Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
Brain ; 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33792664

RESUMO

Marinesco-Sjögren syndrome (MSS) is a rare human disorder caused by biallelic mutations in SIL1 characterized by cataracts in infancy, myopathy and ataxia, symptoms that are also associated with a novel disorder caused by mutations in INPP5K. While these phenotypic similarities may suggest commonalties at a molecular level, an overlapping pathomechanism has not been established yet. In this study, we present six new INPP5K patients and expand the current mutational and phenotypical spectrum of the disease showing the clinical overlap between MSS and the INPP5K-phenotype. We applied unbiased proteomic profiling on cells derived from MSS- and INPP5K-patients and identified alterations in D-3-phosphoglycerate dehydrogenase as a common molecular feature. D-3-phosphoglycerate dehydrogenase modulates the production of L-serine and mutations in this enzyme were previously associated with a neurological phenotype, which clinically overlaps with MSS and INPP5K-disease. As, L-serine administration represents a promising therapeutic strategy for D-3-phosphoglycerate dehydrogenase patients, we tested the effect of L-serine in generated sil1, phgdh and inpp5k a + b zebrafish models which showed an improvement in their neuronal phenotype. Thus our study defines a core phenotypical feature underpinning a key common molecular mechanism in three rare diseases and reveals a common and novel therapeutic target for these patients.

2.
Genet Med ; 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833411

RESUMO

PURPOSE: Hypomelanosis of Ito (HI) is a skin marker of somatic mosaicism. Mosaic MTOR pathogenic variants have been reported in HI with brain overgrowth. We sought to delineate further the pigmentary skin phenotype and clinical spectrum of neurodevelopmental manifestations of MTOR-related HI. METHODS: From two cohorts totaling 71 patients with pigmentary mosaicism, we identified 14 patients with Blaschko-linear and one with flag-like pigmentation abnormalities, psychomotor impairment or seizures, and a postzygotic MTOR variant in skin. Patient records, including brain magnetic resonance image (MRI) were reviewed. Immunostaining (n = 3) for melanocyte markers and ultrastructural studies (n = 2) were performed on skin biopsies. RESULTS: MTOR variants were present in skin, but absent from blood in half of cases. In a patient (p.[Glu2419Lys] variant), phosphorylation of p70S6K was constitutively increased. In hypopigmented skin of two patients, we found a decrease in stage 4 melanosomes in melanocytes and keratinocytes. Most patients (80%) had macrocephaly or (hemi)megalencephaly on MRI. CONCLUSION: MTOR-related HI is a recognizable neurocutaneous phenotype of patterned dyspigmentation, epilepsy, intellectual deficiency, and brain overgrowth, and a distinct subtype of hypomelanosis related to somatic mosaicism. Hypopigmentation may be due to a defect in melanogenesis, through mTORC1 activation, similar to hypochromic patches in tuberous sclerosis complex.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33827984

RESUMO

BACKGROUND: Given the increased use and diversity of diagnostic procedures, it is important to understand genetic susceptibility to radiation-induced thyroid cancer. METHODS: Based on self-declared diagnostic radiology examination records in addition to existing literature, we estimated the radiation dose delivered to the thyroid gland from diagnostic procedures during childhood and adulthood in two case-control studies conducted in France. A total of 1071 differentiated thyroid cancer (DTC) cases and 1188 controls from the combined studies were genotyped using a custom-made Illumina OncoArray DNA chip. We focused our analysis on variants in genes involved in DNA damage response and repair pathways, representing a total of 5817 single-nucleotide polymorphisms in 571 genes. We estimated the odds ratio per milli-Gray (OR/mGy) of the radiation dose delivered to the thyroid gland using conditional logistic regression. We then used an unconditional logistic regression model to assess the association between DNA repair gene variants and DTC risk. We performed a meta-analysis of the two studies. RESULTS: The OR/mGy was 1.02 (95% CI: 1.00, 1.03). We found significant associations between DTC and rs7164173 in CHD2 (p = 5.79 10-5), rs6067822 in NFATc2 (p = 9.26 10-5), rs1059394 and rs699517 both in ENOSF1/THYS, rs12702628 in RPA3, and an interaction between rs7068306 in MGMT and thyroid radiation doses (p= 3.40 10-4). CONCLUSIONS: Our results suggest a role for variants in CDH2, NFATc2, ENOSF1/THYS, RPA3 and MGMT in DTC risk. IMPACT: CDH2, NFATc2, ENOSF1/THYS and RPA3 have not previously been shown to be associated with DTC risk.

