancer patients). Here, we provide ACMG adjustment guidelines to classify CHEK2 variants. We hope that this study would be useful for variant classification of other genes with low effect variants.

9.
Genet Med ; 22(12): 2089-2100, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32792570

RESUMO

PURPOSE: Germline pathogenic variants in the exonuclease domain (ED) of polymerases POLE and POLD1 predispose to adenomatous polyps, colorectal cancer (CRC), endometrial tumors, and other malignancies, and exhibit increased mutation rate and highly specific associated mutational signatures. The tumor spectrum and prevalence of POLE and POLD1 variants in hereditary cancer are evaluated in this study. METHODS: POLE and POLD1 were sequenced in 2813 unrelated probands referred for genetic counseling (2309 hereditary cancer patients subjected to a multigene panel, and 504 patients selected based on phenotypic characteristics). Cosegregation and case-control studies, yeast-based functional assays, and tumor mutational analyses were performed for variant interpretation. RESULTS: Twelve ED missense variants, 6 loss-of-function, and 23 outside-ED predicted-deleterious missense variants, all with population allele frequencies <1%, were identified. One ED variant (POLE p.Met294Arg) was classified as likely pathogenic, four as likely benign, and seven as variants of unknown significance. The most commonly associated tumor types were colorectal, endometrial and ovarian cancers. Loss-of-function and outside-ED variants are likely not pathogenic for this syndrome. CONCLUSIONS: Polymerase proofreading-associated syndrome constitutes 0.1-0.4% of familial cancer cases, reaching 0.3-0.7% when only CRC and polyposis are considered. ED variant interpretation is challenging and should include multiple pieces of evidence.

10.
Cancers (Basel) ; 12(7)2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-32635641

RESUMO

The causal mechanism for cancer predisposition in Lynch-like syndrome (LLS) remains unknown. Our aim was to elucidate the constitutional basis of mismatch repair (MMR) deficiency in LLS patients throughout a comprehensive (epi)genetic analysis. One hundred and fifteen LLS patients harboring MMR-deficient tumors and no germline MMR mutations were included. Mutational analysis of 26 colorectal cancer (CRC)-associated genes was performed. Pathogenicity of MMR variants was assessed by splicing and multifactorial likelihood analyses. Genome-wide methylome analysis was performed by the Infinium Human Methylation 450K Bead Chip. The multigene panel analysis revealed the presence of two MMR gene truncating mutations not previously found. Of a total of 15 additional MMR variants identified, five -present in 6 unrelated individuals- were reclassified as pathogenic. In addition, 13 predicted deleterious variants in other CRC-predisposing genes were found in 12 probands. Methylome analysis detected one constitutional MLH1 epimutation, but no additional differentially methylated regions were identified in LLS compared to LS patients or cancer-free individuals. In conclusion, the use of an ad-hoc designed gene panel combined with pathogenicity assessment of variants allowed the identification of deleterious MMR mutations as well as new LLS candidate causal genes. Constitutional epimutations in non-LS-associated genes are not responsible for LLS.

11.
Eur J Hum Genet ; 28(12): 1645-1655, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32561899

RESUMO

Although germline copy-number variants (CNVs) are the genetic cause of multiple hereditary diseases, detecting them from targeted next-generation sequencing data (NGS) remains a challenge. Existing tools perform well for large CNVs but struggle with single and multi-exon alterations. The aim of this work is to evaluate CNV calling tools working on gene panel NGS data and their suitability as a screening step before orthogonal confirmation in genetic diagnostics strategies. Five tools (DECoN, CoNVaDING, panelcn.MOPS, ExomeDepth, and CODEX2) were tested against four genetic diagnostics datasets (two in-house and two external) for a total of 495 samples with 231 single and multi-exon validated CNVs. The evaluation was performed using the default and sensitivity-optimized parameters. Results showed that most tools were highly sensitive and specific, but the performance was dataset dependant. When evaluating them in our diagnostics scenario, DECoN and panelcn.MOPS detected all CNVs with the exception of one mosaic CNV missed by DECoN. However, DECoN outperformed panelcn.MOPS specificity achieving values greater than 0.90 when using the optimized parameters. In our in-house datasets, DECoN and panelcn.MOPS showed the highest performance for CNV screening before orthogonal confirmation. Benchmarking and optimization code is freely available at https://github.com/TranslationalBioinformaticsIGTP/CNVbenchmarkeR .