4.
Sci Rep ; 11(1): 6214, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737531

RESUMO

Quality control (QC) methods for genome-wide association studies and fine mapping are commonly used for imputation, however they result in loss of many single nucleotide polymorphisms (SNPs). To investigate the consequences of filtration on imputation, we studied the direct effects on the number of markers, their allele frequencies, imputation quality scores and post-filtration events. We pre-phrased 1031 genotyped individuals from diverse ethnicities and compared the imputed variants to 1089 NCBI recorded individuals for additional validation. Without QC-based variant pre-filtration, we observed no impairment in the imputation of SNPs that failed QC whereas with pre-filtration there was an overall loss of information. Significant differences between frequencies with and without pre-filtration were found only in the range of very rare (5E-04-1E-03) and rare variants (1E-03-5E-03) (p < 1E-04). Increasing the post-filtration imputation quality score from 0.3 to 0.8 reduced the number of single nucleotide variants (SNVs) < 0.001 2.5 fold with or without QC pre-filtration and halved the number of very rare variants (5E-04). Thus, to maintain confidence and enough SNVs, we propose here a two-step filtering procedure which allows less stringent filtering prior to imputation and post-imputation in order to increase the number of very rare and rare variants compared to conservative filtration methods.

5.
Biomedicines ; 9(2)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672764

RESUMO

In skeletal muscle, long noncoding RNAs (lncRNAs) are involved in dystrophin protein stabilization but also in the regulation of myocytes proliferation and differentiation. Hence, they could represent promising therapeutic targets and/or biomarkers for Duchenne and Becker muscular dystrophy (DMD/BMD). DMD and BMD are X-linked myopathies characterized by a progressive muscular dystrophy with or without dilatative cardiomyopathy. Two-thirds of DMD gene mutations are represented by deletions, and 63% of patients carrying DMD deletions are eligible for 45 to 55 multi-exons skipping (MES), becoming BMD patients (BMDΔ45-55). We analyzed the genomic lncRNA presence in 38 BMDΔ45-55 patients and characterized the lncRNA localized in introns 44 and 55 of the DMD gene. We highlighted that all four lncRNA are differentially expressed during myogenesis in immortalized and primary human myoblasts. In addition, the lncRNA44s2 was pointed out as a possible accelerator of differentiation. Interestingly, lncRNA44s expression was associated with a favorable clinical phenotype. These findings suggest that lncRNA44s2 could be involved in muscle differentiation process and become a potential disease progression biomarker. Based on these results, we support MES45-55 therapy and propose that the design of the CRISPR/Cas9 MES45-55 assay consider the lncRNA sequences bordering the exonic 45 to 55 deletion.

6.
Eur J Hum Genet ; 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664500

RESUMO

Neuroimaging-genetics cohorts gather two types of data: brain imaging and genetic data. They allow the discovery of associations between genetic variants and brain imaging features. They are invaluable resources to study the influence of genetics and environment in the brain features variance observed in normal and pathological populations. This study presents a genome-wide haplotype analysis for 123 brain sulcus opening value (a measure of sulcal width) across the whole brain that include 16,304 subjects from UK Biobank. Using genetic maps, we defined 119,548 blocks of low recombination rate distributed along the 22 autosomal chromosomes and analyzed 1,051,316 haplotypes. To test associations between haplotypes and complex traits, we designed three statistical approaches. Two of them use a model that includes all the haplotypes for a single block, while the last approach considers each haplotype independently. All the statistics produced were assessed as rigorously as possible. Thanks to the rich imaging dataset at hand, we used resampling techniques to assess False Positive Rate for each statistical approach in a genome-wide and brain-wide context. The results on real data show that genome-wide haplotype analyses are more sensitive than single-SNP approach and account for local complex Linkage Disequilibrium (LD) structure, which makes genome-wide haplotype analysis an interesting and statistically sound alternative to the single-SNP counterpart.

7.
Eur J Med Genet ; 64(4): 104166, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33571694

RESUMO

CHD3-related syndrome, also known as Snijders Blok-Campeau syndrome, is a rare developmental disorder described in 2018, caused by de novo pathogenic variants in the CHD3 gene. This syndrome is characterized by global developmental delay, speech delay, intellectual disability, hypotonia and behavioral disorders including autism spectrum disorder (ASD). Typical dysmorphic features include macrocephaly, hypertelorism, enophthalmia, sparse eyebrows, bulging forehead, midface hypoplasia, prominent nose and pointed chin. To our knowledge, there have been no other clinical descriptions of patients since the initial publication. We report the clinical description of a 21-year-old patient harboring a pathogenic de novo variant in CHD3. We reviewed the clinical features of the 35 previously reported patients. Main features were severe intellectual disability, dysmorphic facies, macrocephaly, cryptorchidism, pectus carinatum, severe ophthalmologic abnormalities and behavioral disorders including ASD, and a frank happy demeanor. Hypersociability, which was a noticeable clinical feature in our case, despite ASD, is an uncommon behavioral feature in syndromic intellectual disabilities. Our report supports hypersociability as a suggestive feature of CHD3-related syndrome along with developmental delay, macrocephaly and a dysmorphic facies.

8.
Hum Mol Genet ; 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33527138

RESUMO

Sexual dimorphism in cancer incidence and outcome is widespread. Understanding the underlying mechanisms is fundamental to improve cancer prevention and clinical management. Sex disparities are particularly striking in kidney cancer: across diverse populations, men consistently show unexplained two-fold increased incidence and worse prognosis. We have characterized genome-wide expression and regulatory networks of 609 renal tumors and 256 non-tumor renal tissues. Normal kidney displayed sex-specific transcriptional signatures, including higher expression of X-linked tumor suppressor genes in women. Sex-dependent genotype-phenotype associations unraveled women-specific immune regulation. Sex differences were markedly expanded in tumors, with male-biased expression of key genes implicated in metabolism, non-malignant diseases with male predominance, and carcinogenesis, including markers of tumor infiltrating leukocytes. Analysis of sex-dependent RCC progression and survival uncovered prognostic markers involved in immune response and oxygen homeostasis. In summary, human kidney tissues display remarkable sexual dimorphism at the molecular level. Sex-specific transcriptional signatures further shape renal cancer, with relevance for clinical management.

9.
Int J Cancer ; 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33527407

RESUMO

Incidence of differentiated thyroid carcinoma (DTC) varies considerably between ethnic groups, with particularly high incidence rates in Pacific Islanders. DTC is one of the cancers with the highest familial risk suggesting a major role of genetic risk factors, but only few susceptibility loci were identified so far. In order to assess the contribution of known DTC susceptibility loci and to identify new ones, we conducted a multiethnic genome-wide association study (GWAS) in individuals of European ancestry and of Oceanian ancestry from Pacific Islands. Our study included 1554 cases/1973 controls of European ancestry and 301 cases/348 controls of Oceanian ancestry from seven population-based case-control studies participating to the EPITHYR consortium. All participants were genotyped using the OncoArray-500K Beadchip (Illumina). We confirmed the association with the known DTC susceptibility loci at 2q35, 8p12, 9q22.33 and 14q13.3 in the European ancestry population and suggested two novel signals at 1p31.3 and 16q23.2, which were associated with thyroid-stimulating hormone levels in previous GWAS. We additionally replicated an association with 5p15.33 reported previously in Chinese and European populations. Except at 1p31.3, all associations were in the same direction in the population of Oceanian ancestry. We also observed that the frequencies of risk alleles at 2q35, 5p15.33 and 16q23.2 were significantly higher in Oceanians than in Europeans. However, additional GWAS and epidemiological studies in Oceanian populations are needed to fully understand the highest incidence observed in these populations.

10.
Neurogenetics ; 22(1): 33-41, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33405017

RESUMO

The nuclear envelope (NE) separates the nucleus from the cytoplasm in all eukaryotic cells. A disruption of the NE structure compromises normal gene regulation and leads to severe human disorders collectively classified as nuclear envelopathies and affecting skeletal muscle, heart, brain, skin, and bones. The ubiquitous NE component LAP1B is encoded by TOR1AIP1, and the use of an alternative start codon gives rise to the shorter LAP1C isoform. TOR1AIP1 mutations have been identified in patients with diverging clinical presentations such as muscular dystrophy, progressive dystonia with cerebellar atrophy, and a severe multi-systemic disorder, but the correlation between the mutational effect and the clinical spectrum remains to be determined. Here, we describe a novel TOR1AIP1 patient manifesting childhood-onset muscle weakness and contractures, and we provide clinical, histological, ultrastructural, and genetic data. We demonstrate that the identified TOR1AIP1 frameshift mutation leads to the selective loss of the LAP1B isoform, while the expression of LAP1C was preserved. Through comparative review of all previously reported TOR1AIP1 cases, we delineate a genotype/phenotype correlation and conclude that LAP1B-specific mutations cause a progressive skeletal muscle phenotype, while mutations involving a loss of both LAP1B and LAP1C isoforms induce a syndromic disorder affecting skeletal muscle, brain, eyes, ear, skin, and bones.