12.
Cancers (Basel) ; 12(4)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235514

RESUMO

Fanconi anemia (FA) is caused by biallelic mutations in FA genes. Monoallelic mutations in five of these genes (BRCA1, BRCA2, PALB2, BRIP1 and RAD51C) increase the susceptibility to breast/ovarian cancer and are used in clinical diagnostics as bona-fide hereditary cancer genes. Increasing evidence suggests that monoallelic mutations in other FA genes could predispose to tumor development, especially breast cancer. The objective of this study is to assess the mutational spectrum of 14 additional FA genes (FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FANCP, FANCQ, FANCR and FANCU) in a cohort of hereditary cancer patients, to compare with local cancer-free controls as well as GnomAD. A total of 1021 hereditary cancer patients and 194 controls were analyzed using our next generation custom sequencing panel. We identified 35 pathogenic variants in eight genes. A significant association with the risk of breast cancer/breast and ovarian cancer was found for carriers of FANCA mutations (odds ratio (OR) = 3.14 95% confidence interval (CI) 1.4-6.17, p = 0.003). Two patients with early-onset cancer showed a pathogenic FA variant in addition to another germline mutation, suggesting a modifier role for FA variants. Our results encourage a comprehensive analysis of FA genes in larger studies to better assess their role in cancer risk.

13.
Cancers (Basel) ; 12(2)2020 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-31991861

RESUMO

Germline protein truncating variants (PTVs) in the FANCM gene have been associated with a 2-4-fold increased breast cancer risk in case-control studies conducted in different European populations. However, the distribution and the frequency of FANCM PTVs in Europe have never been investigated. In the present study, we collected the data of 114 European female breast cancer cases with FANCM PTVs ascertained in 20 centers from 13 European countries. We identified 27 different FANCM PTVs. The p.Gln1701* PTV is the most common PTV in Northern Europe with a maximum frequency in Finland and a lower relative frequency in Southern Europe. On the contrary, p.Arg1931* seems to be the most common PTV in Southern Europe. We also showed that p.Arg658*, the third most common PTV, is more frequent in Central Europe, and p.Gln498Thrfs*7 is probably a founder variant from Lithuania. Of the 23 rare or unique FANCM PTVs, 15 have not been previously reported. We provide here the initial spectrum of FANCM PTVs in European breast cancer cases.

14.
Clin Epigenetics ; 11(1): 171, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31779681

RESUMO

Constitutional MLH1 methylation (epimutation) is a rare cause of Lynch syndrome. Low-level methylation (≤ 10%) has occasionally been described. This study aimed to identify low-level constitutional MLH1 epimutations and determine its causal role in patients with MLH1-hypermethylated colorectal cancer.Eighteen patients with MLH1-hypermethylated colorectal tumors in whom MLH1 methylation was previously undetected in blood by methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) were screened for MLH1 methylation using highly sensitive MS-melting curve analysis (MS-MCA). Constitutional methylation was characterized by different approaches.MS-MCA identified one patient (5.6%) with low-level MLH1 methylation (~ 1%) in blood and other normal tissues, which was confirmed by clonal bisulfite sequencing in blood. The patient had developed three clonally related gastrointestinal MLH1-methylated tumor lesions at 22, 24, and 25 years of age. The methylated region in normal tissues overlapped with that reported for other carriers of constitutional MLH1 epimutations. Low-level MLH1 methylation and reduced allelic expression were linked to the same genetic haplotype, whereas the opposite allele was lost in patient's tumors. Mutation screening of MLH1 and other hereditary cancer genes was negative.Herein, a highly sensitive MS-MCA-based approach has demonstrated its utility for the identification of low-level constitutional MLH1 epigenetic mosaicism. The eventual identification and characterization of additional cases will be critical to ascertain the cancer risks associated with constitutional MLH1 epigenetic mosaicism.