11.
Curr Biol ; 31(5): 1072-1083.e10, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33434506

RESUMO

The transition from the Late Neolithic to the Bronze Age has witnessed important population and societal changes in western Europe.1 These include massive genomic contributions of pastoralist herders originating from the Pontic-Caspian steppes2,3 into local populations, resulting from complex interactions between collapsing hunter-gatherers and expanding farmers of Anatolian ancestry.4-8 This transition is documented through extensive ancient genomic data from present-day Britain,9,10 Ireland,11,12 Iberia,13 Mediterranean islands,14,15 and Germany.8 It remains, however, largely overlooked in France, where most focus has been on the Middle Neolithic (n = 63),8,9,16 with the exception of one Late Neolithic genome sequenced at 0.05× coverage.16 This leaves the key transitional period covering ∼3,400-2,700 cal. years (calibrated years) BCE genetically unsampled and thus the exact time frame of hunter-gatherer persistence and arrival of steppe migrations unknown. To remediate this, we sequenced 24 ancient human genomes from France spanning ∼3,400-1,600 cal. years BCE. This reveals Late Neolithic populations that are genetically diverse and include individuals with dark skin, hair, and eyes. We detect heterogeneous hunter-gatherer ancestries within Late Neolithic communities, reaching up to ∼63.3% in some individuals, and variable genetic contributions of steppe herders in Bell Beaker populations. We provide an estimate as late as ∼3,800 years BCE for the admixture between Neolithic and Mesolithic populations and as early as ∼2,650 years BCE for the arrival of steppe-related ancestry. The genomic heterogeneity characterized underlines the complex history of human interactions even at the local scale.

12.
Artigo em Inglês | MEDLINE | ID: mdl-33491046

RESUMO

Despite enormous research efforts, the genetic component of longevity has remained largely elusive. The investigation of common variants, mainly located in intronic or regulatory regions, has yielded only little new information on the heritability of the phenotype. Here, we performed a chip-based exome-wide association study investigating 62,488 common and rare coding variants in 1,248 German long-lived individuals, including 599 centenarians and 6,941 younger controls (age < 60 years). In a single-variant analysis, we observed an exome-wide significant association between rs1046896 in the gene fructosamine-3-kinase-related-protein (FN3KRP) and longevity. Noteworthy, we found the longevity allele C of rs1046896 to be associated with an increased FN3KRP expression in whole blood; a database look-up confirmed this effect for various other human tissues. A gene-based analysis, in which potential cumulative effects of common and rare variants were considered, yielded the gene phosphoglycolate phosphatase (PGP) as another potential longevity gene, though no single variant in PGP reached the discovery P-value (1x10E-04). Furthermore, we validated the previously reported longevity locus cyclin dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1). Replication of our results in a French longevity cohort was only successful for rs1063192 in CDKN2B-AS1. In conclusion, we identified two new potential candidate longevity genes, FN3KRP and PGP which may influence the phenotype through their role in metabolic processes, i.e. the reverse glycation of proteins (FN3KRP) and the control of glycerol-3-phosphate levels (PGP).

13.
Int J Immunogenet ; 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33480472

RESUMO

The etiopathogenesis of rheumatoid arthritis is partially understood; however, it is believed to result from a multi-step process. The immune onset followed by pre-clinical phases will eventually lead to the development of symptomatic disease. We aim at identifying differentially expressed genes in order to highlight pathways involved in the pre-clinical stages of rheumatoid arthritis development. The study population consisted of first-degree relatives of patients with rheumatoid arthritis, known to have an increased risk of developing disease as compared to the general population. Whole transcriptome analysis was performed in four groups: asymptomatic without autoantibodies or symptoms associated with possible rheumatoid arthritis (controls); having either clinically suspect arthralgias, undifferentiated arthritis or autoimmunity associated with RA (pre-clinical stages of RA: Pcs-RA); having subsequently developed classifiable RA (pre-RA); and early untreated rheumatoid arthritis patients (RA). Differentially expressed genes were determined, and enrichment analysis was performed. Functional enrichment analysis revealed 31 pathways significantly enriched in differentially expressed genes for Pcs-RA, pre-RA and RA compared to the controls. Osteoclast pathway is among the seven pathways specific for RA. In Pcs-RA and in pre-RA, several enriched pathways include TP53 gene connections, such as P53 and Wnt signalling pathways. Analysis of whole transcriptome for phenotypes related to rheumatoid arthritis allows highlighting which pathways are requested in the pre-clinical stages of disease development. After validation in replication studies, molecules belonging to some of these pathways could be used to identify new specific biomarkers for individuals with impending rheumatoid arthritis.

14.
Epigenomics ; 13(3): 169-186, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33471557

RESUMO

Aim: Nonhuman primates are essential for research on many human diseases. The Infinium Human Methylation450/EPIC BeadChips are popular tools for the study of the methylation state across the human genome at affordable cost. Methods: We performed a precise evaluation and re-annotation of the BeadChip probes for the analysis of genome-wide DNA methylation patterns in rhesus macaques and African green monkeys through in silico analyses combined with functional validation by pyrosequencing. Results: Up to 165,847 of the 450K and 261,545 probes of the EPIC BeadChip can be reliably used. The annotation files are provided in a format compatible with a variety of standard bioinformatic pipelines. Conclusion: Our study will facilitate high-throughput DNA methylation analyses in Macaca mulatta and Chlorocebus sabaeus.

15.
Eur J Endocrinol ; 184(3): 459-472, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33486469

RESUMO

Objective: DNAJC3, also known as P58IPK, is an Hsp40 family member that interacts with and inhibits PKR-like ER-localized eIF2α kinase (PERK). Dnajc3 deficiency in mice causes pancreatic ß-cell loss and diabetes. Loss-of-function mutations in DNAJC3 cause early-onset diabetes and multisystemic neurodegeneration. The aim of our study was to investigate the genetic cause of early-onset syndromic diabetes in two unrelated patients, and elucidate the mechanisms of ß-cell failure in this syndrome. Methods: Whole exome sequencing was performed and identified variants were confirmed by Sanger sequencing. DNAJC3 was silenced by RNAi in INS-1E cells, primary rat ß-cells, human islets, and induced pluripotent stem cell-derived ß-cells. ß-cell function and apoptosis were assessed, and potential mediators of apoptosis examined. Results: The two patients presented with juvenile-onset diabetes, short stature, hypothyroidism, neurodegeneration, facial dysmorphism, hypoacusis, microcephaly and skeletal bone deformities. They were heterozygous compound and homozygous for novel loss-of-function mutations in DNAJC3. DNAJC3 silencing did not impair insulin content or secretion. Instead, the knockdown induced rat and human ß-cell apoptosis and further sensitized cells to endoplasmic reticulum stress, triggering mitochondrial apoptosis via the pro-apoptototic Bcl-2 proteins BIM and PUMA. Conclusions: This report confirms previously described features and expands the clinical spectrum of syndromic DNAJC3 diabetes, one of the five monogenic forms of diabetes pertaining to the PERK pathway of the endoplasmic reticulum stress response. DNAJC3 deficiency may lead to ß-cell loss through BIM- and PUMA-dependent activation of the mitochondrial pathway of apoptosis.


Assuntos
Apoptose/genética , Diabetes Mellitus Tipo 1/genética , Proteínas de Choque Térmico HSP40/genética , Células Secretoras de Insulina/fisiologia , Mitocôndrias/metabolismo , Adolescente , Adulto , Fatores Etários , Animais , Células Cultivadas , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Humanos , Células Secretoras de Insulina/metabolismo , Mutação com Perda de Função , Masculino , Camundongos , Mitocôndrias/patologia , Linhagem , Ratos , Síndrome
16.
Nat Genet ; 52(12): 1364-1372, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33230297

RESUMO

Inappropriate stimulation or defective negative regulation of the type I interferon response can lead to autoinflammation. In genetically uncharacterized cases of the type I interferonopathy Aicardi-Goutières syndrome, we identified biallelic mutations in LSM11 and RNU7-1, which encode components of the replication-dependent histone pre-mRNA-processing complex. Mutations were associated with the misprocessing of canonical histone transcripts and a disturbance of linker histone stoichiometry. Additionally, we observed an altered distribution of nuclear cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) and enhanced interferon signaling mediated by the cGAS-stimulator of interferon genes (STING) pathway in patient-derived fibroblasts. Finally, we established that chromatin without linker histone stimulates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) production in vitro more efficiently. We conclude that nuclear histones, as key constituents of chromatin, are essential in suppressing the immunogenicity of self-DNA.