Assuntos
Neoplasias Colorretais/genética , Metilação de DNA , Testes Genéticos/métodos , Proteína 1 Homóloga a MutL/genética , Mutação , Adulto , Neoplasias Colorretais/sangue , DNA/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mosaicismo , Proteína 1 Homóloga a MutL/sangue , Regiões Promotoras Genéticas , Adulto Jovem
15.
Hum Mutat ; 40(9): 1557-1578, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31131967

RESUMO

The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Biologia Computacional/métodos , Mutação de Sentido Incorreto , Neoplasias/diagnóstico , Processamento Alternativo , Detecção Precoce de Câncer , Feminino , Predisposição Genética para Doença , Humanos , Funções Verossimilhança , Masculino , Herança Multifatorial , Neoplasias/genética
16.
Int J Cancer ; 145(10): 2682-2691, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30927264

RESUMO

Multigene panels provide a powerful tool for analyzing several genes simultaneously. We evaluated the frequency of pathogenic variants (PV) in customized predefined panels according to clinical suspicion by phenotype and compared it to the yield obtained in the analysis of our clinical research gene panel. We also investigated mutational yield of opportunistic testing of BRCA1/2 and mismatch repair (MMR) genes in all patients. A total of 1,205 unrelated probands with clinical suspicion of hereditary cancer were screened for germline mutations using panel testing. Overall, 1,048 females and 157 males were analyzed, mean age at cancer diagnosis was 48; 883 had hereditary breast/ovarian cancer-suspicion, 205 hereditary nonpolyposis colorectal cancer (HNPCC)-suspicion, 73 adenomatous-polyposis-suspicion and 44 with other/multiple clinical criteria. At least one PV was found in 150 probands (12%) analyzed by our customized phenotype-driven panel. Tumoral MMR deficiency predicted for the presence of germline MMR gene mutations in patients with HNPCC-suspicion (46/136 vs. 0/56 in patients with and without MMR deficiency, respectively). Opportunistic testing additionally identified five MSH6, one BRCA1 and one BRCA2 carriers (0.6%). The analysis of the extended 24-gene panel provided 25 additional PVs (2%), including in 4 out of 51 individuals harboring MMR-proficient colorectal tumors (2 CHEK2 and 2 ATM). Phenotype-based panels provide a notable rate of PVs with clinical actionability. Opportunistic testing of MMR and BRCA genes leads to a significant straightforward identification of MSH6, BRCA1 and BRCA2 mutation carriers, and endorses the model of opportunistic testing of genes with clinical utility within a standard genetic counseling framework.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Síndromes Neoplásicas Hereditárias/diagnóstico , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Reparo de Erro de Pareamento de DNA , Feminino , Genes Supressores de Tumor , Mutação em Linhagem Germinativa , Humanos , Masculino , Anamnese , Pessoa de Meia-Idade , Síndromes Neoplásicas Hereditárias/genética , Linhagem , Fenótipo
17.
J Med Genet ; 56(8): 521-525, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30580288