17.
Arterioscler Thromb Vasc Biol ; : ATVBAHA120315491, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33207932

RESUMO

OBJECTIVE: Primary hypobetalipoproteinemia is characterized by LDL-C (low-density lipoprotein cholesterol) concentrations below the fifth percentile. Primary hypobetalipoproteinemia mostly results from heterozygous mutations in the APOB and PCSK9 genes, and a polygenic origin is hypothesized in the remaining cases. Hypobetalipoproteinemia patients present an increased risk of nonalcoholic fatty liver disease and steatohepatitis. Here, we compared hepatic alterations between monogenic, polygenic, and primary hypobetalipoproteinemia of unknown cause. Approach and Results: Targeted next-generation sequencing was performed in a cohort of 111 patients with hypobetalipoproteinemia to assess monogenic and polygenic origins using an LDL-C-dedicated polygenic risk score. Forty patients (36%) had monogenic hypobetalipoproteinemia, 38 (34%) had polygenic hypobetalipoproteinemia, and 33 subjects (30%) had hypobetalipoproteinemia from an unknown cause. Patients with monogenic hypobetalipoproteinemia had lower LDL-C and apolipoprotein B plasma levels compared with those with polygenic hypobetalipoproteinemia. Liver function was assessed by hepatic ultrasonography and liver enzymes levels. Fifty-nine percent of patients with primary hypobetalipoproteinemia presented with liver steatosis, whereas 21% had increased alanine aminotransferase suggestive of liver injury. Monogenic hypobetalipoproteinemia was also associated with an increased prevalence of liver steatosis (81% versus 29%, P<0.001) and liver injury (47% versus 0%) compared with polygenic hypobetalipoproteinemia. CONCLUSIONS: This study highlights the importance of genetic diagnosis in the clinical care of primary hypobetalipoproteinemia patients. It shows for the first time that a polygenic origin of hypobetalipoproteinemia is associated with a lower risk of liver steatosis and liver injury versus monogenic hypobetalipoproteinemia. Thus, polygenic risk score is a useful tool to establish a more personalized follow-up of primary hypobetalipoproteinemia patients.

18.
Clin Genet ; 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33169370

RESUMO

Bardet-Biedl syndrome (BBS) is a ciliopathy characterized by retinitis pigmentosa, obesity, polydactyly, cognitive impairment and renal failure. Pathogenic variants in 24 genes account for the molecular basis of >80% of cases. Toward saturated discovery of the mutational basis of the disorder, we carefully explored our cohorts and identified a hominid-specific SINE-R/VNTR/Alu type F (SVA-F) insertion in exon 13 of BBS1 in eight families. In six families, the repeat insertion was found in trans with c.1169 T > G, p.Met390Arg and in two families the insertion was found in addition to other recessive BBS loci. Whole genome sequencing, de novo assembly and SNP array analysis were performed to characterize the genomic event. This insertion is extremely rare in the general population (found in 8 alleles of 8 BBS cases but not in >10 800 control individuals from gnomAD-SV) and due to a founder effect. Its 2435 bp sequence contains hallmarks of LINE1 mediated retrotransposition. Functional studies with patient-derived cell lines confirmed that the BBS1 SVA-F is deleterious as evidenced by a significant depletion of both mRNA and protein levels. Such findings highlight the importance of dedicated bioinformatics pipelines to identify all types of variation.

20.
Sci Rep ; 10(1): 15652, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973211

RESUMO

Several blood-based age prediction models have been developed using less than a dozen to more than a hundred DNA methylation biomarkers. Only one model (Z-P1) based on pyrosequencing has been developed using DNA methylation of a single locus located in the ELOVL2 promoter, which is considered as one of the best age-prediction biomarker. Although multi-locus models generally present better performances compared to the single-locus model, they require more DNA and present more inter-laboratory variations impacting the predictions. Here we developed 17,018 single-locus age prediction models based on DNA methylation of the ELOVL2 promoter from pooled data of four different studies (training set of 1,028 individuals aged from 0 and 91 years) using six different statistical approaches and testing every combination of the 7 CpGs, aiming to improve the prediction performances and reduce the effects of inter-laboratory variations. Compared to Z-P1 model, three statistical models with the optimal combinations of CpGs presented improved performances (MAD of 4.41-4.77 in the testing set of 385 individuals) and no age-dependent bias. In an independent testing set of 100 individuals (19-65 years), we showed that the prediction accuracy could be further improved by using different CpG combinations and increasing the number of technical replicates (MAD of 4.17).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...