RESUMO

IMPORTANCE: Genetic testing of hereditary cancer using comprehensive gene panels can identify patients with more than one pathogenic mutation in high and/or moderate-risk-associated cancer genes. This phenomenon is known as multilocus inherited neoplasia alleles syndrome (MINAS), which has been potentially linked to more severe clinical manifestations. OBJECTIVE: To determine the prevalence and clinical features of MINAS in a large cohort of adult patients with hereditary cancer homogeneously tested with the same gene panel. PATIENTS AND METHODS: A cohort of 1023 unrelated patients with suspicion of hereditary cancer was screened using a validated panel including up to 135 genes associated with hereditary cancer and phakomatoses. RESULTS: Thirteen (1.37%) patients harbouring two pathogenic mutations in dominant cancer-predisposing genes were identified, representing 5.7% (13/226) of patients with pathogenic mutations. Most (10/13) of these cases presented clinical manifestations associated with only one of the mutations identified. One case showed mutations in MEN1 and MLH1 and developed tumours associated with both cancer syndromes. Interestingly, three of the double mutants had a young age of onset or severe breast cancer phenotype and carried mutations in moderate to low-risk DNA damage repair-associated genes; two of them presented biallelic inactivation of CHEK2. We included these two patients for the sake of their clinical interest although we are aware that they do not exactly fulfil the definition of MINAS since both mutations are in the same gene. CONCLUSIONS AND RELEVANCE: Genetic analysis of a broad cancer gene panel identified the largest series of patients with MINAS described in a single study. Overall, our data do not support the existence of more severe manifestations in double mutants at the time of diagnosis although they do confirm previous evidence of severe phenotype in biallelic CHEK2 and other DNA repair cancer-predisposing genes.


Assuntos
Alelos , Estudos de Associação Genética , Loci Gênicos , Predisposição Genética para Doença , Neoplasias/diagnóstico , Neoplasias/genética , Fenótipo , Adulto , Idoso , Biomarcadores Tumorais/genética , Feminino , Estudos de Associação Genética/métodos , Testes Genéticos , Humanos , Padrões de Herança , Masculino , Pessoa de Meia-Idade , Linhagem , Índice de Gravidade de Doença , Síndrome
18.
Br J Cancer ; 119(8): 978-987, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30283143

RESUMO

BACKGROUND: Constitutional MLH1 epimutations are characterised by monoallelic methylation of the MLH1 promoter throughout normal tissues, accompanied by allele-specific silencing. The mechanism underlying primary MLH1 epimutations is currently unknown. The aim of this study was to perform an in-depth characterisation of constitutional MLH1 epimutations targeting the aberrantly methylated region around MLH1 and other genomic loci. METHODS: Twelve MLH1 epimutation carriers, 61 Lynch syndrome patients, and 41 healthy controls, were analysed by Infinium 450 K array. Targeted molecular techniques were used to characterise the MLH1 epimutation carriers and their inheritance pattern. RESULTS: No nucleotide or structural variants were identified in-cis on the epimutated allele in 10 carriers, in which inter-generational methylation erasure was demonstrated in two, suggesting primary type of epimutation. CNVs outside the MLH1 locus were found in two cases. EPM2AIP1-MLH1 CpG island was identified as the sole differentially methylated region in MLH1 epimutation carriers compared to controls. CONCLUSION: Primary constitutional MLH1 epimutations arise as a focal epigenetic event at the EPM2AIP1-MLH1 CpG island in the absence of cis-acting genetic variants. Further molecular characterisation is needed to elucidate the mechanistic basis of MLH1 epimutations and their heritability/reversibility.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais/genética , Metilação de DNA/genética , Epigênese Genética/genética , Predisposição Genética para Doença/genética , Proteína 1 Homóloga a MutL/genética , Sequência de Bases , Neoplasias Colorretais/epidemiologia , Ilhas de CpG/genética , Feminino , Haplótipos/genética , Humanos , Masculino , Mutação/genética , Regiões Promotoras Genéticas/genética , Análise de Sequência de DNA
19.
Int J Cancer ; 141(7): 1365-1380, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28577310

RESUMO

In a proportion of patients presenting mismatch repair (MMR)-deficient tumors, no germline MMR mutations are identified, the so-called Lynch-like syndrome (LLS). Recently, MMR-deficient tumors have been associated with germline mutations in POLE and MUTYH or double somatic MMR events. Our aim was to elucidate the molecular basis of MSH2-deficient LS-suspected cases using a comprehensive analysis of colorectal cancer (CRC)-associated genes at germline and somatic level. Fifty-eight probands harboring MSH2-deficient tumors were included. Germline mutational analysis of MSH2 (including EPCAM deletions) and MSH6 was performed. Pathogenicity of MSH2 variants was assessed by RNA analysis and multifactorial likelihood calculations. MSH2 cDNA and methylation of MSH2 and MSH6 promoters were studied. Matched blood and tumor DNA were analyzed using a customized next generation sequencing panel. Thirty-five individuals were carriers of pathogenic or probably pathogenic variants in MSH2 and EPCAM. Five patients harbored 4 different MSH2 variants of unknown significance (VUS) and one had 2 novel MSH6 promoter VUS. Pathogenicity assessment allowed the reclassification of the 4 MSH2 VUS and 6 probably pathogenic variants as pathogenic mutations, enabling a total of 40 LS diagnostics. Predicted pathogenic germline variants in BUB1, SETD2, FAN1 and MUTYH were identified in 5 cases. Three patients had double somatic hits in MSH2 or MSH6, and another 2 had somatic alterations in other MMR genes and/or proofreading polymerases. In conclusion, our comprehensive strategy combining germline and somatic mutational status of CRC-associated genes by means of a subexome panel allows the elucidation of up to 86% of MSH2-deficient suspected LS tumors.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Mutação em Linhagem Germinativa , Proteína 2 Homóloga a MutS/deficiência , Proteína 2 Homóloga a MutS/genética , DNA Glicosilases/genética , Metilação de DNA , Análise Mutacional de DNA , Proteínas de Ligação a DNA/deficiência , Endodesoxirribonucleases , Molécula de Adesão da Célula Epitelial/genética , Exodesoxirribonucleases/genética , Sequenciamento de Nucleotídeos em Larga Escala , Histona-Lisina N-Metiltransferase/genética , Humanos , Perda de Heterozigosidade , Enzimas Multifuncionais , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/genética
20.
Fam Cancer ; 16(4): 501-507, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28365877

RESUMO

The clinical spectrum of germline mismatch repair (MMR) gene variants continues increasing, encompassing Lynch syndrome, Constitutional MMR Deficiency (CMMRD), and the recently reported MSH3-associated polyposis. Genetic diagnosis of these hereditary cancer syndromes is often hampered by the presence of variants of unknown significance (VUS) and overlapping phenotypes. Two PMS2 VUS, c.2149G>A (p.V717M) and c.2444C>T (p.S815L), were identified in trans in one individual diagnosed with early-onset colorectal cancer (CRC) who belonged to a family fulfilling clinical criteria for hereditary cancer. Clinico-pathological data, multifactorial likelihood calculations and functional analyses were used to refine their clinical significance. Likelihood analysis based on cosegregation and tumor data classified the c.2444C>T variant as pathogenic, which was supported by impaired MMR activity associated with diminished protein expression in functional assays. Conversely, the c.2149G>A variant displayed MMR proficiency and protein stability. These results, in addition to the conserved PMS2 expression in normal tissues and the absence of germline microsatellite instability (gMSI) in the biallelic carrier ruled out a CMMRD diagnosis. The use of comprehensive strategies, including functional and clinico-pathological information, is mandatory to improve the clinical interpretation of naturally occurring MMR variants. This is critical for appropriate clinical management of cancer syndromes associated to MMR gene mutations.


Assuntos
Neoplasias Colorretais/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Mutação de Sentido Incorreto , Idade de Início , Estudos de Casos e Controles , Reparo de Erro de Pareamento de DNA , Feminino , Frequência do Gene , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Humanos , Masculino , Instabilidade de Microssatélites , Endonuclease PMS2 de Reparo de Erro de Pareamento/metabolismo , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...